Density deconvolution under general assumptions on measurement error distribution

D. Belomestny ${ }^{1}$ and A. Goldenshluger ${ }^{2}$
${ }^{1}$ University of Duisburg-Essen and ${ }^{2}$ University of Haifa

9th October 2019

Deconvolution problem

Model

Let

$$
Y_{i}=X_{i}+\varepsilon_{i}, \quad i=1, \ldots, n
$$

where X_{1}, \ldots, X_{n} are i.i.d. with a density f and $\varepsilon_{1}, \ldots, \varepsilon_{n}$ are i.i.d. with a density g.

Convolution

$$
f_{Y}(y)=[f \star g](y)=\int_{-\infty}^{\infty} f(y-x) g(x) d x
$$

Goal

Deconvolution, that is, estimation of the density f from the observations Y_{1}, \ldots, Y_{n}.

Fourier approach

Convolution theorem

$$
\mathscr{F}\left[f_{Y}\right](u)=\int e^{i u x} f_{Y}(x) d x=\mathscr{F}[f](u) \mathscr{F}[g](u)
$$

Deconvolution

The estimator for f is usually based on the ratio

$$
\mathscr{F}[f](u)=\frac{\mathscr{F}\left[f_{Y}\right](u)}{\mathscr{F}[g](u)},
$$

provided $\mathscr{F}[g](u) \neq 0$ for all $u \in \mathbb{R}$.

Problem

In many situations, for example in the case of the uniformly distributed ε_{i}, the Fourier transform of g has zeros on real line, see Hall and Meister (2007) and Meister (2008).

Bilateral Laplace transform

Definition

For a generic locally integrable function ψ denote

$$
\widehat{\psi}(z)=\int_{\mathbb{R}} e^{-z t} \psi(t) d t
$$

The convergence region of the above integral will be denoted by

$$
\Sigma_{\psi}=\left\{z \in \mathbb{C}: \operatorname{Re}(z) \in\left(\sigma_{\psi}^{-}, \sigma_{\psi}^{+}\right)\right\}, \quad-\infty \leq \sigma_{\psi}^{-} \leq \sigma_{\psi}^{+} \leq \infty
$$

Inverse Laplace transform

$$
\psi(t)=\frac{1}{2 \pi i} \int_{s-i \infty}^{s+i \infty} \widehat{\psi}(z) e^{z t} d z
$$

Remark

As compared to Fourier approach there is an additional tuning parameter s.

Construction of estimator

(1) Let $\sigma_{1}<\sigma_{2}<\ldots$, be distinct real parts of zeros of \widehat{g}. Denote

$$
S_{g}=\bigcup_{j=1}^{\infty} S_{g}^{(j)}, \quad S_{g}^{(j)}=\left\{z: \sigma_{j}<\operatorname{Re}(z)<\sigma_{j+1}\right\}
$$

and

$$
\check{S}_{g}=\bigcup_{j=1}^{\infty} \check{S}_{g}^{(j)}, \quad \check{S}_{g}^{(j)}=\left\{z:-\sigma_{j+1}<\operatorname{Re}(z)<-\sigma_{j}\right\} .
$$

(2) Let K be a kernel with bounded support, that is, \widehat{K} is an entire function.

Estimator

Kernel

Given a real number $h>0$ put

$$
L_{s, h}(t)=\frac{1}{2 \pi i} \int_{s-i \infty}^{s+i \infty} \frac{\widehat{K}(z h)}{\hat{g}(-z)} e^{z t} d z
$$

for any $s \in \check{S}_{g}$.

Observation

Note that $L_{s, h}(t)$ is the inverse Laplace transform of the function $\frac{\widehat{K}(z h)}{\widehat{g}(-z)}$.

Estimator

$$
\widetilde{f}_{s, h}\left(x_{0}\right)=\frac{1}{n} \sum_{i=1}^{n} L_{s, h}\left(Y_{i}-x_{0}\right)
$$

Motivation

Lemma

Suppose that for any $s \in\left(\varkappa_{g}^{-}, 0\right) \cup\left(0, \varkappa_{g}^{+}\right)$the integral in the definition of $L_{s, h}$ is absolutely convergent and

$$
\int\left|L_{s, h}\left(y-x_{0}\right)\right| f_{Y}(y) d y<\infty
$$

then

$$
\int L_{s, h}\left(y-x_{0}\right) f_{Y}(y) d y=\int \frac{1}{h} K\left(\frac{x-x_{0}}{h}\right) f(x) d x
$$

Observation

By making h smaller, we can reduce the bias of $\widetilde{f}_{s, h}\left(x_{0}\right)$, but the variance of $\widetilde{f}_{s, h}\left(x_{0}\right)$ increases with h !

Assumptions

Assumption (LG)

The Laplace transform $\widehat{g}(z)$ of measurement error distribution exists in a vertical strip $\Sigma_{g}=\left\{z \in \mathbb{C}: \sigma_{g}^{-}<\operatorname{Re}(z)<\sigma_{g}^{+}\right\}, \sigma_{g}^{-}<0<\sigma_{g}^{+}$, and admits the following factorization

$$
\widehat{g}(z)=\frac{1}{\widehat{\psi}(z)} \prod_{k=1}^{q}\left(1-\frac{e^{a_{k} z}}{\lambda_{k}}\right)^{m_{k}}
$$

where $\left\{a_{k}\right\}$ are distinct positive real numbers, $\left\{m_{k}\right\}$ are non-negative integer numbers, $\left|\lambda_{k}\right|=1, \forall k=1, \ldots, q$.

Observation

Assumption (LG) states that $\widehat{g}(z)$ factorizes into a product of two functions: the first function has zeros on the imaginary axis, while the second one does not vanish on $\Sigma_{g} \backslash\{0\}$. The zeros of \widehat{g} are $z_{k, j}:=i\left(\arg \left\{\lambda_{k}\right\}+2 \pi j\right) / a_{k}$

Assumptions

Assumption (PS)

Assume that $\widehat{\psi}(z) \neq 0$ for all $z \in \Sigma_{g} \backslash\{0\}$, and there exist constants $\omega_{0}>0, \gamma>0$ and $D_{1}>0, D_{2}>0$ such that

$$
D_{1}|\omega|^{\gamma} \leq|\widehat{\psi}(i \omega)| \leq D_{2}|\omega|^{\gamma}, \quad \forall|\omega| \geq \omega_{0} .
$$

In addition, for some non-negative integer r and $D_{3}>0$

$$
\max _{j=0, \ldots, 2 r}\left|\widehat{\psi}^{(j)}(i \omega)\right| \leq D_{3}\left(1+|\omega|^{\gamma}\right), \quad \forall \omega \in \mathbb{R} .
$$

Remark

Assumption (PS) is rather standard in density deconvolution problems when it is imposed on $\widehat{g}(i \omega)$: it corresponds to the smooth case. Note however that here it is now imposed on function $\widehat{\psi}(i \omega)$.

Examples

Uniform distribution

Let $\varepsilon \sim U(-\theta, \theta)$; then

$$
\widehat{g}(z)=\frac{\sinh (\theta z)}{\theta z}=-\frac{e^{-\theta z}}{2 \theta z}\left(1-e^{2 \theta z}\right), \quad z \in \mathbb{C}
$$

In this case we have $q=1, m_{1}=1, a_{1}=2 \theta, \lambda_{1}=1$ and

$$
\widehat{\psi}(z)=-2 \theta z e^{\theta z}
$$

- $\widehat{\psi}$ satisfies Assumption (PS) with $\gamma=1$,
- $\widehat{g}(z)$ has simple zeros on the imaginary axis at $z_{k}=i \pi k / \theta$, $k= \pm 1, \pm 2, \ldots$
- $S_{g}=\mathbb{C} \backslash\{z: \operatorname{Re}(z)=0\}$.

Examples

Convolution of uniform distributions

Consider convolution of distributions $U\left(-\theta_{k}, \theta_{k}\right), k=1, \ldots, q$, with distinct parameters $\theta_{1}, \ldots, \theta_{q}$, each of multiplicity m_{k}. In this case
$\widehat{g}(z)=\prod_{k=1}^{q}\left[\frac{\sinh \left(\theta_{k} z\right)}{\theta_{k} z}\right]^{m_{k}}=\frac{\exp \left\{-z \sum_{k=1}^{q} \theta_{k} m_{k}\right\}}{\prod_{k=1}^{q}\left(-2 \theta_{k} z\right)^{m_{k}}} \prod_{k=1}^{q}\left(1-e^{2 \theta_{k} z}\right)^{m_{k}}, \quad z \in \mathbb{C}$.
Assumption (LG) holds with $a_{k}=\theta_{k}, \lambda_{k}=1$ for $k=1, \ldots, q$, and

$$
\widehat{\psi}(z)=\prod_{k=1}^{q}\left(-2 \theta_{k} z\right)^{m_{k}} \exp \left\{z \sum_{k=1}^{q} \theta_{k} m_{k}\right\}
$$

Examples

Discrete distributions

Let ε be a discrete random variable taking $2 M+1$ values in the set $(j \delta)_{j=-M}^{M}, \delta>0$ with corresponding probabilities $\left(p_{j}\right)_{j=-M}^{M}$. Then

$$
\widehat{g}(z)=\sum_{k=-M}^{M} p_{k} e^{-\delta k z}=e^{-\delta M z} \sum_{k=0}^{2 M} p_{M-k} e^{\delta k z}=e^{-\delta M z} p_{M} P\left(e^{\delta z}\right)
$$

where $P(x):=1+\sum_{k=1}^{2 M}\left(p_{M-k} / p_{M}\right) x^{k}$. Let $\lambda_{1}, \ldots, \lambda_{2 M}$ denote the roots of polynomial $P(z)$, then we have

$$
\widehat{g}(z)=p_{M} e^{-\delta M z} \prod_{k:\left|\lambda_{k}\right| \neq 1}\left(1-\frac{e^{\delta z}}{\lambda_{k}}\right) \prod_{k:\left|\lambda_{k}\right|=1}\left(1-\frac{e^{\delta z}}{\lambda_{k}}\right) .
$$

Examples

Discrete distributions

Therefore

$$
\widehat{\psi}(z)=\frac{e^{\delta M z}}{p_{M} \prod_{k:\left|\lambda_{k}\right| \neq 1}\left(1-e^{\delta z} / \lambda_{k}\right)}, \quad \delta^{-1} \ln \left(\lambda_{-}\right)<\operatorname{Re}(z)<\delta^{-1} \ln \left(\lambda_{+}\right)
$$

where $\lambda_{-}:=\max \left\{\left|\lambda_{k}\right|:\left|\lambda_{k}\right|<1\right\}$, and $\lambda_{+}:=\min \left\{\left|\lambda_{k}\right|:\left|\lambda_{k}\right|>1\right\}$.

- If $\varepsilon \sim \operatorname{Bern}(1 / 2)$ then

$$
\widehat{g}(z)=\frac{1}{2}\left(1+e^{z}\right)
$$

and (LG) holds with $q=1, a_{1}=1, \lambda_{1}=-1, m_{1}=1$, and $\widehat{\psi}(z)=2$.

- If $\varepsilon \sim \operatorname{Bin}(m, 1 / 2)$, then

$$
\widehat{g}(z)=2^{-m}\left(1+e^{z}\right)^{m}
$$

and (LG) holds with $q=1, a_{1}=1, \lambda_{1}=-1, m_{1}=m$, and $\widehat{\psi}(z)=2^{m}$.

Examples

Convolution of uniform and a smooth density

Let φ be a probability density having the Laplace transform $\widehat{\varphi}$ in a strip $\Sigma_{\varphi}=\left\{z: \sigma_{\varphi}^{-}<\operatorname{Re}(z)<\sigma_{\varphi}^{+}\right\}$satisfying $|\widehat{\varphi}(z)| \neq 0, \forall z \in \Sigma_{\varphi}$. Assume that

$$
|\widehat{\varphi}(i \omega)| \asymp|\omega|^{-\gamma}
$$

for some $\gamma>0$ as $|\omega| \rightarrow \infty$; Let g be a convolution of the uniform density on $[-\theta, \theta]$ and φ; then

$$
\widehat{g}(z)=\frac{\sinh (\theta z)}{\theta z} \widehat{\varphi}(z)=-\frac{e^{-\theta z} \widehat{\varphi}(z)}{2 \theta z}\left(1-e^{2 \theta z}\right), \sigma_{\varphi}^{-}<\operatorname{Re}(z)<\sigma_{\varphi}^{+}
$$

and (LG) obviously holds with $\widehat{\psi}(z)=-2 \theta z e^{\theta z} / \widehat{\varphi}(z)$.

Kernel representation

Under Assumption (LG) the kernel $L_{s, h}$ has a representation

$$
L_{s, h}(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{\widehat{K}((s+i \omega) h) \widehat{\psi}(-s-i \omega)}{\prod_{k=1}^{q}\left[1-e^{-a_{k}(s+i \omega)} / \lambda_{k}\right]^{m_{k}}} e^{(s+i \omega) t} \mathrm{~d} \omega
$$

for all $s \in\left(\varkappa_{g}^{-}, 0\right) \cup\left(0, \varkappa_{g}^{+}\right)$.

Remark

Note that for any $s \in\left(\varkappa_{g}^{-}, 0\right) \cup\left(0, \varkappa_{g}^{+}\right)$the denominator of the integrand in the representation does not vanish.

Observation

It is convenient to represent $L_{s, h}(t)$ as an infinite series.

Kernel representation

Uniform error density

Let K be continuosly differentiable on \mathbb{R} such that $\widehat{K}(z)$ exists for all $z \in \mathbb{C}$, and

$$
\int_{-\infty}^{\infty}|\widehat{K}(s+i \omega)||\omega| \mathrm{d} \omega<\infty, \quad \forall s \in \mathbb{R} .
$$

Then

$$
L_{s, h}(t)= \begin{cases}L_{+, h}(t), & s>0 \\ L_{-, h}(t), & s<0\end{cases}
$$

where

$$
L_{+, h}(t):=\frac{2 \theta}{h^{2}} \sum_{j=0}^{\infty} K^{\prime}\left(\frac{t-\theta(2 j+1)}{h}\right)
$$

and

$$
L_{-, h}(t):=-\frac{2 \theta}{h^{2}} \sum_{j=0}^{\infty} K^{\prime}\left(\frac{t+\theta(2 j+1)}{h}\right)
$$

Kernel representation

Convolution of uniform distributions

In this case the corresponding kernel is

$$
L_{s, h}(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{\widehat{K}((s+i \omega) h)[\theta(s+i \omega)]^{m}}{[\sinh (\theta(s+i \omega))]^{m}} e^{(s+i \omega) t} \mathrm{~d} \omega, \quad s \neq 0
$$

and it has a representation

$$
L_{s, h}(t)=\frac{1}{h^{m+1}} \sum_{j=0}^{\infty} C_{j, m} K^{(m)}\left(\frac{t-\theta(m+2 j)}{h}\right)
$$

where

$$
C_{j, m}=\binom{j+m-1}{m-1}
$$

is the number of weak compositions of j into m parts.

Convergence rates

Class of densities

For $A>0, \beta>0$ define a class $\mathscr{H}_{x_{0}}(A, \beta)$ of functions f such that

$$
\left|f^{(\lfloor\beta\rfloor)}(x)-f^{(\lfloor\beta\rfloor)}\left(x^{\prime}\right)\right| \leq A\left|x-x^{\prime}\right|^{\beta-\lfloor\beta\rfloor}, \quad \forall x, x^{\prime} \in\left(x_{0}-d, x_{0}+d\right),
$$

where $\lfloor\beta\rfloor=\max \{k \in \mathbb{N} \cup\{0\}: k<\beta\}$.

Convergence rates

Kernel K

The kernel K is supported in $[-1,1]$ and fulfils the following conditions.
(K1) For a fixed positive integer m_{0}

$$
\int_{-1}^{1} K(t) \mathrm{d} t=1, \int_{-1}^{1} t^{j} K(t) \mathrm{d} t=0, j=1,2, \ldots, m .
$$

(K2) For a positive integer r kernel K is r times continuously differentiable on \mathbb{R} and

$$
\max _{t \in[-1,1]}\left|K^{(j)}(t)\right| \leq C_{K}<\infty, \quad \forall j=0,1, \ldots, r
$$

Convergence rates

Theorem

Assume that $f \in \mathscr{H}_{x_{0}}(A, \beta)$, and let (K1)-(K2) hold with $m_{0} \geq \beta+1$ and $r=1$. Let $\tilde{f}_{*}\left(x_{0}\right)$ be the estimator associated with kernels $L_{+, h_{*}}$ if $x_{0} \geq 0$ and $L_{-, h_{*}}$ if $x_{0}<0$, and with bandwidth $h_{*}:=\left(\theta A^{-2} n^{-1}\right)^{1 /(2 \beta+3)}$. Then

$$
\limsup _{n \rightarrow \infty}\left\{\varphi_{n}^{-1} \mathscr{R}_{n}\left[\tilde{f}_{*} ; \mathscr{H}_{x_{0}}(A, \beta)\right]\right\} \leq C, \varphi_{n}:=A^{3 /(2 \beta+3)}\left(\frac{\theta}{n}\right)^{\beta /(2 \beta+3)}
$$

where C may depend on β and \bar{x} only. Here

$$
\mathscr{R}_{n}[\tilde{f} ; \mathscr{F}]=\sup _{f \in \mathscr{F}}\left[\mathbb{E}_{f}\left|\tilde{f}\left(x_{0}\right)-f\left(x_{0}\right)\right|^{2}\right]^{1 / 2}
$$

General setting

Let N be a natural number, and denote

$$
\mathscr{L}_{N}:=\left\{a^{T} j=\sum_{k=1}^{q} a_{k} j_{k}: j=\left(j_{1}, \ldots, j_{q}\right) \in\{0,1, \ldots, N\}^{q}\right\} .
$$

The estimator of $f\left(x_{0}\right)$ is defined as follows

$$
\tilde{f}_{s, h}^{(N)}\left(x_{0}\right):=\frac{1}{n} \sum_{j=1}^{n} L_{s, h}^{(N)}\left(Y_{j}-x_{0}\right), s \in\left(\varkappa_{g}^{-}, 0\right) \cup\left(0, \varkappa_{g}^{+}\right),
$$

where

$$
L_{s, h}^{(N)}(t):= \begin{cases}L_{+, h}^{(N)}(t), & s \in\left(0, \varkappa_{g}^{+}\right) \\ L_{-, h}^{(N)}(t), & s \in\left(-\varkappa_{g}^{-}, 0\right)\end{cases}
$$

and

$$
L_{+, h}^{(N)}(t):=\sum_{\ell \in \mathscr{L}_{N}} \mathscr{C}_{\ell}^{+} R_{h}(t-\ell), L_{-, h}^{(N)}(t):=\sum_{\ell \in \mathscr{L}_{N}} \mathscr{C}_{\ell}^{-} R_{h}(t+\ell)
$$

General setting

Here

$$
\begin{aligned}
R_{h}(t) & :=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \widehat{K}(i \omega h) \widehat{\psi}(-i \omega) e^{i \omega t} \mathrm{~d} \omega \\
\mathscr{C}_{\ell}^{+} & :=\sum_{j: a^{T} j=\ell}\left[\prod_{k=1}^{q} C_{j_{k}, m_{k}} \lambda_{k}^{-j_{k}}\right]
\end{aligned}
$$

and

$$
\mathscr{C}_{\ell}^{-}:=\sum_{j: a^{T} j=\ell}\left[\prod_{k=1}^{q}(-1)^{m_{k}} C_{j_{k}, m_{k}} \lambda_{k}^{j_{k}+m_{k}}\right] .
$$

Functional class

For $A>0, \alpha>0 f$ belongs to a class $\mathscr{H}_{\alpha}(A)$ of functions with

$$
\left|f^{(\lfloor\alpha\rfloor)}(x)-f^{(\lfloor\alpha\rfloor)}\left(x^{\prime}\right)\right| \leq A\left|x-x^{\prime}\right|^{\alpha-\lfloor\alpha\rfloor}, \quad \forall x, x^{\prime} \in \mathbb{R}
$$

where $\lfloor\alpha\rfloor=\max \{k \in \mathbb{N} \cup\{0\}: k<\alpha\}$.

Let p be a non-negative integer, $B>0$, and let $\gamma>0$ be a constant appearing in Assumption (PS). Assume that f belongs to a class $\mathscr{T}_{p}(B)$ of densities satisfying

$$
\int_{-\infty}^{\infty}|x|^{p} f(x) \mathrm{d} x \leq B
$$

Error bounds

Let

$$
H_{N, j}(\omega):= \begin{cases}\sum_{\ell \in \mathscr{L}_{N}^{*}} \mathscr{C}_{\ell}^{+} e^{-i \omega\left(x_{0}+\ell\right)}\left(x_{0}+\ell\right)^{-j}, & x_{0} \geq 0 \\ \sum_{\ell \in \mathscr{L}_{N}^{*}} \mathscr{C}_{\ell}^{-} e^{-i \omega\left(x_{0}-\ell\right)}\left(x_{0}-\ell\right)^{-j}, & x_{0}<0\end{cases}
$$

with $\mathscr{L}_{N}^{*}:=\mathscr{L}_{N} \backslash\{0\}$. Let $0<h<a_{\text {min }}:=\min \left\{a_{1}, \ldots, a_{q}\right\}$ and $r:=\max \{j \in \mathbb{N} \cup\{0\}: 2 j \leq p\}$; then

$$
\begin{aligned}
& \mathscr{R}_{n}\left[\tilde{f}_{h}^{(N)} ; \mathscr{F}_{\alpha, p}\right] \leq C_{1}\left\{A h^{\alpha}+\frac{B}{h\left(x_{0}+a_{\min } N\right)^{p}}\right\} \\
& \quad+\frac{C_{2} B}{n}\left\{\frac{1}{h^{2 \gamma+1}}+\sum_{l=0}^{r} h^{\prime} \int_{-\infty}^{\infty}\left|\widehat{K}^{(l)}(i \omega h) \widehat{\psi}^{(r-l)}(-i \omega) H_{N, r}(\omega)\right|^{2} \mathrm{~d} \omega\right\}
\end{aligned}
$$

with $\mathscr{F}_{\alpha, p}=\mathscr{T}_{p}(B) \cap \mathscr{H}_{\alpha}(A)$.

Error bounds

Assumption

Assume that

$$
\sum_{\ell \in \mathscr{L} \backslash\{0\}} \max \left\{\left|\mathscr{C}_{\ell}^{+}\right|,\left|\mathscr{C}_{\ell}^{-}\right|\right\} \ell^{-v} \leq C_{0}<\infty
$$

for some $C_{0}>0$ and $v>1$.

Theorem

Assume that $f \in \mathscr{F}_{\alpha, p}(A, B)$ with $p \geq 2 v$. Let $h=\left[B\left(A^{2} n\right)^{-1}\right]^{1 /(2 \alpha+2 \gamma+1)}$ and $N \geq\left(A^{-2 \gamma+1} B^{2 \gamma+\alpha} n^{\alpha+1}\right)^{1 / p(2 \alpha+2 \gamma+1)}$. Then for large enough n one has

$$
\mathscr{R}_{n, \Delta_{x_{0}}}\left[\tilde{f}_{h_{*}}^{(N)} ; \mathscr{F}_{\alpha, p}(A, B)\right] \leq C_{1} A^{\frac{2 \gamma+1}{2 \alpha+2 \gamma+1}}\left(B n^{-1}\right)^{\frac{\alpha}{2 \alpha+2 \gamma+1}}
$$

where C_{1} may depend on α, and p only.

Minimax convergence rates

Observation

It is well known that under standard assumptions in the smooth case

$$
|\widehat{g}(i \omega)| \neq 0, \quad \widehat{g}(i \omega) \asymp|\omega|^{-\gamma}, \quad|\omega| \rightarrow \infty
$$

the minimax rate of convergence is

$$
\mathscr{R}_{n}^{*}\left[\mathscr{H}_{\alpha}(A)\right] \asymp n^{\alpha /(2 \alpha+2 \gamma+1)} .
$$

References

Belomestny, D. and Goldenshluger, J. (2019).
Deconvolution via bilateral Laplace transform.

