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Let (Xt)t∈[0,1] be a stochastic process (Brownian motion, Lévy
process, SDE etc.). Given the observations

X0,X∆n ,X2∆n , . . . ,Xb1/∆nc∆n with ∆n → 0

and the random parameter of interest Q, what is the optimal
estimator of Q?

Topic of the talk
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Low vs. high frequency data

Low frequency data

Observed data
X1,X2, ...,Xn i .i .d . ∼ F

Asymptotic knowledge

distribution function F

Identifiable objects

functionals of F

High frequency data

Observed data
X0(ω),X∆n (ω), ...,Xb1/∆nc∆n (ω)

Asymptotic knowledge

(Xt(ω))t∈[0,1]

Identifiable objects

functionals of (Xt(ω))t∈[0,1]
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Background

� In the classical test theory the model parameters are deterministic
objects. There exist numerous approaches to access the optimality of
estimators: Cramer-Rao bounds, maximum likelihood theory,
minimax approach, Le Cam theory, etc.

� However, in the high frequency setting the objects of interests are
often random. Examples include quadratic variation, realised jumps,
supremum/infimum of a process, local times, occupation time
measures etc.

� In this framework very little is known about how to construct
optimal estimates.
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Example: Estimation of the quadratic variation

Let X be a continuous semimartingale of the form

Xt = X0 +
∫ t

0
asds +

∫ t

0
σsdWs t ≥ 0

where a and σ are stochastic processes, and W is a Brownian motion.
An important result in the theory of high frequency data is the following
theorem.

Theorem (Jacod(94))
It holds that

∆−1/2
n

b1/∆nc∑
i=1

(
Xi∆n − X(i−1)∆n

)2 −
∫ 1

0
σ2

s ds

 dst→MN
(
0, 2

∫ 1

0
σ4

s ds
)

Recently, Clement, Delattre & Gloter (13) have proved that the above
estimator is asymptotically efficient applying an infinite dimensional
LAMN property.
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Introduction

� The results of Clement, Delattre & Gloter (13) only cover estimation
problems for volatility functionals. In this talk we will rather focus on
the following random objects:

X := sup
s∈[0,1]

Xs

l(x) := lim
ε↓0

1
2ε

∫ 1

0
1(−ε,ε)(Xs − x)ds

L(x) :=
∫ 1

0
1(x ,∞)(Xs)ds

which is the supremum, local time and occupation time measure of
the process X , respectively.

� We are interested in optimal estimation of these objects given high
frequency data (Xi∆n )0≤i≤b1/∆nc.
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A remark on optimality

We will see that many naive estimators are rate optimal, but not
efficient! In fact, efficient estimators are easy to introduce.

Let Q = Φ((Xs)s∈[0,1]) be a random variable of interest. An optimal
estimator of Q is given as

(i) in L2-sense: E[Q| (Xi∆n )0≤i≤b1/∆nc]

(ii) in L1-sense: median[Q| (Xi∆n )0≤i≤b1/∆nc]

We will investigate the asymptotic theory for these type of estimates in
the setting of supremum, local time and occupation time measure of the
process X , where X is a Brownian motion, stable Lévy process or a
continuous diffusion process.
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Naive estimator of the supremum

� It is rather simple to propose the following estimate for the
supremum

Mn := max
i=1,...,b1/∆nc

Xi∆n
P→ X

where the consistency holds for all Lévy processes X .

� The asymptotic theory for the maximum has been studied in several
papers including Asmussen, Glynn & Pitman (95) (Brownian
motion) and Ivanovs (18) (general Lévy processes).

� Since Mn < X , the estimator Mn is downward biased and there were
several attempts to correct the bias.
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A result on zooming-in at supremum

The following result from the theory of Lévy processes will be extremely
useful for our asymptotic theory.

Theorem (Ivanovs (18))
Let X be an α-stable Lévy process with α ∈ (0, 2]. Denote by τ the
time of the supremum of X on the interval [0, 1]. Then we obtain the
functional stable convergence

(Z n
t )t∈R :=

(
∆−1/α

n (Xτ+t∆n − Xτ )
)

t∈R

dst→
(
X̂t

)
t∈R

where X̂ is the so called Lévy process conditioned to stay negative,
which is independent of F . When X is a Brownian motion, we deduce
the identity

X̂t = −‖Bt‖

where B is a 3-dimensional Brownian motion.
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Application to estimation of the supremum

The previous result has the following consequence.

Theorem (Ivanovs (18))
Let X be an α-stable Lévy process with α ∈ (0, 2]. Then it holds that

∆−1/α
n

(
Mn − X

) d→ max
j∈Z

(X̂j+U)

where U ∼ U(0, 1) is independent of X̂ and F .

Sketch of proof: Note that

∆−1/α
n

(
X(dτ/∆ne+i)∆n − Xτ

)
= Z n

i+{τ/∆n}

Recall that {τ/∆n}
dst→ U ∼ U(0, 1). Since Z n dst→ X̂ , we conclude that

∆−1/α
n

(
Mn − X

) d→ max
j∈Z

(X̂j+U)

2
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Computation of the optimal estimator: The Brownian case

The basis of our approach is the computation of the conditional
probability

Hn(x) := P
(
X ≤ x | (Xi∆n )0≤i≤b1/∆nc

)
x > 0.

Due to Markov and self-similarity property of X , we easily see that

Hn(x) =
n∏

i=1
F
(

∆−1/2
n (x − X i−1

n
),∆−1/2

n ∆n
i X
)

where F (x , y) = P
(
X ≤ x | X1 = y

)
= 1− exp(−2x(x − y)). After

rescaling we deduce the stable convergence

Hn

(
∆1/2

n x + Mn

)
=
∏
i∈Z

F
(
x + ∆−1/2

n (Mn − X(i−1)∆n ),∆−1/2
n ∆n

i X
)

dst→ G(x) :=
∏
i∈Z

F
(
x + max

j∈Z
X̂j+U − X̂i+U , X̂i+1+U − X̂i+U

)
.
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Conditional mean and conditional median

� For the conditional mean T (2)
n := E

[
X | (Xi∆n )i

]
we obtain the

formula

T (2)
n − X = (Mn − X ) + ∆1/2

n

∫ ∞
0

(
1− Hn

(
∆1/2

n x + Mn

))
dx

Hence, the probabilistic structure of X only affects the second order
term.

� Similarly, for the conditional median T (1)
n := median

[
X | (Xi∆n )i

]
we

deduce the identity

T (1)
n − X = (Mn − X ) + ∆1/2

n Hn

(
∆1/2

n ·+Mn

)−1
(1/2)

and again the probabilistic structure of X only affects the second
order term.
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Asymptotic theory for the optimal estimators: Brownian case

Theorem (Ivanovs & P. (19))
Define the estimates

T (1)
n = median

[
X | (Xi∆n )i

]
, T (2)

n = E
[
X | (Xi∆n )i

]
.

(i) It holds that

∆−1/2
n

(
T (1)

n − X
)

d→ max
j∈Z

(X̂j+U) + G−1(1/2).

(ii) Furthermore,

∆−1/2
n

(
T (2)

n − X
)

d→ max
j∈Z

(X̂j+U) +
∫ ∞

0
(1− G(y))dy .

In particular, we have that

MSE(Mn)
MSE(T (2)

n )
≈ 6.25 !
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Simulation of asymptotic distributions
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Asymptotic theory: The α-stable case

Theorem (Ivanovs & P. (19))
Let X be a α-stable Lévy motion with α ∈ (0, 2).

(i) Define T (1)
n = median[X | (Xi∆n )i ]. Then we obtain

∆−1/α
n

(
T (1)

n − X
)

d→ max
j∈Z

(X̂j+U) + G−1(1/2).

and the estimator is L1-optimal for α ∈ (1, 2).

(ii) Define T (2)
n = E[X | (Xi∆n )i ] for α ∈ (1, 2). Then it holds that

∆−1/α
n

(
T (2)

n − X
)

d→ max
j∈Z

(X̂j+U) +
∫ ∞

0
(1− G(y))dy .
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Naive estimators for the local time

� In this chapter we assume that X is a Brownian motion. Recall the
definition of local time:

l(x) = lim
ε↓0

1
2ε

∫ 1

0
1(−ε,ε)(Xs − x)ds

where x ∈ R.

� A straightforward estimator of l(x) is given as

ln(x) := an∆n

b1/∆nc∑
i=1

g (an(Xi∆n − x)) P→ l(x)

where g is a kernel satisfying
∫
R g(x)dx = 1, and an →∞ with

an∆n → 0.

� We will focus on a more general class of statistics:

V (h, x)n := an∆n

b1/∆nc∑
i=1

h
(
an(Xi∆n − x),∆−1/2

n ∆n
i X
)
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Asymptotic theory for V (h, x)n

Theorem (Borodin (86), Jacod (98))

Assume that an = ∆−1/2
n and h satisfies the condition

|h(y , z)| ≤ h1(y) exp(λ|z |) for some λ > 0 and
∫
R |y |

ph1(y)dy <∞ for
some p > 3. Then it holds that

V (h, x)n P→ chl(x)

where ch =
∫
R
(∫

R h(y , z)ϕ(z)dz
)
dy and ϕ denotes the density of the

standard normal distribution. Furthermore, we obtain the stable
convergence

∆−1/4
n (V (h, x)n − chl(x)) dst→MN (0, vhl(x))

for a certain constant vh > 0.

An interesting example is the number of crossings at level 0 which
corresponds to x = 0 and h(y , z) = 1(−∞,0)(y(y + z)).
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L2-optimal estimator of the local time

As we mentioned earlier, the L2-optimal estimator of the local time is
given by

l̂n(x) = E
[
l(x)| (Xi∆n )1≤i≤b1/∆nc

]
The following distributional identity connects the law of local times to
the law of the supremum:

(lt(0), |Xt |)t∈R =
(
X t ,X t − Xt

)
t∈R

Applying the Markov and self-similarity property of the Brownian motion
we deduce that

l̂n(x) = V (h0, x)n with an = ∆−1/2
n

and
h0(y , z) = 2|y |ez2/2

∫ 1

0
s−3/2e−y2/(2s)Φ

(
|y + z |√
1− s

)
ds

Here Φ denotes the tail distribution of the standard normal law.
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Asymptotic theory for V (h, x)n

Theorem (Ivanovs & P. (19))
We obtain the stable convergence

∆−1/4
n (V (h0, x)n − l(x)) dst→MN (0, vh0 l(x))

We conjecture that this result can be extended to continuous stochastic
differential equations.
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Occupation time measure

� In this part we consider a Brownian motion X . The object of interest
is the occupation time measure

L(x) =
∫ 1

0
1(x ,∞)(Xs)ds

which turns out to be easier to treat than the previous two cases.

� We will again compute the conditional mean estimator

Ln(x) := E
[
L(x)| (Xi∆n )1≤i≤b1/∆nc

]
Define Li

i−1(x) =
∫ i∆n

(i−1)∆n
1(x ,∞)(Xs)ds and observe the identity

E
[
Li

i−1(x)|X(i−1)∆n ,∆−1/2
n ∆n

i X
]

= ∆n

∫ 1

0
Φt(1−t)

(
∆−1/2

n (x − X(i−1)∆n − t∆n
i X )

)
dt

where Φt is the tail distribution of N (0, t).
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Computation of Ln(x)

Using again the Markov property of the Brownian motion we obtain the
formula

Ln(x) =
b1/∆nc∑

i=1
E
[
Li

i−1(x)| (Xi∆n )1≤i≤b1/∆nc
]

= ∆n

b1/∆nc∑
i=1

f
(

∆−1/2
n (x − X(i−1)∆n ),∆−1/2

n ∆n
i X
)

with
f (y , z) =

∫ 1

0
Φt(1−t) (y − tz) dt
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Asymptotic theory for Ln(x)

Theorem (Ivanovs & P. (19))
We obtain the stable convergence

∆−3/4
n

(
Ln(x)−

∫ 1

0
1(x ,∞)(Xs)ds

)
dst→MN (0, vf l(x))

where vf > 0 is a certain constant.

The rate optimality of the rate ∆−3/4
n has been shown in Ngo & Ogawa

(11) in the setting of continuous diffusion models.
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Thank you very much for your attention!
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