

Dr. Gerhard Baur Dipl.-Math. Lukas Bartholomäus B.Sc. Pascal Heiter Adrian Spener Analysis I Sommersemester 2011

Analysis I - Übungsblatt 4

(Abgabe: Dienstag 10. Mai 2011 vor der Vorlesung oder Mittwoch 11. Mai vor der ersten Übung.)

"Go down deep enough into anything and you will find mathematics."

- Dean Schlicter - no data.

Aufgabe 15 (Äquivalenzrelationen)

(1+1+1+2=5 Punkte)

Prüfen Sie alle Eigenschaften einer Äquivalenzrelation. Bestimmen Sie gegebenenfalls die zugehörige Klasseneinteilung.

- (a) A = Menge der Menschen. Für $x, y \in A$ sei $x \sim y :\Leftrightarrow x$ liebt y.
- (b) $A = \text{Menge aller Haustiere auf einem Bauernhof. Für } x, y \in A \text{ sei } x \sim y :\Leftrightarrow x \text{ und } y \text{ sind von der gleichen Spezies.}$
- (c) Ω eine Menge, $A = \mathcal{P}(\Omega)$. Für $X, Y \in A$ sei $X \sim Y : \Leftrightarrow X \subset Y$.
- (d) $A = \mathbb{Z}$. Für $x, y \in A$ sei $x \sim y : \Leftrightarrow x y$ ist durch drei teilbar, d.h. $\exists k \in \mathbb{Z} : x y = 3k$. Man schreibt auch: $3 \mid x y$.

Aufgabe 16 (Körper)

(2+2*+3=5(+2) Punkte)

Es sei $K := \{\alpha, \beta, \gamma\}$. Auf K seien Verknüpfungen '+' und '.' gemäß folgenden Tabellen erklärt.

+						α	β	γ
α	γ	α	β	6	γ	γ	β	α
β	α	β	γ	ß	3	β	β	β
γ	β	γ	α		γ	α	β	γ

- (a) Zeigen Sie, dass $(K, +, \cdot)$ ein Körper ist. (Auf Assoziativ-/Kommutativgesetze und auf das Distributivgesetz dürfen Sie verzichten.)
- (b) * Suchen Sie einen Zusammenhang zu Aufgabe 15d.
- (c) Es sei $K := \{\alpha, \beta, \gamma, \delta\}$. Auf K seien Verknüpfungen '+' und '-' gemäß folgenden Tabellen erklärt.

	α	β	γ	δ	•	α	β	γ	δ
α	α	β	γ	δ	α	α	α	α	α
		γ						γ	
γ	γ	δ	α	β				α	
δ	δ	α	β	γ				γ	

Gibt es ein neutrales Element der Addition? Wenn ja, welches? Gibt es ein neutrales Element der Multiplikation? Wenn ja, welches? Ist $(K, +, \cdot)$ ein Körper?

Aufgabe 17 (Existenz und Eindeutigkeit)

(4 Punkte)

Beweisen Sie aus Satz 2 den Teil (ii), also zeigen Sie, dass für einen Körper K mit $a, b \in K$ und $a \neq 0$ die Gleichung ax = b genau eine Lösung $x = a^{-1}b$ besitzt.

Es sei K ein Körper und $a,b,c,d\in K$. Beweisen Sie folgende Rechenregeln aus Satz 3

- (i) $(-a) \cdot b = -(ab)$
- (ii) $(ab)^{-1} = a^{-1}b^{-1}$, falls $a \neq 0, b \neq 0$.
- (iii) Falls $b \neq 0, c \neq 0, d \neq 0$, so gilt

$$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{ad}{bc}$$