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Let (Xt)¢te[o,1] be a stochastic process (Brownian motion, Lévy
process, SDE etc.). Given the observations

X07XA,,7X2A,,7-~-aXL1/A,,JA,, with A, =0

and the random parameter of interest @, what is the optimal
estimator of Q7




Low vs. high frequency data

Low frequency data High frequency data
Observed data Observed data
X1, X2, ..., X iiiid. ~ F Xo(w), Xa,(w), -, X|1/4,)4,(w)
Asymptotic knowledge Asymptotic knowledge
distribution function F (Xe(w))tepo.a)
Identifiable objects Identifiable objects
functionals of F functionals of (Xt(w))re[o,l]




Background

m In the classical test theory the model parameters are deterministic
objects. There exist numerous approaches to access the optimality of
estimators: Cramer-Rao bounds, maximum likelihood theory,

minimax approach, Le Cam theory, etc.

m However, in the high frequency setting the objects of interests are
often random. Examples include quadratic variation, realised jumps,
supremum/infimum of a process, local times, occupation time

measures etc.

m In this framework very little is known about how to construct

optimal estimates.



Example: Estimation of the quadratic variation

Let X be a continuous semimartingale of the form
t t
Xt:Xo+/asds+/ade5 t>0
0 0

where a and o are stochastic processes, and W is a Brownian motion.
An important result in the theory of high frequency data is the following
theorem.

Theorem (Jacod(94))

It holds that

/4, L '
ALY (Xia, _X(ifl)An)2_/0 o2ds | & MN (0’2/0 aﬁds)

i=1

Recently, Clement, Delattre & Gloter (13) have proved that the above
estimator is asymptotically efficient applying an infinite dimensional
LAMN property.



Introduction

m The results of Clement, Delattre & Gloter (13) only cover estimation
problems for volatility functionals. In this talk we will rather focus on
the following random objects:

X = sup X
s€[0,1]

1

1
I(x) = IET(; % /. L—e,e)(Xs — x)ds

L(X) Z:/O 1(x,:>o)(Xs)d5

which is the supremum, local time and occupation time measure of
the process X, respectively.

m We are interested in optimal estimation of these objects given high
frequency data (Xia,)o<i<|1/4,)-



A remark on optimality

We will see that many naive estimators are rate optimal, but not
efficient! In fact, efficient estimators are easy to introduce.

Let @ = ®((Xs)se[o,1) be a random variable of interest. An optimal
estimator of @ is given as

(i) in L-sense: E[Q| (Xia,)o<i<(1/a,]

(i) in L'-sense: median[Q| (Xian)o<i<|1/a,)]
We will investigate the asymptotic theory for these type of estimates in
the setting of supremum, local time and occupation time measure of the

process X, where X is a Brownian motion, stable Lévy process or a
continuous diffusion process.



Naive estimator of the supremum

m It is rather simple to propose the following estimate for the
supremum

M, = max Xin, EX
i=1,...,[1/An]

where the consistency holds for all Lévy processes X.

m The asymptotic theory for the maximum has been studied in several
papers including Asmussen, Glynn & Pitman (95) (Brownian
motion) and lvanovs (18) (general Lévy processes).

m Since M, < X, the estimator M, is downward biased and there were
several attempts to correct the bias.



A result on zooming-in at supremum

The following result from the theory of Lévy processes will be extremely
useful for our asymptotic theory.

Theorem (lvanovs (18))
Let X be an a-stable Lévy process with . € (0,2]. Denote by T the

time of the supremum of X on the interval [0,1]. Then we obtain the
functional stable convergence

(Z])ter = (A;l/a (Xr4ta, — XT)) — Eg <)A<f> teR

where X is the so called Lévy process conditioned to stay negative,

which is independent of F. When X is a Brownian motion, we deduce
the identity

X: = ~||Bl

where B is a 3-dimensional Brownian motion.



Application to estimation of the supremum

The previous result has the following consequence.

Theorem (lvanovs (18))

Let X be an a-stable Lévy process with o € (0,2]. Then it holds that
A (M —X) = rj‘ﬁeaz((;@+u)
where U ~ U(0,1) is independent of X and F.
Sketch of proof: Note that
AT (X(tryan+ia, = Xe) = Zly7/a,)
Recall that {7/A,} B Y~ U(0,1). Since Z" % X, we conclude that

~

ALY (My = X) 5 max(X;40)
Jje



Computation of the optimal estimator: The Brownian case

The basis of our approach is the computation of the conditional
probability

Hn(X) =P (Y < X| (XiAn)OSfSLl/AnJ) x > 0.
Due to Markov and self-similarity property of X, we easily see that

Hy(x) = H F (A;1/2(x — Xi1), A;WA,."X)
i=1

where F(x,y) =P (X < x| Xy = y) =1 — exp(—2x(x — y)). After
rescaling we deduce the stable convergence

H, (A},/zx + Mn) = H F (x + A YA(M, — Xi-1)a,); A;1/2A7X)
iz

0 . PN -
= G(x) = H F (X + rpea%(XjJrU = Xiru, Xit1+u — Xi+U> :
i€z
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Conditional mean and conditional median

m For the conditional mean T2 := E [ X| (Xia,)i] we obtain the
formula

TO _X = (M, —X)+Ai/2/ooo (1— H, (Ai/ZXJr /V’)) dx

Hence, the probabilistic structure of X only affects the second order
term.

m Similarly, for the conditional median T{") := median [X| (Xia,)i] we
deduce the identity

B B -1
TW — X = (M, — X) + AL/?H, (A},/Z : +Mn) (1/2)

and again the probabilistic structure of X only affects the second
order term.
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Asymptotic theory for the optimal estimators: Brownian case

Theorem (lvanovs & P. (19))

Define the estimates

T = median [X| (Xia,)i], T =E[X] (Xia, )]

(i) It holds that

A2 (Tﬁl) - Y) < max(Xju) + G1(1/2).
JEZ
(ii) Furthermore,
A2 (T,52) —Y) LA max()?,uru) +/ (1 - G(y))dy.
JEZ 0
In particular, we have that
MSE(M,)

—— U ~6.25!
MSE(T?)
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Simulation of asymptotic distributions

15-
1.0-
type
2 D conditional expectation
; L]
] conditional median
°
[ou
0.5
0.0
0 1 2
error



Asymptotic theory: The a-stable case

Theorem (lvanovs & P. (19))

Let X be a a-stable Lévy motion with o € (0,2).
(i) Define TS = median[X| (Xia,):]. Then we obtain
AT (T,Sl) - Y) LN r}jeazx()AQ+U) +G7(1/2).
and the estimator is L'-optimal for o € (1,2).

(ii) Define T? = E[X| (Xia,)i] for a € (1,2). Then it holds that

~

81 (T = %) % max(%0) + | (1 G()dy.
JEZ 0
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Naive estimators for the local time

m In this chapter we assume that X is a Brownian motion. Recall the

definition of local time:
1

1
/(X) = Eg Z ; ]-(—e,e)(Xs - X)dS

where x € R.

m A straightforward estimator of /(x) is given as
[1/An] .
I"(x) = 2, Y g (an(Xia, — x)) = I(x)
i=1

where g is a kernel satisfying fR g(x)dx =1, and a, — oo with
apn\, — 0.

m We will focus on a more general class of statistics:

11/A,)
V(hx)" = a8y > h (a,,(X,-An —x), A;1/2A,."X)
i=1
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Asymptotic theory for V/(h, x)"

Theorem (Borodin (86), Jacod (98))

Assume that a, = A,Tl/z and h satisfies the condition

|h(y,z)| < hi(y) exp(\|z]) for some X > 0 and [, |y|Phi(y)dy < oo for
some p > 3. Then it holds that

V(h,x)" 5 cpl(x)

where ¢, = [ (Jg h(y,2)¢(2)dz) dy and ¢ denotes the density of the
standard normal distribution. Furthermore, we obtain the stable
convergence

ATV (V(hx)" = cpl(x)) & MN(0, vil(x))

for a certain constant vy, > 0.

An interesting example is the number of crossings at level 0 which
corresponds to x = 0 and h(y, z) = 1(_x0)(y(y + 2)).
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L?-optimal estimator of the local time

As we mentioned earlier, the L2—optima| estimator of the local time is
given by
I"(x) = E [I(x)| (Xia,)1<i<|1/a,]]

The following distributional identity connects the law of local times to
the law of the supremum:

(/t(0)7 ‘Xt|)teR = (Yt’yf - Xf)te]R

Applying the Markov and self-similarity property of the Brownian motion
we deduce that

T(x) = V(ho,x)"  with  a,=A;12
and

1—s

ho(y,z) = 2\}’|6‘22/2/0 s73/2¢=/ 25)43();’_ Z|) ds

Here @ denotes the tail distribution of the standard normal law.
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Asymptotic theory for V/(h, x)"

Theorem (lvanovs & P. (19))

We obtain the stable convergence
ATV (V (o, x)" — 1(x)) & MN(0, vi/(x))

We conjecture that this result can be extended to continuous stochastic
differential equations.
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Occupation time measure

m In this part we consider a Brownian motion X. The object of interest
is the occupation time measure

1
L(X) = / 1(X7OO)(Xs)dS
Jo
which turns out to be easier to treat than the previous two cases.

m We will again compute the conditional mean estimator
L"(x) == E [L(x)| (Xia1<i<(1/a,]

Define Li_;(x) = fé.é"lm” 1(x,00)(Xs)ds and observe the identity
E [L::—l(x)|X(i71)A,,» A;1/2A7X}
1 —
= An/ cbt(lft) (A;1/2(X = X(ifl)An = tAFX)) dt
0

where ®, is the tail distribution of A(0, t).

20



Computation of L"(x)

Using again the Markov property of the Brownian motion we obtain the
formula
[1/A,] '
L"(x)= > E[L_ ()| Xia)i<i<i1/a,]
i=1
[1/An]
=B, Y (A7 = Xgya,). B;2A71X)
i=1
with

1
f(y7Z) = / ¢t(1,t) (y = tZ) dt
0

21



Asymptotic theory for L"(x)

Theorem (lvanovs & P. (19))

We obtain the stable convergence

A3/ <L"(x) — /0 1 1(X7OO)(XS)ds) % MN(0, vel(x))

where v¢ > 0 is a certain constant.

The rate optimality of the rate A,T3/4 has been shown in Ngo & Ogawa
(11) in the setting of continuous diffusion models.



Thank you very much for your attention!
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