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CARMA processes
A stationary CARMA(p,q) process is a stationary stochastic
process Y of the form

Yt = b′Xt , where

Xt =
∫ t

−∞
eA(t−s)dL(s),

where A is a matrix, b is a vector and L is the driving Lévy
process. The process Y is the solution of a (formal) SDE

p(D)Y = q(D)L,

where p and q are real polynomials and L is the driving Lévy
process. See Brockwell for the definition and many
applications.
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CARMA random fields

There exists at least two definitions of a CARMA random
field. The first definition was given by Brockwell and
Matsuda. The CARMA random field is given by

X (t) :=
∫
Rd

p∑
r=1

b(λr )
a′(λr )eλr‖t−u‖dL(u),

where dL denotes the integration over a Lévy bases, a and b
are polynomials and (λi )1≤1≤p ∈ Cp.
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CARMA random fields

Pham follows another way and defines a CARMA random
field Y as a mild solution of the system of SPDEs given by

Y (t) = b′X (t), t ∈ Rd ,

(Ip∂d − Ad ) · · · (Ip∂1 − A1)X (t) = cL̇(t), t ∈ Rd ,

where L̇ is a Lévy basis, A1, . . . ,Ad ∈ Rp×p are matrices
and Ip is the identity matrix.

5



CARMA random fields

Pham speaks of causal CARMA random fields, as the
solution of the system depends only on the past in the sense
that the solution at a point x depends solely on the behavior
of L̇ on (−∞, x1]× · · · × (−∞, xd ]. So we can see directly
that there is a big difference between these two definitions.
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Goal
Our Goal of this talk is to give a suitable random field
solution (and sufficient conditions for the existence) of the
stochastic partial differential equation

p(D)s = q(D)L̇, (2.1)

where p(D) and q(D) are linear partial differential operators
and L̇ is a so called Lévy white noise.
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Ansatz
Let ϕ be a sufficiently nice function and assume that s is a
random field regular enough. Then we multiply p(D)s with
ϕ and by partial integration we obtain∫

Rd
p(D)s(x)ϕ(x)λd (dx) =

∫
Rd

s(x)p(−D)ϕ(x)λd (dx)

=: s(p(−D)ϕ).

At the end we obtain

〈s, p(−D)ϕ〉 := s(p(−D)ϕ) = L̇(q(−D)ϕ) =: 〈L̇, q(−D)ϕ〉.
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Definition
We denote by D(Rd ) the space of infinitely differentiable
functions with compact support and equip it with its usal
topology, i.e. a sequence (ϕn)n∈N ⊂ D(Rd ) converges to
ϕ ∈ D(Rd ) such that there exists a compact set K with
supp ϕn ⊂ K and

sup
x∈Rd

‖Dα(ϕn(x)− ϕ(x))‖ → 0

for n→∞ for every α ∈ Nd
0 .
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Definition (see Fageot, Definition 2.1)
A generalized random process is a linear and continuous
function s : D(Rd )→ L0(Ω). The linearity means that, for
every ϕ1, ϕ2 ∈ D(Rd ) and γ ∈ R,

s(ϕ1 + γϕ2) = s(ϕ1) + γs(ϕ2) almost surely.

The continuity means that if ϕn → ϕ in D(Rd ), then
s(ϕn)→ s(ϕ) in L0(Ω).
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Definition
A Lévy white noise L̇ is a generalized random process, such
that

EeizL̇(ϕ) = exp

 ∫
Rd

ψ(zϕ(x))λd (dx)

 , z ∈ R,

for every ϕ ∈ D(Rd ), where ψ : R→ C is given by

ψ(z) = iγz − 1
2az2 +

∫
R

(eixz − 1− ixz1|x |≤1)ν(dx)

with a ∈ R+, γ ∈ R and ν is a Lévy-measure.
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Definition
Let L̇ be a Lévy white noise, n,m ∈ N0 and p, q : Rd → R
be polynomials of the form

p(x) =
∑
|α|≤n

pαxα and q(x) =
∑
|α|≤m

qαxα.

A generalized process s : D(Rd )→ L0(Ω) is called a
CARMA(p, q) generalized process if s solves (2.1) which
means that

〈s, p(−D)ϕ〉 = 〈L̇, q(−D)ϕ〉 a.s. for every ϕ ∈ D(Rd ).
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1-dimensional case

In the 1-dimensional case there exists a similar model from
Brockwell and Hannig, which was defined for Gaussian
white noise. We will see later that our model contains their
results.
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Assumption
The rational function q(i ·)/p(i ·) has a holomorphic
extension in a strip {z ∈ Cd : ‖=z‖ < ε} for some ε > 0.
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Main theorem

Theorem (B., 2019)
Let p, q be real multivariate polynomials such that the
assumption above holds true. Furthermore, let L̇ be a Lévy
white noise with characteristic triplet (a, γ, ν) with∫

R

1|r |>1 log(|r |)dν(dr) <∞.

Then there exists a stationary CARMA(p, q) generalized
process.
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Corollary (B., 2019)
Let d = 1 and p and q be two real polynomials, such that
p/q has no roots on the imaginary axis.
Then there exists a stationary generalized solution s of the
equation

p( d
dx )s = q( d

dx )L̇

for every Lévy white noise L̇ with characteristic triplet
(a, γ, ν) such that

∫
|r |>1 log(|r |)ν(dr) <∞.

Therefore the results of Brockwell and Hannig are included.
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Definition (see Walsh)
Let p(D) and q(D) be partial differential operators and let
G : Rd → R be a locally integrable fundamental solution of
the equation p(D)u = q(D)δ0.
We say that (Xt)t∈Rd defined by

Xt =
∫
Rd

G(t − s) dL(s),

where dL denotes a Lévy basis, is the mild solution of the
equation p(D)X = q(D)dL, provided that the integral
exists.
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Theorem (B., 2019)
Let dL be a Lévy basis in Rd with characteristic triplet
(a, γ, ν) such that

∫
R

1|r |>1 log(|r |)dν(dr) <∞. Assume

furthermore that there exists ε > 0 such that

sup
η∈Bε(0)

∥∥∥∥q(i ·+η)
p(i ·+η)

∥∥∥∥
L2
<∞. (5.1)

Then there exists a mild solution of the equation

p(D)X = q(D) dL. (5.2)
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Proposition (B., 2019)
Let dL be a Lévy basis with existing first moment and p and
q be as above.
Then the mild solution X of (5.2) gives rise to a generalized
solution X of the SPDE p(D)X = q(D)L̇ via

〈X , ϕ〉 :=
∫
Rd

Xsϕ(s)λd (ds), ϕ ∈ D(Rd ).
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CARMA random fields in the sense of Brockwell and Matsuda
Let 0 ≤ q < p and assume that λi 6= κj are distinct zeroes
of two real polynomials a∗ and b∗ for all 1 ≤ i ≤ p and
1 ≤ j ≤ q. Define the functions

a(z) =
p∏

i=1
(z2 − λ2

i ) and b(z) =
q∏

i=1
(z2 − κ2

i ).

Let L be a Lévy basis in Rd with finite second moment.
Then the isotropic CARMA(p, q) field driven by L is given
by

Xt =
∫
Rd

p∑
i=1

b(λi )
a′(λi )

eλi ||t−u|| dL(u) (5.3)

for every t ∈ Rd . Here, a′ denotes the derivative of the
polynomial a
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Proposition
Let X = (Xt)t∈Rd be defined by (5.3). Then X is the mild
solution of the (fractional) SPDE

p∏
i=1

a′(λi )(−∆ + λ2
i )

d+1
2 X

= cd

p∑
i=1

2λib(λi )
p∏

j=1,j 6=i
a′(λj)(−∆ + λ2

j )
d+1

2 L̇

for some constant cd depending on the dimension d .
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Thank you very much for your attention!
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