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Sampling Schemes

Given a strictly-stationary data generating process X = (Xt)t∈R

Equidistant sampling→ General asymptotic theory for
sample moment statistics, i.e. when X is strong mixing
(Bradley, 2007).

Random Sampling→ ?
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Renewal Sampling

Definition

Let τ = (τi)i∈Z\{0} be a non-negative sequence of i.i.d. random
variable with distribution function µ such that µ({0}) < 1. For
i ∈ Z, we define (Ti)i∈Z as

T0 := 0 and Ti :=



i∑
j=1

τj , i ∈ N∗,

−
−1∑
j=i

τj , −i ∈ N∗.
(1)

The sequence (Ti)i∈Z is called a renewal sampling sequence.
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Renewal Sampling

Let X = (Xt)t∈R a stationary process with values in Rd-valued
and let (Ti)i∈Z be a sequence of random times as defined in (1)
and independent of X , we define the sequence Y = (Yi)i∈Z as
a stochastic process with values in Rd+1 given by

Yi =

(
XTi

τi

)
.
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Renewal Sampling

Target

We show that if

X is strictly-stationary and satisfies a weak dependent
property
X admits exponential or power decaying weak

dependent coefficients

Then, we can apply to Y the existing asymptotic theory for
equidistant sampling.
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Definition

Let T a non empty index set equipped with a distance d and X = (Xt)t∈T a
process with values in Rd. The process is called a Ψ-weak dependent
process if there exists a function Ψ and a sequence of coefficients
ι = (ι(r))r∈R+ converging to zero satisfying

|Cov(F (Xi1 , . . . , Xiu), G(Xj1 , . . . , Xjv ))| ≤ cΨ(F,G, u, v) ι(r) (2)

for all 
(u, v) ∈ N∗ × N∗;
r ∈ R+;
(i1, . . . , iu) ∈ Tu and (j1, . . . , jv) ∈ T v,
such that r = min{d(il, jm) : 1 ≤ l ≤ u, 1 ≤ m ≤ v}
for functions F : (Rd)u → R and G : (Rd)v → R

and where c is a constant independent of r. ι is called the sequence of the
weak dependent coefficients.
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η-weak dependence

Let Fu = Gu be classes of bounded and Lipschitz functions with

Ψ(F,G, u, v) = uLip(F )‖G‖∞ + vLip(G)‖F‖∞,

then ι corresponds to the η-coefficients defined in Doukhan
and Louhichi, (1999).

Also λ-weak dependence and κ-weak dependence, as
defined in Doukhan and Wintenberger (2007), are
encompassed by (2).
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BL-dependence

If, instead,

Ψ(F,G, u, v) = min(u, v)Lip(F )Lip(G),

then ι corresponds to the BL-weak dependent coefficients defined
in Bulinski and Sashkin (2005).
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θ-weak dependence

Let Fu be the class of bounded functions and Gv the class of
bounded and Lipschitz functions with

Ψ(F,G, u, v) = v‖F‖∞Lip(G),

then ι corresponds to the θ-coefficients defined in Dedecker
and Doukhan, (2003).
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Strong mixing

Proposition (Brandes, C., Stelzer)

Let X = (Xt)t∈T be a process with values in Rd and Fu = Gu
are classes of bounded functions. X is α-mixing (Rosenblatt,
1956) if and only if there exists a sequence (ι(r))r∈R+

converging to zero such that (2) is satisfied for

Ψ(F,G, u, v) = ‖F‖∞‖G‖∞

.
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Weak dependent coefficients of the renewal sampled process

Theorem (Brandes, C., Stelzer)

Let Y = (Yi)i∈Z be a Rd+1-valued process with X = (Xt)t∈R being
strictly-stationary and Ψ-weak dependent with coefficients ι = (ι(r))r∈R+ .
Then, it exists a sequence (I(n))n∈N∗ satisfying

|Cov(F (Yi1 , . . . , Yiu), G(Yj1 , . . . , Yjv ))| ≤ CΨ(F,G, u, v) I(n)

where C is a constant independent of n and Ψ satisfies the same weak
dependence conditions of the data generating process X. Moreover,

I(n) =

∫
R+

ι(r)µ∗n(dr),

with µ∗n the n-fold convolution of µ.
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Ψ-weak dependence of the renewal sampled process

Exponential decay

If X is a Ψ-weak dependent process with coefficients
ι(r) = ce−γr with γ > 0 and µ a distribution function in R+, then
Y is Ψ-weak dependent with coefficients

I(n) = C
(( 1

Lµ(γ)

)−n)
,

where Lµ(γ) =

∫
R+

e−γrµ(dr) is the Laplace transform of the

distribution function µ.
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Ψ-weak dependence of the renewal sampled process

Power decay

If X is a Ψ-weak dependent process with power decaying
coefficients such that ι(r) = cr−γ for γ > 0. Then, the process
Y is Ψ-weak dependent with coefficients I(n) ≤ Cn−γ for large
n.
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Thank you
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