28.01.2011

1. Bestimmen Sie die Art der Singularität folgender Funktionen an den angegebenen Stellen z_0 :

(a)
$$f(z) = \sin \frac{1}{1-z}$$
, $z_0 = 1$

(a)
$$f(z) = \sin \frac{1}{1-z}$$
, $z_0 = 1$ (b) $f(z) = \frac{1}{1 - \exp(z)}$ $z_0 = 2\pi i$

(c)
$$f(z) = \frac{1}{\sin z - \cos z}$$
, $z_0 = \frac{\pi}{4}$ (d) $f(z) = \Gamma(z)$, $z_0 = -n, n \in \mathbb{N}_0$

(d)
$$f(z) = \Gamma(z), z_0 = -n, n \in \mathbb{N}_0$$

2. Im Punkt $z_0 \in \mathcal{C}$ habe die Funktion f(z) eine Nullstelle m-ter Ordnung und die Funktion g(z) einen Pol
 n-ter Ordnung. Bestimmen Sie, was $z_0\,$ für die Funktionen f(z) + g(z), $f(z) \cdot g(z)$ bzw. $\frac{f(z)}{g(z)}$ ist.

3. Bestimmen Sie die Art der Singularität folgender Funktionen bei $z_0 = 0$ und entwickeln Sie diese in eine Laurentreihe:

(a)
$$f(z) = \frac{1 - \cos z}{z^2}$$
 (b) $f(z) = \cos \frac{1}{z^2}$ (c) $f(z) = \frac{z}{1 - \cos z^2}$

4. Entwickeln Sie die Funktion $f(z) = \frac{z-1}{z(z-i)}$ in folgenden Gebieten in eine Laurentreihe:

(a)
$$G = \{z \in \mathcal{C} : 0 < |z| < 1\}$$
 (b) $G = \{z \in \mathcal{C} : 0 < |z-i| < 1\}$ (c) $G = \{z \in \mathcal{C} : |z| > 1\}$

(a)
$$\oint \frac{1-\cos z}{z^2} dz$$
 (b) $\oint \cos \frac{1}{z^2} dz$ (c) $\oint \frac{z^3}{1-\cos(z^2)} dz$ (d) $\oint \frac{z-1}{z(z-i)} dz$ (e) $\oint \frac{z-1}{z(z-i)} dz$ (f) $\oint \frac{z-1}{z(z-i)} dz$ (g) $\oint \exp(2z) \over |z|=2} dz$ (h) $\oint \frac{z^2}{\cos z} dz$ (i) $\oint \Gamma(z) dz$

- 6. Gegeben sei eine Funktion f(z). Bestimmen Sie jeweils das Residuum von der logarithmischen Ableitung $\frac{f'(z)}{f(z)}$ an der Stelle z_0 unter der Voraussetzung
 - (a) f(z) ist bei z_0 holomorph und z_0 ist Nullstelle m-ter Ordnung
 - (b) f(z) ist in einer punktierten Umgebung von z_0 holomorph und z_0 ist ein Pol n-ter Ordnung.