ulm university universität

Change-point methods for anomaly detection in fibrous media

Vitalii Makogin | 10.10.2019 | Institute of Stochastics, Ulm University

joint work with E. Spodarev, C. Redenbach, D. Dresvyanskiy, T. Karaseva and S. Mitrofanov

Fibre materials Random sequential adsorption (RSA)

Visualization of layered RSA image with $200 \times 200 \times 300$ voxels (left) and homogeneous RSA image with $500 \times 500 \times 500$ voxels (right), radius 4

Problem setting

- A fibre γ is a simple curve $\{\gamma(t), t \in [0, 1]\}$ in \mathbb{R}^3 of finite length.

- The collection of fibres forms a fibre system ϕ .
- The length measure $\phi(B) = \sum_{\gamma \in \phi} h(\gamma \cap B)$, where *h* is the length of fibre in window $B \subset \mathbb{R}^3$.

- A fibre process Φ is a random element with values in the set \mathbb{D} of all fibre systems ϕ with σ -algebra D generated by sets of the form $\{\phi \in \mathbb{D} : \phi(B) < x\}$.

Classification

- Let w(x) be some characteristic of a fibre at point x: fibre local direction, curvature, etc.

- A weighted random measure

 $\Psi(B \times L) = \int_B \mathbb{1}\{w(x) \in L\}\Phi(dx).$

- If the fibre process Φ is stationary, then

 $\mathbf{E}\Psi(\mathbf{B} \times \mathbf{L}) = \lambda |\mathbf{B}| f(\mathbf{L})$, where λ is called the intensity of Ψ ,

- A probability measure f on \mathbb{S}^2 is called the directional distribution of fibres.

Testing

 $H_0: \Phi$ is stationary with intensity λ and directional distribution f vs.

 H_1 : There exists a compact set $A \subset W$ with |A| > 0 and $|W \setminus A| > 0$ such that

$$\frac{1}{\lambda|A|}\mathsf{E}\int_{A}\mathbb{1}\{w(x)\in\cdot\}\Phi(dx)\neq\frac{1}{\lambda|W\setminus A|}\mathsf{E}\int_{W\setminus A}\mathbb{1}\{w(x)\in\cdot\}\Phi(dx).$$

If H_1 holds true, the region A is called an anomaly region.

Data

- The dilated fibre system $\Phi \oplus B_r \cap W$ in window $W \subset \mathbb{R}^3$ is observed as a 3D greyscale image.

- Reconstruction of μ CT image by MAVI: Modular Algorithms for volume Images, provided by Fraunhofer ITWM.

Local directions and clustering criteria

Ŵ

- A separation of fibres (and estimation of their directions) requires large computational resources for 3D images.

- An estimation of local direction is much faster but produces dependent sample.

- In each W_l , the "average local direction" is computed using SubfieldFibreDirection in MAVI.

- We group W_l in classification windows W_l .

- For each W_l we assign a classification attribute: entropy, average direction.

Entropy estimation

- Entropy of an absolutely continuous \mathbb{S}^2 -valued random variable with density *f* is $E_X = -\int_{\mathbb{S}^2} \log(f(x))f(x)\sigma(dx)$, where σ is the spherical surface measure on \mathbb{S}^2 .

- Plug-in estimators required large samples. In simulations for uniform distribution on a sphere $N > 50^3$.
- Nearest neighbour estimator (KL-estimator, 1987)

$$\hat{E} = \frac{d}{N} \sum_{i=1}^{N} \log \rho_i + \log(c(N-1)) + \gamma.$$

- We propose modification of the nearest neighbour estimator:

$$\hat{E}_M = \frac{d}{N_M} \sum_{i=1}^N \mathbb{1}\{\rho_i > \rho_0\} \log \rho_i + \log(c(N_M - 1)) + \gamma,$$

where $N_M = \sum_{i=1}^N \mathbb{1}\{\rho_i > \rho_0\}, \rho_0$ is a penalty value.

Entropy estimation: homogeneous RSA (random sequential adsorption) image

Histogram of frequencies of the local entropy

 $2000\times2000\times2100$ voxels

Entropy estimation: layered RSA image

 $2000\times2000\times2100$ voxels

Histogram of frequencies of the local entropy

Random fields with inhomogeneities in mean

- Let be $\{\xi_k, k \in \mathbb{Z}^3\}$ an integrable, centered, stationary, real-valued random field.

- { $\xi_k, k \in \mathbb{Z}^3$ } is *m*-dependent, and there exist $H, \sigma > 0$ such that $\mathbf{E}|\xi_k|^p \leq \frac{p!}{2}H^{p-2}\sigma^2, p = 2, 3, \dots$

- Let Θ be a finite parametric space. For every $\theta \in \Theta$ we define subspace of anomalies $I_{\theta} \subset \mathbb{Z}^3$.

- For some $\theta_0\in\Theta$ we observe

$$\mathbf{s}_{\mathbf{k}} = \xi_{\mathbf{k}} + \mu + h\mathbb{1}\{\mathbf{k} \in \mathbf{I}_{\theta_0}\}, \mathbf{k} \in \mathbf{W}.$$

- Let Θ_0 correspond to the significant anomalies, i.e, for $\gamma_0, \gamma_1 \in (0, 1)$ we let $\Theta_0 = \{\theta \in \Theta : \gamma_0 | W | \le |I_{\theta}| \le \gamma_1 | W |\}$. - Then $\Theta_1 = \Theta \setminus \Theta_0$ corresponds to the extremely small or large anomalies, i.e,

 $\Theta_1 = \{ \theta \in \Theta : |I_{\theta}| < \gamma_0 |W|, \text{ or } |I_{\theta}| > \gamma_1 |W| \}.$

Testing the change of expectation

- The change-point hypotheses for the random field $\{s_k, k \in W\}$ with respect to its expectation

$$H_0$$
: **E** $s_k = \mu$ for every $k \in W$ (i.e. $h = 0$) vs.

$$H_1$$
: There exists $\theta_0 \in \Theta_0$ such that

$$\mathbf{E}\mathbf{s}_{k} = \mu + h, k \in I_{\theta_{0}}, \ h \neq 0, \text{ and } \mathbf{E}\mathbf{s}_{k} = \mu, k \in I_{\theta_{0}^{c}}.$$

- Analogue of CUSUM statistics

$$\begin{split} Z(\theta) &= \frac{1}{|I_{\theta}|} \sum_{k \in I_{\theta}} s_k - \frac{1}{|I_{\theta}^c|} \sum_{k \in I_{\theta}^c} s_k \\ &= \frac{1}{|I_{\theta}|} \sum_{k \in I_{\theta}} \xi_k - \frac{1}{|I_{\theta}^c|} \sum_{k \in I_{\theta}^c} \xi_k + h\left(\frac{|I_{\theta} \cap I_{\theta_0}|}{|I_{\theta}|} - \frac{|I_{\theta}^c \cap I_{\theta_0}|}{|I_{\theta}^c|}\right). \end{split}$$

- Test statistics: $T_W = \max_{\theta \in \Theta_0} |Z(\theta)|$.

Test statistics

- Critical values y_{α} via the probability of the 1st-type error:

$$\mathbf{P}_{H_0}(T_W \ge y_\alpha) = \mathbf{P}\left(\max_{\theta \in \Theta_0} \left| \frac{1}{|I_\theta|} \sum_{k \in I_\theta} \xi_k - \frac{1}{|I_\theta^c|} \sum_{k \in I_\theta^c} \xi_k \right| \ge y_\alpha\right) \le \alpha.$$

- Tail probabilities

$$\begin{aligned} \mathbf{P}_{H_0}(T_W \ge \mathbf{y}) &\leq \sum_{\theta \in \Theta_0: |I_{\theta}^c| \le \frac{\sigma^2 |W|}{\mathbf{y} H}} 2 \exp\left(-\frac{\mathbf{y}^2}{4m^3 \sigma^2} \frac{|I_{\theta}^c| |I_{\theta}|}{|W|}\right) \\ &+ \sum_{\theta \in \Theta_0: |I_{\theta}^c| > \frac{\sigma^2 |W|}{\mathbf{y} H}} 2 \exp\left(-\frac{\mathbf{y}}{2Hm^3} |I_{\theta}| + \frac{\sigma^2 |W|}{4H^2m^3 |I_{\theta}^c|} |I_{\theta}|\right). \end{aligned}$$

Tail probabilities

- If ξ_k 's are Gaussian, then $H = \sigma$. If $|\xi_k| \leq M$ then H = M.
- Particularly, if $y < \frac{\sigma^2}{H(1-\gamma_0)}$ then

$$\mathbf{P}_{\mathcal{H}_0}(\mathcal{T}_W \geq \mathbf{y}) \leq 2 \left|\Theta_0\right| \exp\left(-\frac{\mathbf{y}^2}{4m^3\sigma^2} |W|\gamma_0(1-\gamma_0)\right),$$

and if $y > \frac{\sigma^2}{H(1-\gamma_1)}$ then

$$\mathbf{P}_{H_0}(T_W \ge y) \le 2 |\Theta_0| \exp\left(-\frac{y}{4Hm^3}\gamma_0|W|\right).$$

Simulated data

Homogeneous RSA data:

Attr.	$ \Theta_0 $	Var.	Test stat.	<i>p</i> -value	¹⁴
ĩ	39395	0.04360	0.0344	1.00	1.0
ỹ	39395	0.03743	0.0130	1.00	0.8
ĩ	39395	0.03749	0.0146	1.00	0.4
Ĩ	16536	0.08984	0.0942	1.00	0.0 -1.5 -1.0 -0.5 0.0 0.5

Layered RSA data:

Attr.	$ \Theta_0 $	Var.	Test stat.	p-value 🔐	
ĩ	39395	0.10592	0.44036	$4.6 imes 10^{-30}$	
ỹ	39395	0.10948	0.43163	$2.8 imes10^{-23}$ $_{\circ4}$	
ĩ	39395	0.06151	0.18764	0.3012	
Ĩ	16536	0.3583	1.07030	0.00	5 -1.0 -0.5 0.0 0.5 1.0

Classification by spatial SAEM algorithm: layered RSA image.

 $2000\times2000\times2100$ voxels

Spatial SAEM classification by entropy and mean local directions

Real glass fibre reinforced polymer

- The images are provided by the Institute for Composite Materials (IVW) in Kaiserslautern: 970 × 1469 × 1217 voxels, the estimated radius of 3 voxels. We obtain 64 × 97 × 80 small windows \widetilde{W}_i with 15 × 15 × 15 voxels.

- Change point testing:

Attr.	Н	σ^2	т	$ \Theta_0 $	Var.	Test stat.	<i>p</i> -value
ĩ	0.5	0.2	7	33004	0.04589	0.15995	1.00
ŷ	0.5	0.2	7	33004	0.06795	0.44733	$2.1 imes 10^{-10}$
ĩ	0.5	0.2	7	33004	0.07982	0.43383	$1.3 imes10^{-6}$
Е	0.7071	0.5	1	12366	0.30126	0.46811	$3.96 imes10^{-8}$

Classification by spatial SAEM algorithm: real data.

 $970\times1469\times1217$ voxels

Spatial SAEM classification by entropy and mean local directions

Preprint: Detecting anomalies in fibre systems using 3-dimensional image data. arXiv:1907.06988.

Support:

- German Ministry of Education and Research (BMBF): the project "AniS"
- DFG Research Training Group GRK 1932;
- DFG grant SP 971/10-1;
- DAAD scientific exchange program "Strategic Partnerships".

Thank you for your attention!