Algorithmen für schwierige Probleme

Dr. Britta Dorn Prof. Dr. Jacobo Torán

Wintersemester 2011/12

19. Oktober 2011

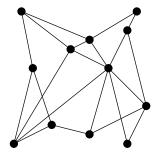
Infos

Vorlesung Mittwoch und Donnerstag 14–16

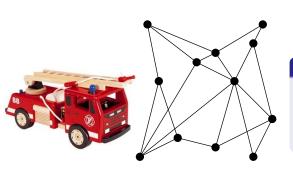
Übungsblätter

Prüfung

Feuerwehrproblem



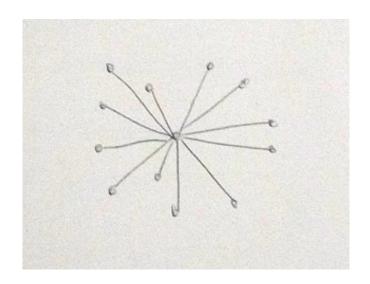
Feuerwehrproblem

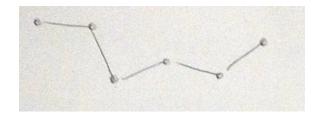


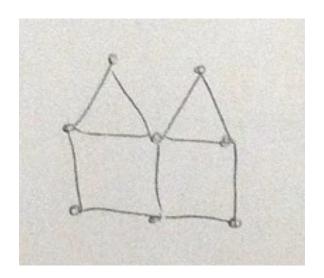
Feuerwehrproblem

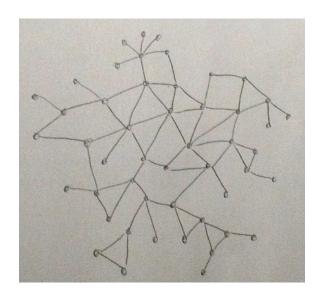
Jeder Stadt braucht eine Feuerwehrstation

— oder zumindest eine in einer Nachbarstadt









 $n = \text{Anzahl der Städte}, k \leq n$. Reichen k Feuerwehrstationen aus? Ist das Problem einfach/schwierig?

"Einfach": Polynomiell

Brute Force: Probiere alle Teilmengen von k Städten aus. Problem: 2^n viele Teilmengen bei n Städten. **Nicht** polynomiell!

"'Schwierig": Bisher nichts wesentlich Besseres als Brute Force, nur exponentielle Laufzeiten oder schlimmer

P und NP-schwer

Ein paar Probleme

Gegeben:

- Gruppe von Studenten (Knoten)
- bekannt, wer mit wem befreundet ist (Kanten)
- MATCHING: Studenten in 2er-Gruppen einteilen (nur befreundete zusammen)
- 2 PARTITION INTO TRIANGLES: 3er-Gruppen
- OLIQUE: größere Gruppen (jeder mag jeden)
- 4 HAMILTONIAN CYCLE: Studenten sitzen um runden Tisch, keiner soll neben jemandem sitzen, den er nicht leiden kann.

schwer?/einfach?

Ein paar Probleme

- MATCHING: Studenten in 2er-Gruppen einteilen (nur befreundete zusammen)
- 2 Partition into Triangles: 3er-Gruppen
- 3 CLIQUE: größere Gruppen (jeder mag jeden)
- 4 HAMILTONIAN CYCLE: Studenten sitzen um runden Tisch, keiner soll neben jemandem sitzen, den er nicht leiden kann.

schwer?/einfach?

Alle Probleme haben gemeinsam:

Falls jemand Lösung vorschlägt (z.B. Sitzplan für runden Tisch), dann kann man "einfach und schnell" nachprüfen, ob sie stimmt.

Laufzeitvergleiche

n	=	2
n	=	10
n	=	50
n	=	100

polynomiell <i>n</i> ²				
n^2	Dauer (10 ⁸ Ops/s)			
4	0,04 μ s] [
100	$1~\mu$ s			
2 500	$25~\mu s$			
10 000	0,1 ms			

exponentiell 2 ⁿ		
2 ⁿ	Dauer (10 ⁸ Ops/s)	
4	0,04 μ s	
1024	$10~\mu s$	
10 ¹⁵	ca. 116 Tage	
10 ³⁰	ca. $3\cdot 10^{14}$ Jahre	

Laufzeitvergleiche

Vergleich der Funktionswerte verschiedener Polynom- und Exponentialfunktionen für n=50

polynomiell		
Komplexität	Dauer (10 ⁸ Ops/s)	
n ²	$25~\mu s$	
n ³	1 ms	
n ⁵	3 s	
n ⁸	4,5 Tage	
n ¹⁰	31 Jahre	

exponentiell		
Komplexität	Dauer (10 ⁸ Ops/s)	
1.25 ⁿ	$700 \mu \mathrm{s}$	
1.5 ⁿ	6 min	
1.75 ⁿ	4 h	
2 ⁿ	130 Tage	
3 ⁿ	230 Mio Jahre	

Grad des Polynoms bzw. Basis der Exponentialfunktion entscheidend!!

NP-schwere Probleme lösen

Zwei Möglichkeiten:

nicht optimal (aber schnell)

- Approximation
- Randomisiert
- Heuristik

optimal (aber nicht so schnell)

- Guter exponentieller Algorithmus (kleine Basis)
- Parametrisierte Algorithmen

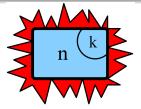
FEUERWEHRPROBLEM (AUF PLANAREN GRAPHEN)

Für das Feuerwehrproblem gilt:

- NP-schwer
 kein Algorithmus bekannt, der das Problem in Polynomzeit löst
- **Aber:** falls die Lösungsmenge (k) klein ist (falls nur wenige Feuerwehrstationen nötig sind), lässt sich das Problem schnell lösen.

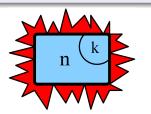
Fixed-parameter tractability

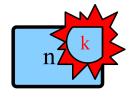
Grund: Laufzeit ist exponentiell



Fixed-parameter tractability

Grund: Laufzeit ist exponentiell, aber verantwortlich für den exponentiellen Teil ist im Wesentlichen das k (Parameter)





Falls in bestimmen Fällen die Werte dieser Parameter klein sind: schnelle Lösung ist möglich!

Ziel: Finde Parameter, die Schuld an der schlimmen Laufzeit sind!

Beispiele für Parameter

Parameter

- Größe der Lösungsmenge (z.B.: Anzahl der Feuerwehrstationen, Größe der Gruppe, in der alle sich leiden könnnen, . . .)
- Strukturelle Parameter (z.B.: Maximaler Verzweigungsgrad, durchschnittliche Anzahl Freunde eines Studenten, ...)
- ...

Running Example: VERTEX COVER

Vertex Cover

gegeben: G = (V, E), ungerichteter Graph

 $k \in \mathbb{N}$

Frage: Gibt es eine Teilmenge $C \subseteq V$ von Knoten mit

 $|C| \le k$ so, dass jede Kante aus E

mindestens einen Endpunkt in C hat?

Parametrisierte Algorithmen

- Einführung
 - Motivation/Einordnung
 - Basics: Komplexität, Probleme (Graphen, Wahlsysteme, SAT)
 - Grundlagen der Parametrisierten Algorithmen
- 2 Algorithmische Methoden
 - Datenreduktion und Problemkerne
 - Suchbäume
 - Dynamisches Programmieren
 - Baumzerlegung von Graphen
 - Weitere Techniken
- Somplexitätstheorie dazu
 - Parametrisierte Reduktion
 - Parametrisierte Komplexitätsklassen, vollständige Probleme
 - Verbindungen zu klassischer Komplexitätstheorie und Approximation