UNIVERSITÄT ULM

Institut für Zahlentheorie und Wahrscheinlichkeitstheorie

Übungen zur Höheren Mathematik für Physiker III

Dr. Hartmut Lanzinger, Hans- Peter Reck

Gesamtpunktzahl: 24 Punkte

Ubungsblatt 12

Abgabe: Dienstag, 27. Januar 2009, in der Vorlesung

1. Berechne die folgenden komplexen Kurvenintegrale:

(a)
$$\int_{\gamma} \bar{z}^2 dz$$
 mit γ als gerader Wegstrecke $[0, 1+i]$

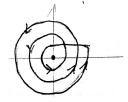
(b)
$$\int_{\gamma} \bar{z}^2 dz$$
 mit γ als Verkettung von $[0,1]$ und $[1,1+i]$

(c)
$$\int_{\gamma} z \exp(z^2) dz$$
 mit $\gamma = S^1$ im Uhrzeigersinn (3)

2. Berechne mit der Cauchyschen Integralformel folgende komplexe Kurvenintegrale:

(a)
$$\int_{|z|=2} \frac{z^3}{z^2+1} dz$$

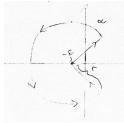
(b)
$$\int_{|z|=2} \frac{e^{2z}}{(z+1)^4} dz$$



(c)
$$\int_{\gamma} \frac{\cos z}{z} dz$$
 mit γ

(c)
$$\int_{\gamma} \frac{\cos z}{z} dz \text{ mit } \gamma$$
:
(d) $\int_{|z-2|=3} \frac{e^{i\cos z} \sin(z^4+1) - z}{(z-7)^{42}} dz$ (4)

3. "Pacman frißt \mathbb{R}^{+} "



- (a) Für die Kurve α mit $\epsilon, r > 0.$
- bestimme $\int_{C} e^{z^2+3z+5} \frac{z^3+5}{(z-3)^5} dz$ mit
- (b) Wird Pacman satt? (2)
- 4. (a) Die Potenzreihe $f(z) = \sum_{n=0}^{\infty} a_n z^n$ habe positiven Konvergenzradius und innerhalb des Konvergenzkreises gelte: f(z) = f(-z). Zeige, daß in diesem Fall für alle ungeraden $n \in \mathbb{N}$ gilt: $a_n = 0$.
 - (b) Gib ein Beispiel einer ganzen Funktion an, die dieser Bedingung genügt.
- (a) Entwickle die folgenden Funktionen in Potenzreihen um z_0 und bestimme den Konvergenzradius:

i.
$$\frac{1}{z^2 - 5z + 6}$$
 um $z_0 = 0$

ii.
$$\frac{1}{(z-i)^3}$$
 um $z_0 = -i$

iii.
$$\bar{z}^2 \text{ um } z_0 = 4$$

iii.
$$\overline{z}^2$$
 um $z_0 = 4$ iv. $\frac{1}{\alpha^2 + z^2}$ um

A.
$$z_0 = 0$$

B.
$$z_0 = i$$

(b) Berechne die ersten sechs Koeffizienten der Potenzreihenentwicklung $\sum a_n z^n$ für

i.
$$e^{\frac{z}{1-z}}$$
ii. $\sin\left(\frac{1}{1-z}\right)$

(9)

6. Zeige: Eine ganze Funktion f ist genau dann ein Polynom vom Grad $n \in \mathbb{N}$, wenn $a, b \in \mathbb{R}$ mit $|f(z)| \leq a + b|z|^n$ für alle $z \in \mathbb{C}$ existieren.