Analysis I für Informatiker und Ingenieure Übungsblatt Nr. 7

(Abgabe zu zweit am 08.06.2012 bis 8.10 Uhr im Briefkasten vor dem H3 (unterstes Fach!))

Aufgabe 31 $(4 \cdot 3 = 12 \text{ Punkte})$

Untersuchen Sie die folgenden unbestimmten Ausdrücke auf ihr Verhalten für $n \to \infty$. Tipp: Für diese Aufgabe dürfen Sie annehmen, dass für eine reelle Folge (a_n) mit positiven Folgenglieder aus $\lim_{n\to\infty} a_n = a \Rightarrow \lim_{n\to\infty} \sqrt{a_n} = \sqrt{a}, \ a \in \mathbb{R}_0^+$ folgt.

- a) $\frac{\infty}{\infty}$:
 - i) $\frac{3^n + n^5 \cdot 2^n}{3^{n+1}}$,

ii) $\frac{(n+1)^2+3}{2n+5}$,

iii) $\frac{2^n}{n!}$,

- b) $0 \cdot \infty$:
 - i) $\left(\frac{1}{2}\right)^n (n^7 + n^3)$
- ii) $\frac{1}{\sqrt{2n^2+n}} \cdot 3n$

iii) $\frac{1}{\sqrt{n}}(n-1)$,

- c) $\infty \infty$:
 - i) $n! (3!)^n$,

- ii) $\sqrt{n+1} \sqrt{n}$,
- iii) $\sqrt{n+\sqrt{n}}-\sqrt{n}$,

- d) 1^{∞} :
 - i) $\left(1 + \frac{1}{2^n}\right)^{n+3}$,
- ii) $\left(1 + \frac{1}{n}\right)^{2n}$,

iii) $\left(1+\frac{1}{n}\right)^{n\sqrt{n}}$.

Aufgabe 32 (3 Punkte)

Zeigen Sie, dass die Folge $a_n = \left(1 + \frac{1}{n}\right)^n \ (n \in \mathbb{N})$ streng monoton wachsend ist.

Aufgabe 33 (3 Punkte)

Beweisen Sie

$$\lim_{n \to \infty} \binom{n}{k} \cdot \frac{1}{n^k} = \frac{1}{k!}$$

für ein festes $k \in \mathbb{N}$.

Aufgabe 34 (2+2+2=6 Punkte)

Es seien $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ und $(c_n)_{n\in\mathbb{N}}$ reelle Folgen. Beweisen oder widerlegen Sie die folgenden Aussagen

a)
$$a_n = o(b_n), b_n = o(c_n) \Rightarrow a_n = o(c_n),$$

b)
$$\mathcal{O}(a_n) \cdot \mathcal{O}(a_n) = \mathcal{O}(a_n)$$
,

c)
$$\mathcal{O}(a_n) + o(b_n) = \mathcal{O}(a_n)$$
 mit $a_n = o(b_n)$.

Aufgabe 35 (2 Punkte)

Zeigen Sie das folgende asymptotisches Verhalten für $n\in\mathbb{N}$

$$\frac{1}{2^{2n}} \binom{2n}{n} \sim \frac{1}{\sqrt{\pi n}} \ .$$