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Markov Decision Processes with Applications to Finance

e Markov Decision Processes

Basic results, Computational aspects

e Partially Observable Markov Decision Processes
Hidden Markov models, Filtered MDPs

Bandit problems, Consumption-Investment problems

e Continuous-Time Markov Decision Processes
Piecewise deterministic MDPs

Terminal wealth problems, Trade execution in illiquid markets



Markov Decision Processes

(E,A, D,, Qn,rn,gN) with horizon N

e [/ state space

e A action space

oD, C Ex A admissible state-action pairs at time n
@, Qu(-|z,a) transition law at time n

er,: D, — R reward function at time n

e gv: EE — R terminal reward function at time N

decision rule at time n f,, : £ — A measurable and f,(z) € D,(x) for all z € E

policy m = (fo, f1.-- -, fn—1)



For n=20,1,..., N define the value functions
N-1

Vir(z) == E { > (X, fk(Xk>)+9N(XN>}

k=n

Vo) =sup Vi(z), x € E
7 is called optimal if Vi, (x) = Vy(x) forall x € E.

Integrability Assumption (Ay) :

Forn=0,1,..., N
N-1

Sup E;T[Z 7 (X, (X)) —I—g]J(,(XN)} <oo,r €K

k=n

Bertsekas/Shreve (1978), Hernandez-Lerma/Lasserre (1996). ..

Puterman (1994), Feinberg/Schwartz (2002) . ..
Biuerle/Rieder (2011)



Let M(E):={v:E — |—00,00)|v is measurable} and

define the following operators for v € M(FE) :

(Lov)(x,a) =ry(z,a)+ [v(2")Q,(d'|x,a), (z,a) € D,

(Tnfnv)(:z:) = (an) (:z;', fn(x))

(Tv)(x) = sup (Lyw)(z,a), z€E Note: T,,v ¢ M(FE)!
a€Dp(x)

A decision rule f,, is called a maximizer of v at time n if T,,;, v = T)v.

Reward lteration: V), =T, V111, VN: = gn.

Bellman Equation: V,, =T,,V,,.1, VN = gn.

Verification Theorem: Let (v,,) C M(FE) be a solution of the Bellman equation.
a)v, =V, form=0,1,..., N.

b) If f*is a maximizer of v, 1 forn =0,1,..., N — 1, then v, = V,, and the policy

(fék) fl*a c ey f;f_l) IS optimal.



Structure Assumption (SAy): There exist sets M, C M(E) of measurable

functions and sets /\,, of decision rules such that for all n = 0,1,..., N — 1 :

(i) gv € Miy.
(i) If v € ML, .1 then T,v is well-defined and T,,v € M.

(iii) For all v € M, there exists a maximizer f, of v with f,, € A\,,.

Structure Theorem:

Assume (SAN). Then it holds:
a) V,, € M, and (V,,) is a solution of the Bellman equation.
b) Vn = TnTn+1 .. .TN_1 gnN.

c) Forn=0,1,..., N — 1 there exists a maximizer f,, of V.1 with f,, € /A,,, and
every sequence of maximizers f of V, . defines an optimal policy (fa‘, fiy. .. fji,_l)

for the N-stage Markov Decision Problem.



b: £ — R, is called an upper bounding function if there exist ¢, c,, a; € R,
such that for alln =0,1,..., N —1
(i) ' (z,a) < ¢b(x).

(i) g3(z) < cob(z).
(i) [ o(2)Qy (da' |z, a) < cyb(z).

Qp = sup fb(x/)g%gx/‘x’a). Define ||v]|, = Sup ‘b((i)ﬂ.

(x,a)eD
B, := {v € M(E)| |[v]jp< oo}, B} :=={v € M (E)] |lvt]lp< oo}

b: E — R, is called a bounding function if there exist ¢, c,, oy, € R
such that for alln =0,1,..., N — 1

(i) |7(z, a)| < c.b(x).
(ii) lgn(z)| < cgb(z).
(iii)) [ b(2")Qn(da'|z,a) < apb(z).



Theorem: Suppose the N-stage MDP has an upper bounding function b and
foralln=0,1,..., N — 1 it holds:

(i) D,(x) is compact and © — D, (x) is upper semicontinuous (usc).
(i) (z,a) — [v(2)Q,(d2'|x, a) is usc for all usc v € B}
(iii) (z,a) — ry(x,a) is usc .
(iv) z — gn(x) is usc.
Then the sets M, := {U e IB%Iﬂv IS usc} and A, = {fn decision rule at time n}
satisfy the Structure Assumption (SAN), in particular: V,, € M, and

there exists an optimal policy (fg‘, iy ., fj{,_l) with f* e A,,.



Markov Decision Processes with Infinite Time Horizon

We consider a stationary MDP with 5 € (O, 1} and N = oo.

Joor(T) = EW[Z BFr (X, fr(Xk))]
Joo() = SUp JOOW( ), z € E.

Integrability Assumption (A):

sup E7 [liﬁk r*(Xk, fk(Xk))} <oo,x €l

Convergence Assumption (C):

lim sup E”[Zﬂk +(Xk,fk(Xk))} =0, xr€eF

n—uoo r

Then it holds: J,, = lim J,

limit value function J:=1limJ, > J,. Note: J # J and J, & M(FE)!



Verification Theorem: Assume (C). Let v € M((E) be a fixed point of T such
that v > J.. If f* is a maximizer of v, then v = J,, and the stationary policy

(f*, f*,.. ) is optimal for the infinite-stage Markov Decision Problem.

Structure assumption (SA):
There exist a set Ml C M(FE) of measurable functions and a set /A of decision rules
such that:

(i) 0 € M.

(i) If v € M then Tv is well-defined and T'v € M.

(iii) For all v € M there exists a maximizer f of v with f € A.

(iv) JeM and J=TJ.

Structure Theorem: Let (C) and (SA) be satisfied. Then it holds:
a) Jo €M, Jo=TJy and J, = J.

b) There exists a maximizer f € A of J, and every maximizer f* of J, defines an

optimal stationary policy (f*, .. )



Theorem: Suppose the stationary MDP has an upper bounding function b
with Gay < 1 and it holds:

(i) D(x) is compact and x — D(x) is usc.

(i) (z,a) — [v(2)Q(d2'|x,a) is usc for all usc v € B}

(iii) (z,a) — r(x,a) is usc.

Then it holds:
(a) Jw € By, Jo =TJx and Jo =J (value iteration).
(b) b is usc = J, is usc.
(c) 0 # LsD*(x) C D (x) forallz € E (policy iteration).
(d) There exists a decision rule f* with f*(x) € LsD¥(x) for all x € FE, and the
stationary policy (f*, f* .. ) is optimal.
[ b)) Q(dz,0)

ap = sup o)
(x,a)eD




Contracting Markov Decision Processes
Structure Theorem: Let b be a bounding function and Bay < 1. If there exists a
closed subset Ml C B, and a set /A of decision rules such that:

(i) 0 € M.

(ii)) T : M — M.

(iii) For all v € M there exists a maximizer f of v with f € A.

Then it holds:
a) Joo € M, Joo =T Jy and J, = J.
b) J is the unique fixed point of T" in M.

c) There exists a maximizer f € /A of J, and every maximizer f* of J,, defines an

optimal stationary policy (f*, f* .. )



Howard’s Policy Improvement Algorithm

Let J; be the value function of the stationary policy (f, f,.. )

Denote

D(z, f) = {a € D(x)|(LJy)(z,a) > Js(z)}
Let the Markov decision process be contracting.
Then it holds:

a) If for some subset £y C F
g(x) € D(x, f) for x € Ej

g(w) = f(x) for z & B,

then J, > Jy and J,(x) > Js(x) for x € Ej.
In this case the decision rule g is called an improvement of f.

b) If D(z, f) =0 for all x € E, then the stationary policy (f, f,...) is optimal.

Remark: (f, f,.. ) is optimal <= f cannot be improved.



Consumption-Investment Problems

Financial market
e Bond B, = (1 +i)n
e Stocks SF =5 - HY’“C k=1,...,d
Y, = (Ynl : Yd) and (Yl, . YN) independent

(FM): There are no arbitrage opportunities and E' ||Y,,||< oo forn =1,...

7, = amount of money invested in stock k at time n, m, = (7

SO I

m, = amount of money invested in the bond at time n,
¢, = amount of money consumed at timen, ¢, > 0.
Then it holds for the wealth process

Xl =(1+0)(Xe™ —cp) +mn - (Y1 — (L+14) - €)

= (1+1) (Xf,;” —c, + 7y, Rn+1)



Utility functions U, U, : R, — R, strictly increasing and strictly concave

( N—-1

ET [nz_:o U.(cp) + Up(X]C\}W)} — max

(P)y X4 >0

\ (c, 7T) = (Cn,ﬂ'n> consumption-investment strategy

Further Topics:

e Terminal Wealth Problems
e Problems with Regime Switching
e Problems with Transaction Costs

e Mean-Variance or Mean-Risk Problems



e E =R,
o A =R, xR?

Dy(x)={(c,a) e A|0<c<z, (1+i)(z—c+a-Ry)>0as)
® Qnl-|z, ¢,
or,(z,ca):=U/c

o gn(z) = Up(z)

a) = distribution of (1 +¢)(x —c+a- R,11)

b(x) == 1+ z is a bounding function for the MDP
Then it holds:

a) Vi,(z) are strictly increasing and concave.
b) The value functions can be computed recursively
Vn(z) = Up(z)

V(@)= sup {Uclc) + E|Vorr((1+i)(x —c+a-Ryr))|}, z€ Ry
(c,a)EDp(x)

c) There exists an optimal consumption-investment strategy (fék, L fj{f_l) for (P)

with (f3(2) = (c3(x). a3 ().



d FR,,1=0<= FEY, ;1 =1+1

—> qa'(z)=0 ,invest all the money in the bond"

Application: U.(z) = U,(x) = 27 (power utility) 0<~vy <1
(i) Vi(z) =d, - 27

(i) cyla) = 2 6=t al(e) = oy — ()

where o is the optimal solution of

Sup E[(l + o« - Rn_}_l)fy] and A, = {a S ]Rd|1 +a-R,1 20 a.s.}

a€A,

Properties of ¢’ (z) and o (x)?



Partially Observable Markov Decision Processes

e [/'x X Iy state space x observable state, y unobservable state
o A action space

e D C Ex x A admissible state-action pairs, D(z) C A

e Q(:|z,y,a) transition law

e (Jo initial distribution (prior distribution) of Y

° r(x, Y, a) reward function

o g(x, y) terminal reward function

o5 € (O, 1} discount factor

Examples : Hidden Markov Model (HMM), Bayesian Decision Model

decision rule at time n  f, (azo, ag, 1, . . . ,le‘n) = fn(hn)

policy m = (fo,fl, e fN—1) finite horizon: N < oo

Rieder (1975), Elliott et al. (1995), Biuerle/Rieder (2011) ...



N—-1
Inela) = BE [ 5 (X Yo Sul(Ho) + 59 (X Y|

Jn(x) = sup Jyz(x), v € Ex
Forn=0,1,...and C C Ey define
1 (Cl X0, A, X1, ..., X)) == PI(Y, € C|Xy, Ay, X1, ..., X)

a posteriori-distribution at time n

Filter Equation
o — QO and ,un+1('|Hna Ana Xn—H) — (I)(Xna Un(‘Hn>;An; X?H—l)

where
[ aleyly.a)pldy) | v(dy)

J
C
S S aa ' |zy.a)p(dy) | v(dy)
By

O(x, p,a,2")(C) = L C CEBy, pe IP’(EY)

Bayes-Operator



Filtered Markov Decision Process

o [/ .= FEyx X IP’(EY) > (:c,p) enlarged state space
e A and D(az,p) = D(az)
e Q*(Bl|z,p,a) = [ Q(B x Ey|z,y,a)p(dy), B C Ex
Q' (B x Clz,p,a) == [1c(P(z, p,a,2")) Q" (da'|x, p,a), C C P(Ey)
o '(x,p,a) = fr(x,y,i)p(dy)
o g'(z,p):= [ g(z,y)p(dy)



Theorem:

(i) JNW(CE) = Jj’vw(az,Qo) and JN(x) = J]’v(a:,QO).

(i) Assume (SAy). Then the Bellman equation holds, i.e.
Vi(z, p) == B"d(z, p)
V(z,p) = aggp){’r’(a:,p, a) + [V (2, 0z, p,a,2) Q" (da'|z, p,a) }.

Let f) be a maximizer of V., for n =0,..., N — 1. Then the policy
= (f{)k, iy, f;[_l) is optimal for the N-stage POMDP, where

f?iLk (hn) = fé(xna ,un(|hn>), hn = (leo, ag, i, . . . ,ajn).

Note that V) (z,p) = 3" Jy_,(x,p), n=0,...,N

Computational aspects  Kalman Filter

Sufficient Statistics



Bandit Problems
unknown success probabilities 6; € [0, 1] and 6, € [0, 1]
Qo = product of two Uniform-distributions of (01, (92)

Aim: maximize the expected number of successes in a finite or infinite number of

trials

o /.= N5 x N2> (ml,nl,mg,ng) =
o A= {1,2}

e Bayes-Operator CD(,O, a, {success}) = p+ €241

/ e mg+1
er (107 a) T omgtngt+2

e 3c (0,1].
N < 0o : There exists an optimal policy.
monotonicity results: stay-on-a-winner property

stopping property if 65 is known.



N:ooandﬁe(O,l):

For K € R let J(m,n; K) be the unique solution of

v(im,n) = maX{K, ﬁ(p(m, njv(m+1,n) + (1 — p(m, n))v(m, n + 1))}

m—+1

for (m,n) € Nj and p(m,n) = L=

Define the Gittins-Index
I(m,n) :=min{K|J(m,n; K) = K}

Then it holds:

The stationary Index-policy (f*, f*, .. ) is optimal for the infinite-stage Bandit

problem where
)

Lif T (mrm) > T,
f*(mlynl,m27n2) = ! <m1 TL1> (m2 n2>

2 if](ml,nl) < I(mg,nz).

\

Gittins (1989), Whittle (1980), (1988)



Cox-Ross-Rubinstein Model
eBond B, __(1-+¢)”
e Stock S, =5 - H Y. (Yk) independent and identically distributed
P(Y;C = u) =0=1-— P(Yk = d) unknown up-probability 6

Qo =Uniform-distribution of 6

(NA) : d<l+i<u

7, = amount of money invested in the stock at time n

Then it holds for the wealth process:
Xr=Xr(1+d)+mYo—1—1i), XT=2>0

Utility function U : R, — R, strictly increasing and concave
(

E, {U(X}{[)} —— max
(P) <

23
WV
-

= (wn) portfolio-strategy
\



e £/ =R, x N} > (z,(m,n)) = (z,p)

e A=R, D)={aeR|(l+i)z+a(Y —i—1)>0as.}
e Bayes-Operator CID(p,u) = (m + 1,n)

o1’ =0, g’(x,p) = U(x)

b(:l:, p) =14 x is a bounding function for the filtered MDP.
Then it holds:

a) Jy(z) = Jy(x,Qo) is strictly increasing and concave in .

b) There exists an optimal policy (fg‘, fi, ..., fj{,_l) for (P).

Application: U(z) = %567 (power utility) v <1, v #0
(i) In(z, p) = In(x,m,n) = %x” ~dy(m,n).
(i) £7(2,p) = £, 0) = 2 - ag(m, ).
monotonicity results: (m,n) <

(
(i) 0 <y <1: ap(m,n) > ax(p) withp = 2+

v <0: ag(m,n) < ap)



Piecewise Deterministic Markov Decision Processes

e [/ state space, L C Rd
e U control space

A:={a:R; — U measurable}, we write: a(t) = ay
o u(x,u) drift between jumps

¢?(x) (unique) solution of : dx; = p(xy, ay)dt, 19 =

deterministic flow between jumps

e A\ >0 jump rate (here: )\ is independent of (z,u))

0:=1Ty < Ty <Ty < ...jump time points of a Poisson process with rate A
o Q(|x,u) distribution of jump goals
o r(x,u) reward rate

o3>0 discount rate



T = (m) is called a Markovian policy (or piecewise open loop policy) if there exists

a sequence of measurable functions f,, : E — A such that
m = fu(Zn) (t = T,) for T, <t < Ty

We write: m = (7Tt> = (fn)
piecewise deterministic Markov process

X = qb?_Tn (Zn) for 1, <t< Tn+17 Ly = XTn
Vilw) = B | [ (X0, m) ]
0
Veolz) :=sup Vi(z), v € E

e Continuous-time stochastic control: Hamilton-Jacobi-Bellman equation

e Solution via discrete-time MDP

Yuskevich (1987), Davis (1993), Schal et al. (2004). ..
Jacobsen (2006), Guo/Hernandez-Lerma (2009): CTMDP



Discrete-time MDP

e [/ state space (embedded Markov process)

e A action space

e Q'(Blz,a) = A}Oe—WH)tQ(Bw(az), ay)dt, BC E

o 1'(z,q) fe Nty (99 (2), o) dit

Note: A is a function space, (' is substochastic.

(T)(z) = sup{fe BN (92 (), ) + A [ 0(2)Q(dz|d (x

acA
Theorem:
Vila) = B2[3 1/(Z1, £1(21))] = Josla)

V00<x> — sSup Joo7r<x> — Joo<fl3>, r el

™

) an) dt}



For a proof of the following result we use the set R := {« : R. — P(U) measurable}
of relaxed controls (with the Young topology). Since R O A, we have to extend

the domain of the data ()’ and r’. Then it holds:
T () = Joo(x) = Vie(), z € E.

b: E — R, is called an upper bounding function for the Piecewise Deterministic
Markov Model, if there exist c,, cg, c, € R, such that
(i) r™(z,u) < c.b(x).
(i) [ b(z"Q(d'|z,u) < cob(x).
(i) A [0 e M (00 (z))dt < cyb(x).

If r is bounded from above, then b = 1 is an upper bounding function and

co =1 and Cgb:ﬁ-

If b is an upper bounding function, then b is an upper bounding function for the MDP’

(with and without relaxed controls) and a;, < cgcy.



Theorem: Suppose the Piecewise Deterministic Markov Model has a continuous up-
per bounding function b with a; < 1 and it holds:

(i) U is compact.

(ii
(iii

(iv) (z,u) — r(x,u) is usc.

Then it holds:

(t,z, ) — ¢§'(x) is continuous.

(z,u) — [v(2)Q(dz|z,u) is usc for all usc v € B}

)
)
)
)

a) J¢ is upper semi-continuous and J'& = T J"¢.
b) There exists an optimal relaxed policy 7* = (Wf), i.e. m/ takes values in P(U).
c) If ¢%(x) is independent of « or if U is convex, pu(x,u) is linear in u and
u — [r(z,u) + X [ J(2)Q(dz|z,u)| is concave on U, then there exists an
optimal nonrelaxed policy 7" = (W;‘) such that
T, = f(XE}EZ) (t—Tn) for T,, <t < T}, foradecisionrule f : E — A.

In particular, 7 takes values in U and J® = .J = V.



Continuous-Time Markov Decision Chains

(Xt) with countable state space E and transition rates ¢,,(u), z,y € E, u e U.
We assume that the transition rates ¢,,(u) € R

are conservative, ie. ) ¢, (u)=0, x€ k.
yek
and bounded, i.e. A2 —Q(u)forre B, uel.

(Z,) has the transition probabilities

/

Q({y}|x, u) — X%:y(QL) Y 7é X

Lt S(u) y=a
p(r,u) =0= d¢¥(x) =2 (uncontrolled drift)

It holds:

Xt = Zn,, (Nt) Poisson process with rate A

uniformized Markov Decision Chain



Theorem: Suppose the CTMDC has an upper bounding function b with a; < 1

and the continuity and compactness assumptions are satisfied.

Then it holds:

a) Voo € B and V., is a solution of the Bellman equation:

OVool) = Sup{r(x,u) + 2 qu(u)voo(y)}, r e L.
uelU yer
b) There exists an optimal control 7" = (W;‘) such that
m = f*(X;_) where f*(x)is a maximum point of

u—r(z,u)+ ) C]my(“)‘/oo(y): u e U.
yek

Note that «p < ﬁcQ.

Hamilton-Jacobi-Bellman equation



Terminal Wealth Problems

Financial market

e Bond B, =¢€"
e Stocks dSF = Sy (pdt + dCY) k=1,...,d
N
Cy=> Y, Y, = (Ynl, . ,Ynd) S (—1, oo)d with distribution Qy

n=1

T = fraction of wealth invested in stock k at time ¢

d
1 — > 7 = fraction of wealth invested in the bond at time ¢
k=1
d
Ty 1= (7Tt1,...,7rbfl) c U := {uGRd\uk>O, >y < 1}
k=1
= (m) (ft)—predictable portfolio strategy

Then it holds for the wealth process
dX] = Xf_((?“ + 7 (0 — Te))dt + Wtd0t>



Utility function U : R, — R strictly increasing and strictly concave
(

E7 [U (X%)} — max
(P)

23

=0

m = (m) portfolio strategy
\

Piecewise deterministic MDP with finite horizon 7"
o :=|0,T] xRy
d
o U = {u c R uy, <0, 3 uy < 1}, A= {a ; [O,T} — U measurable}
k=1
—re

)

¢ (x) = xexp{fot(r + - (e — re))ds}

Q (B |tz a) =X\ fOT_t e M| [1p(t+ s, ¢%(x)(1+ ay - y)) Qv (dy) | ds
o r'(t,x,cx) == e‘A(T_t)U(¢%_t(:1:))

o iz u) =x(r+u-(p



b(t,z) = e’T=I(1 + x) is a bounding function for the discrete-time MDP

and aj < c2(1 — e OtVT) < 1 for § large i.e. MDP is contractin
5+ g

Define:  V(t,z) :==sup E7,|U(X7F)], (t,z) € E

/i

Then it holds:

a) V(t,x) is the unique solution of the Bellman equation:

V(t,z) = sup{e MU (¢F_,(x))+A Tf e SV (t+s, ¢4 (2)(1+asy)) Qv (dy)ds }
b) There exis:seﬁn optimal portfolio strateg;/) T = (Wf) such that

mr = f(T, Xr,) (t —=T,), t € (T, T+1]

for a decision rule f : ' — A.



Hamilton-Jacobi-Bellman equation:

V(T,x)=Ulx)
AV (t,x) = sgg{%(t, )+ p(z, w)Vo(t,z) + A [ V(t, (14 u- y))Qy(dy)}

Application: U(x) =27 (power utility) 0<~vy <1
N V(t,x)=27e"T= (t,2) € E
(i) 77 =u*, te€]|0,T]
where u* is a maximum point of
u—yu-(p—re)+ A [(1+u-y)Qy(dy), ueU
and n:==~r —A+qu* (u—re)+ A [(1+u*-y)Qy(dy).



Trade Execution in llliquid Markets

Selling a large number 2y of shares in time period [O,T}
7 = number of shares sold at time ¢t (= jump time point of a Poisson process (/V;))
m € No, m = () (Ft)— predictable strategy

t
X[ =wy— [mdN,, t € [0,T]
0
Cost function C' : Ng — R, strictly increasing and strictly concave, C(0) =0
¢ " )
ET [f C(ms)dNs + C(X7)| — min

x
0

L)y o<m<XF, teo,T]

= (m) selling-strategy

\



Continuous-time Markov Decision Chain with finite horizon T™:
o [/ =N
e A:={a:|0,T] — Nymeasurable }, D(z) :={a € A|a < x forallt € |0,T]}
e Q({y} | z,u) =1 for y=2—u, uwe{0,...,z}
o r(x,u) :=—AC(u)
o g(x) =—-Clx)

b(t,z) .= C(x) is a bounding function for the discrete-time MDP and

a, <1—e* <1, i.e. MDP is contracting

Define
T

V(t,x) = inf B, [ [ 0(7r5>dNS+C(X;:)}, (t,x) € [0,T] x N,

t



M., := {v € B, | v(t,z) < C(x), v(t,0) = 0,v(t,-) is convex, v is continuous

and increasing in (¢, )}

Then it holds:

a) V(t,x) is the unique solution of the Bellman equation:

T—t
Vit,z) = e M 0C@)+ [ Ae™™ min  (Clu) + V(E+s,x—u))ds
0

b) There exists an optimal selling strategy 7* = <7T£k) such that
T = fF (t,Xt_) where (Xt) is the corresponding number of share process and
f* satisfies f*(t,z) < f*(t,z+1) < f*(t,z) + 1.

c) f*(t,z) is increasing in t and jumps only by size one, i.e. there are thresholds

0 <ti(z) <ty(z) <...<t,(x)such that for x > 0
@t z) =k for t € (tp_1(x), tu(z)].



