Density deconvolution under general assumptions on measurement error distribution

D. Belomestny $^{\rm 1}$ and A. Goldenshluger $^{\rm 2}$

¹University of Duisburg-Essen and ²University of Haifa

9th October 2019

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Deconvolution problem

Model

Let

$$Y_i = X_i + \varepsilon_i, \quad i = 1, \ldots, n,$$

where X_1, \ldots, X_n are i.i.d. with a density f and $\varepsilon_1, \ldots, \varepsilon_n$ are i.i.d. with a density g.

Convolution

$$f_Y(y) = [f \star g](y) = \int_{-\infty}^{\infty} f(y - x)g(x) \, dx$$

Goal

Deconvolution, that is, estimation of the density f from the observations Y_1, \ldots, Y_n .

Fourier approach

Convolution theorem

$$\mathscr{F}[f_Y](u) = \int e^{iux} f_Y(x) dx = \mathscr{F}[f](u) \mathscr{F}[g](u)$$

Deconvolution

The estimator for f is usually based on the ratio

$$\mathscr{F}[f](u) = \frac{\mathscr{F}[f_Y](u)}{\mathscr{F}[g](u)},$$

provided $\mathscr{F}[g](u) \neq 0$ for all $u \in \mathbb{R}$.

Problem

In many situations, for example in the case of the uniformly distributed ε_i , the Fourier transform of g has zeros on real line, see Hall and Meister (2007) and Meister (2008).

Bilateral Laplace transform

Definition

For a generic locally integrable function ψ denote

$$\widehat{\psi}(z) = \int_{\mathbb{R}} e^{-zt} \psi(t) dt.$$

The convergence region of the above integral will be denoted by

$$\Sigma_{\psi} = \{z \in \mathbb{C} : \operatorname{Re}(z) \in (\sigma_{\psi}^-, \sigma_{\psi}^+)\}, \quad -\infty \leq \sigma_{\psi}^- \leq \sigma_{\psi}^+ \leq \infty.$$

Inverse Laplace transform

$$\psi(t) = \frac{1}{2\pi i} \int_{s-i\infty}^{s+i\infty} \widehat{\psi}(z) e^{zt} dz$$

Remark

As compared to Fourier approach there is an additional tuning parameter s.

Construction of estimator

• Let $\sigma_1 < \sigma_2 < \ldots$, be distinct real parts of zeros of \widehat{g} . Denote

$$S_g = \bigcup_{j=1}^{\infty} S_g^{(j)}, \quad S_g^{(j)} = \{z : \sigma_j < \operatorname{Re}(z) < \sigma_{j+1}\}$$

and

$$\check{\mathcal{S}}_g = \bigcup_{j=1}^{\infty} \check{\mathcal{S}}_g^{(j)}, \quad \check{\mathcal{S}}_g^{(j)} = \{z : -\sigma_{j+1} < \operatorname{Re}(z) < -\sigma_j\}.$$

2 Let K be a kernel with bounded support, that is, \widehat{K} is an entire function.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Estimator

Kernel

Given a real number h > 0 put

$$L_{s,h}(t) = \frac{1}{2\pi i} \int_{s-i\infty}^{s+i\infty} \frac{\widehat{K}(zh)}{\widehat{g}(-z)} e^{zt} dz$$

for any $s \in \check{S}_g$.

Observation

Note that $L_{s,h}(t)$ is the inverse Laplace transform of the function $\frac{\widehat{K}(zh)}{\widehat{g}(-z)}$.

Estimator

$$\widetilde{f}_{s,h}(x_0) = \frac{1}{n} \sum_{i=1}^n L_{s,h}(Y_i - x_0)$$

◆□ ▶ ◆■ ▶ ◆■ ▶ ◆■ ● ● ●

Motivation

Lemma

Suppose that for any $s \in (\varkappa_g^-, 0) \cup (0, \varkappa_g^+)$ the integral in the definition of $L_{s,h}$ is absolutely convergent and

$$\int |L_{s,h}(y-x_0)|f_Y(y)\,dy<\infty,$$

then

$$\int L_{s,h}(y-x_0)f_Y(y)\,dy = \int \frac{1}{h}K\left(\frac{x-x_0}{h}\right)f(x)\,dx.$$

Observation

By making *h* smaller, we can reduce the bias of $\tilde{f}_{s,h}(x_0)$, but the variance of $\tilde{f}_{s,h}(x_0)$ increases with *h* !

Assumptions

Assumption (LG)

The Laplace transform $\widehat{g}(z)$ of measurement error distribution exists in a vertical strip $\Sigma_g = \{z \in \mathbb{C} : \sigma_g^- < \operatorname{Re}(z) < \sigma_g^+\}$, $\sigma_g^- < 0 < \sigma_g^+$, and admits the following factorization

$$\widehat{g}(z) = rac{1}{\widehat{\psi}(z)} \prod_{k=1}^{q} \left(1 - rac{e^{a_k z}}{\lambda_k}
ight)^{m_k},$$

where $\{a_k\}$ are distinct positive real numbers, $\{m_k\}$ are non-negative integer numbers, $|\lambda_k| = 1$, $\forall k = 1, ..., q$.

Observation

Assumption (LG) states that $\hat{g}(z)$ factorizes into a product of two functions: the first function has zeros on the imaginary axis, while the second one does not vanish on $\Sigma_g \setminus \{0\}$. The zeros of \hat{g} are $z_{k,j} := i(\arg\{\lambda_k\} + 2\pi j)/a_k$

Assumptions

Assumption (PS)

Assume that $\widehat{\psi}(z) \neq 0$ for all $z \in \Sigma_g \setminus \{0\}$, and there exist constants $\omega_0 > 0$, $\gamma > 0$ and $D_1 > 0$, $D_2 > 0$ such that

$$D_1|\omega|^\gamma \leq |\widehat{\psi}(i\omega)| \leq D_2|\omega|^\gamma, \;\; orall |\omega| \geq \omega_0.$$

In addition, for some non-negative integer r and $D_3 > 0$

$$\max_{j=0,...,2r} |\widehat{\psi}^{(j)}(i\omega)| \leq D_3(1+|\omega|^\gamma), \;\; \forall \omega \in \mathbb{R}.$$

Remark

Assumption (PS) is rather standard in density deconvolution problems when it is imposed on $\hat{g}(i\omega)$: it corresponds to the smooth case. Note however that here it is now imposed on function $\hat{\psi}(i\omega)$.

Uniform distribution

Let $arepsilon \ \sim U(- heta, heta);$ then

$$\widehat{g}(z) = rac{\sinh(heta z)}{ heta z} = -rac{e^{- heta z}}{2 heta z}(1-e^{2 heta z}), \ z \in \mathbb{C}.$$

In this case we have $q=1,\ m_1=1,\ a_1=2 heta,\ \lambda_1=1$ and

$$\widehat{\psi}(z) = -2 heta z e^{ heta z}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

- $\widehat{\psi}$ satisfies Assumption (PS) with $\gamma = 1$,
- $\widehat{g}(z)$ has simple zeros on the imaginary axis at $z_k = i\pi k/\theta$, $k = \pm 1, \pm 2, ...$

•
$$S_g = \mathbb{C} \setminus \{z : \operatorname{Re}(z) = 0\}.$$

Convolution of uniform distributions

Consider convolution of distributions $U(-\theta_k, \theta_k)$, k = 1, ..., q, with distinct parameters $\theta_1, ..., \theta_q$, each of multiplicity m_k . In this case

$$\widehat{g}(z) = \prod_{k=1}^{q} \left[\frac{\sinh(\theta_k z)}{\theta_k z} \right]^{m_k} = \frac{\exp\{-z\sum_{k=1}^{q} \theta_k m_k\}}{\prod_{k=1}^{q} (-2\theta_k z)^{m_k}} \prod_{k=1}^{q} (1-e^{2\theta_k z})^{m_k}, \quad z \in \mathbb{C}.$$

Assumption (LG) holds with $a_k = \theta_k$, $\lambda_k = 1$ for $k = 1, \dots, q$, and

$$\widehat{\psi}(z) = \prod_{k=1}^{q} (-2\theta_k z)^{m_k} \exp\left\{z \sum_{k=1}^{q} \theta_k m_k\right\}.$$

Discrete distributions

Let ε be a discrete random variable taking 2M + 1 values in the set $(j\delta)_{i=-M}^{M}$, $\delta > 0$ with corresponding probabilities $(p_j)_{j=-M}^{M}$. Then

$$\widehat{g}(z) = \sum_{k=-M}^{M} p_k e^{-\delta k z} = e^{-\delta M z} \sum_{k=0}^{2M} p_{M-k} e^{\delta k z} = e^{-\delta M z} p_M P(e^{\delta z}),$$

where $P(x) := 1 + \sum_{k=1}^{2M} (p_{M-k}/p_M) x^k$. Let $\lambda_1, \ldots, \lambda_{2M}$ denote the roots of polynomial P(z), then we have

$$\widehat{g}(z) = p_M e^{-\delta M z} \prod_{k: |\lambda_k| \neq 1} \left(1 - \frac{e^{\delta z}}{\lambda_k} \right) \prod_{k: |\lambda_k| = 1} \left(1 - \frac{e^{\delta z}}{\lambda_k} \right).$$

Discrete distributions

Therefore

$$\widehat{\psi}(z) = \frac{e^{\delta M z}}{p_M \prod_{k:|\lambda_k| \neq 1} (1 - e^{\delta z} / \lambda_k)}, \quad \delta^{-1} \ln(\lambda_-) < \operatorname{Re}(z) < \delta^{-1} \ln(\lambda_+),$$

where $\lambda_- := \max\{|\lambda_k| : |\lambda_k| < 1\}$, and $\lambda_+ := \min\{|\lambda_k| : |\lambda_k| > 1\}$. • If $\varepsilon \sim \text{Bern}(1/2)$ then

$$\widehat{g}(z) = \frac{1}{2}(1+e^z)$$

and (LG) holds with q = 1, $a_1 = 1$, $\lambda_1 = -1$, $m_1 = 1$, and $\widehat{\psi}(z) = 2$. • If $\varepsilon \sim \text{Bin}(m, 1/2)$, then

$$\widehat{g}(z) = 2^{-m}(1+e^z)^m$$

and (LG) holds with q = 1, $a_1 = 1$, $\lambda_1 = -1$, $m_1 = m$, and $\widehat{\psi}(z) = 2^m$.

Convolution of uniform and a smooth density

Let φ be a probability density having the Laplace transform $\widehat{\varphi}$ in a strip $\Sigma_{\varphi} = \{z : \sigma_{\varphi}^{-} < \operatorname{Re}(z) < \sigma_{\varphi}^{+}\}$ satisfying $|\widehat{\varphi}(z)| \neq 0, \forall z \in \Sigma_{\varphi}$. Assume that

 $|\widehat{\varphi}(i\omega)| \asymp |\omega|^{-\gamma}$

for some $\gamma>0$ as $|\varpi|\to\infty;$ Let g be a convolution of the uniform density on $[-\theta,\theta]$ and $\varphi;$ then

$$\widehat{g}(z) = \frac{\sinh(\theta z)}{\theta z} \widehat{\varphi}(z) = -\frac{e^{-\theta z} \widehat{\varphi}(z)}{2\theta z} (1 - e^{2\theta z}), \ \sigma_{\varphi}^{-} < \operatorname{Re}(z) < \sigma_{\varphi}^{+},$$

A D > 4 回 > 4 回 > 4 回 > 1 回 > 1 の Q Q

and (LG) obviously holds with $\widehat{\psi}(z) = -2\theta z e^{\theta z} / \widehat{\varphi}(z)$.

Kernel representation

Under Assumption (LG) the kernel $L_{s,h}$ has a representation

$$L_{s,h}(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{\widehat{K}((s+i\omega)h)\,\widehat{\psi}(-s-i\omega)}{\prod_{k=1}^{q} [1-e^{-a_{k}(s+i\omega)}/\lambda_{k}]^{m_{k}}} \, e^{(s+i\omega)t} \mathrm{d}\omega$$

for all $s \in (\varkappa_g^-, 0) \cup (0, \varkappa_g^+)$.

Remark

Note that for any $s \in (\varkappa_g^-, 0) \cup (0, \varkappa_g^+)$ the denominator of the integrand in the representation does not vanish.

Observation

It is convenient to represent $L_{s,h}(t)$ as an infinite series.

Kernel representation

Uniform error density

Let K be continuosly differentiable on $\mathbb R$ such that $\widehat{K}(z)$ exists for all $z\in\mathbb C$, and

$$\int_{-\infty}^{\infty} |\widehat{K}(s+i\omega)| |\omega| \mathrm{d}\omega < \infty, \quad \forall s \in \mathbb{R}.$$

Then

$$L_{s,h}(t) = \left\{ egin{array}{cc} L_{+,h}(t), & s > 0, \ L_{-,h}(t), & s < 0, \end{array}
ight.$$

where

$$L_{+,h}(t) := rac{2 heta}{h^2} \sum_{j=0}^{\infty} K'igg(rac{t- heta(2j+1)}{h}igg)$$

and

$$L_{-,h}(t) := -rac{2 heta}{h^2} \sum_{j=0}^{\infty} K'igg(rac{t+ heta(2j+1)}{h}igg)$$

Kernel representation

Convolution of uniform distributions

In this case the corresponding kernel is

$$L_{s,h}(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{\widehat{K}((s+i\omega)h)[\theta(s+i\omega)]^m}{[\sinh(\theta(s+i\omega))]^m} e^{(s+i\omega)t} \mathrm{d}\omega, \quad s \neq 0$$

and it has a representation

$$L_{s,h}(t) = \frac{1}{h^{m+1}} \sum_{j=0}^{\infty} C_{j,m} \mathcal{K}^{(m)}\left(\frac{t-\theta(m+2j)}{h}\right),$$

where

$$C_{j,m} = \binom{j+m-1}{m-1}$$

is the number of weak compositions of j into m parts.

Convergence rates

Class of densities

For A>0, $\beta>0$ define a class $\mathscr{H}_{x_0}(A,\beta)$ of functions f such that

$$|f^{(\lfloor\beta\rfloor)}(x) - f^{(\lfloor\beta\rfloor)}(x')| \le A|x - x'|^{\beta - \lfloor\beta\rfloor}, \quad \forall x, x' \in (x_0 - d, x_0 + d),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where $\lfloor \beta \rfloor = \max\{k \in \mathbb{N} \cup \{0\} : k < \beta\}.$

Convergence rates

Kernel K

The kernel K is supported in [-1,1] and fulfils the following conditions. (K1) For a fixed positive integer m_0

$$\int_{-1}^{1} K(t) dt = 1, \ \int_{-1}^{1} t^{j} K(t) dt = 0, \ j = 1, 2, \dots, m.$$

(K2) For a positive integer r kernel K is r times continuously differentiable on \mathbb{R} and

$$\max_{t\in [-1,1]} |\mathcal{K}^{(j)}(t)| \leq C_{\mathcal{K}} < \infty, \quad \forall j = 0, 1, \dots, r.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Convergence rates

Theorem

Assume that $f \in \mathscr{H}_{x_0}(A,\beta)$, and let (K1)-(K2) hold with $m_0 \ge \beta + 1$ and r = 1. Let $\tilde{f}_*(x_0)$ be the estimator associated with kernels L_{+,h_*} if $x_0 \ge 0$ and L_{-,h_*} if $x_0 < 0$, and with bandwidth $h_* := (\theta A^{-2} n^{-1})^{1/(2\beta+3)}$. Then

$$\limsup_{n\to\infty}\left\{\varphi_n^{-1}\mathscr{R}_n[\tilde{f}_*;\mathscr{H}_{\mathsf{x}_0}(A,\beta)]\right\}\leq C, \ \varphi_n:=A^{3/(2\beta+3)}\left(\frac{\theta}{n}\right)^{\beta/(2\beta+3)},$$

where C may depend on β and \bar{x} only. Here

$$\mathscr{R}_n[\widetilde{f};\mathscr{F}] = \sup_{f\in\mathscr{F}} \left[\mathbb{E}_f |\widetilde{f}(x_0) - f(x_0)|^2 \right]^{1/2}.$$

General setting

Let N be a natural number, and denote

$$\mathscr{L}_{N} := \left\{ a^{T} j = \sum_{k=1}^{q} a_{k} j_{k} : j = (j_{1}, \dots, j_{q}) \in \{0, 1, \dots, N\}^{q} \right\}.$$

The estimator of $f(x_0)$ is defined as follows

$$\tilde{f}_{s,h}^{(N)}(x_0) := \frac{1}{n} \sum_{j=1}^n L_{s,h}^{(N)}(Y_j - x_0), \ s \in (\varkappa_g^-, 0) \cup (0, \varkappa_g^+),$$

where

$$\mathcal{L}_{s,h}^{(N)}(t) := \left\{ egin{array}{cc} \mathcal{L}_{+,h}^{(N)}(t), & s \in (0, arkappa_g^+), \ \mathcal{L}_{-,h}^{(N)}(t), & s \in (-arkappa_g^-, 0), \end{array}
ight.$$

and

$$L^{(N)}_{+,h}(t):=\sum_{\ell\in\mathscr{L}_N}\mathscr{C}^+_\ell R_h(t-\ell), \ L^{(N)}_{-,h}(t):=\sum_{\ell\in\mathscr{L}_N}\mathscr{C}^-_\ell R_h(t+\ell).$$

◆□ > < @ > < E > < E > E のQ@

General setting

Here

$$R_h(t) := \frac{1}{2\pi} \int_{-\infty}^{\infty} \widehat{K}(i\omega h) \widehat{\psi}(-i\omega) e^{i\omega t} \mathrm{d}\omega,$$

$$\mathscr{C}_{\ell}^{+} := \sum_{j:a^{\top}j=\ell} \left[\prod_{k=1}^{q} C_{j_{k},m_{k}} \lambda_{k}^{-j_{k}} \right]$$

and

$$\mathscr{C}^-_\ell := \sum_{j: a^{\mathcal{T}} j = \ell} \bigg[\prod_{k=1}^q (-1)^{m_k} C_{j_k, m_k} \lambda_k^{j_k + m_k} \bigg].$$

◆□ ▶ ◆昼 ▶ ◆ 重 ▶ ◆ 国 ▶ ◆ □ ▶

Functional class

For A > 0, $\alpha > 0$ f belongs to a class $\mathscr{H}_{\alpha}(A)$ of functions with $|f^{\lfloor \alpha \rfloor}(x) - f^{\lfloor \alpha \rfloor}(x')| \le A|x - x'|^{\alpha - \lfloor \alpha \rfloor}, \quad \forall x, x' \in \mathbb{R},$ where $|\alpha| = \max\{k \in \mathbb{N} \cup \{0\} : k < \alpha\}.$

Let *p* be a non-negative integer, B > 0, and let $\gamma > 0$ be a constant appearing in Assumption (PS). Assume that *f* belongs to a class $\mathscr{T}_p(B)$ of densities satisfying

$$\int_{-\infty}^{\infty} |x|^p f(x) \mathrm{d}x \le B$$

Error bounds

Let

$$H_{N,j}(\omega) := \begin{cases} \sum_{\ell \in \mathscr{L}_N^*} \mathscr{C}_\ell^+ e^{-i\omega(x_0+\ell)} (x_0+\ell)^{-j}, & x_0 \ge 0, \\ \\ \sum_{\ell \in \mathscr{L}_N^*} \mathscr{C}_\ell^- e^{-i\omega(x_0-\ell)} (x_0-\ell)^{-j}, & x_0 < 0 \end{cases}$$

with $\mathscr{L}_N^* := \mathscr{L}_N \setminus \{0\}$. Let $0 < h < a_{\min} := \min\{a_1, \dots, a_q\}$ and $r := \max\{j \in \mathbb{N} \cup \{0\} : 2j \le p\}$; then

$$\begin{aligned} \mathscr{R}_{n}\big[\widetilde{f}_{h}^{(N)};\mathscr{F}_{\alpha,p}\big] &\leq C_{1}\bigg\{Ah^{\alpha} + \frac{B}{h(x_{0} + a_{\min}N)^{p}}\bigg\} \\ &+ \frac{C_{2}B}{n}\bigg\{\frac{1}{h^{2\gamma+1}} + \sum_{l=0}^{r}h^{l}\int_{-\infty}^{\infty}\big|\widehat{K}^{(l)}(i\omega h)\widehat{\psi}^{(r-l)}(-i\omega)H_{N,r}(\omega)\big|^{2}d\omega\bigg\}\end{aligned}$$

with $\mathscr{F}_{\alpha,p} = \mathscr{T}_p(B) \cap \mathscr{H}_{\alpha}(A)$.

Error bounds

Assumption

Assume that

$$\sum_{\ell \in \mathscr{L} \setminus \{0\}} \max\{|\mathscr{C}_{\ell}^+|, |\mathscr{C}_{\ell}^-|\} \ell^{-\nu} \leq C_0 < \infty$$

for some $C_0 > 0$ and v > 1.

Theorem

Assume that $f \in \mathscr{F}_{\alpha,p}(A,B)$ with $p \ge 2\nu$. Let $h = \left[B(A^2n)^{-1}\right]^{1/(2\alpha+2\gamma+1)}$ and $N \ge \left(A^{-2\gamma+1}B^{2\gamma+\alpha}n^{\alpha+1}\right)^{1/p(2\alpha+2\gamma+1)}$. Then for large enough n one has

$$\mathscr{R}_{n,\Delta_{x_0}}\left[\widetilde{f}_{h_*}^{(N)};\mathscr{F}_{\alpha,p}(A,B)\right] \leq C_1 A^{\frac{2\gamma+1}{2\alpha+2\gamma+1}} (Bn^{-1})^{\frac{\alpha}{2\alpha+2\gamma+1}}$$

where C_1 may depend on α , and p only.

Minimax convergence rates

Observation

It is well known that under standard assumptions in the smooth case

$$|\widehat{g}(i\omega)|
eq 0, \quad \widehat{g}(i\omega) symp |\omega|^{-\gamma}, \quad |\omega|
ightarrow \infty$$

the minimax rate of convergence is

$$\mathscr{R}_n^*[\mathscr{H}_\alpha(A)] \simeq n^{\alpha/(2\alpha+2\gamma+1)}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

References

Belomestny, D. and Goldenshluger, J. (2019). Deconvolution via bilateral Laplace transform.