Optimal estimation of certain random quantities

Mark Podolskij

Risk and Statistics, Ulm

joint work with J. Ivanovs

Aarhus University, Denmark

Topic of the talk

Let $(X_t)_{t \in [0,1]}$ be a stochastic process (Brownian motion, Lévy process, SDE etc.). Given the observations

 $X_0, X_{\Delta_n}, X_{2\Delta_n}, \dots, X_{\lfloor 1/\Delta_n \rfloor \Delta_n}$ with $\Delta_n o 0$

and the **random** parameter of interest Q, what is the **optimal** estimator of Q?

Low frequency data

Observed data $X_1, X_2, ..., X_n$ i.i.d. $\sim F$

Asymptotic knowledge

distribution function F

Identifiable objects

functionals of F

High frequency data

Observed data $X_0(\omega), X_{\Delta_n}(\omega), ..., X_{\lfloor 1/\Delta_n \rfloor \Delta_n}(\omega)$

Asymptotic knowledge $(X_t(\omega))_{t\in[0,1]}$

Identifiable objects functionals of $(X_t(\omega))_{t \in [0,1]}$

- In the classical test theory the model parameters are deterministic objects. There exist numerous approaches to access the optimality of estimators: Cramer-Rao bounds, maximum likelihood theory, minimax approach, Le Cam theory, etc.
- However, in the high frequency setting the objects of interests are often random. Examples include quadratic variation, realised jumps, supremum/infimum of a process, local times, occupation time measures etc.
- In this framework very little is known about how to construct optimal estimates.

Example: Estimation of the quadratic variation

Let X be a continuous semimartingale of the form

$$X_t = X_0 + \int_0^t a_s ds + \int_0^t \sigma_s dW_s \qquad t \ge 0$$

where *a* and σ are stochastic processes, and *W* is a Brownian motion. An important result in the theory of high frequency data is the following theorem.

Theorem (Jacod(94))
It holds that

$$\Delta_n^{-1/2} \left(\sum_{i=1}^{\lfloor 1/\Delta_n \rfloor} (X_{i\Delta_n} - X_{(i-1)\Delta_n})^2 - \int_0^1 \sigma_s^2 ds \right) \xrightarrow{d_{st}} \mathcal{MN} \left(0, 2 \int_0^1 \sigma_s^4 ds \right)$$

Recently, Clement, Delattre & Gloter (13) have proved that the above estimator is **asymptotically efficient** applying an infinite dimensional LAMN property.

Introduction

The results of Clement, Delattre & Gloter (13) only cover estimation problems for volatility functionals. In this talk we will rather focus on the following random objects:

$$\overline{X} := \sup_{s \in [0,1]} X_s$$
$$l(x) := \lim_{\epsilon \downarrow 0} \frac{1}{2\epsilon} \int_0^1 \mathbb{1}_{(-\epsilon,\epsilon)} (X_s - x) ds$$
$$L(x) := \int_0^1 \mathbb{1}_{(x,\infty)} (X_s) ds$$

which is the supremum, local time and occupation time measure of the process X, respectively.

• We are interested in **optimal estimation** of these objects given high frequency data $(X_{i\Delta_n})_{0 \le i \le \lfloor 1/\Delta_n \rfloor}$.

We will see that many naive estimators are rate optimal, but not efficient! In fact, efficient estimators are easy to introduce.

Let $Q = \Phi((X_s)_{s \in [0,1]})$ be a random variable of interest. An optimal estimator of Q is given as

- (i) in L^2 -sense: $\mathbb{E}[Q|(X_{i\Delta_n})_{0 \le i \le \lfloor 1/\Delta_n \rfloor}]$
- (ii) in L^1 -sense: median $[Q|(X_{i\Delta_n})_{0 \le i \le \lfloor 1/\Delta_n \rfloor}]$

We will investigate the asymptotic theory for these type of estimates in the setting of supremum, local time and occupation time measure of the process X, where X is a Brownian motion, stable Lévy process or a continuous diffusion process.

 It is rather simple to propose the following estimate for the supremum

$$M_n := \max_{i=1,\ldots,\lfloor 1/\Delta_n\rfloor} X_{i\Delta_n} \xrightarrow{\mathbb{P}} \overline{X}$$

where the consistency holds for all Lévy processes X.

- The asymptotic theory for the maximum has been studied in several papers including Asmussen, Glynn & Pitman (95) (Brownian motion) and Ivanovs (18) (general Lévy processes).
- Since *M_n* < *X*, the estimator *M_n* is downward biased and there were several attempts to correct the bias.

The following result from the theory of Lévy processes will be extremely useful for our asymptotic theory.

Theorem (Ivanovs (18))

Let X be an α -stable Lévy process with $\alpha \in (0, 2]$. Denote by τ the time of the supremum of X on the interval [0, 1]. Then we obtain the functional stable convergence

$$(Z_t^n)_{t\in\mathbb{R}} := \left(\Delta_n^{-1/\alpha} \left(X_{\tau+t\Delta_n} - X_{\tau}\right)\right)_{t\in\mathbb{R}} \stackrel{d_{st}}{\to} \left(\widehat{X}_t\right)_{t\in\mathbb{R}}$$

where \hat{X} is the so called **Lévy process conditioned to stay negative**, which is independent of \mathcal{F} . When X is a Brownian motion, we deduce the identity

$$\widehat{X}_t = -\|B_t\|$$

where B is a 3-dimensional Brownian motion.

Application to estimation of the supremum

The previous result has the following consequence.

Theorem (Ivanovs (18))

Let X be an α -stable Lévy process with $\alpha \in (0, 2]$. Then it holds that

$$\Delta_n^{-1/\alpha}\left(M_n-\overline{X}\right)\stackrel{d}{
ightarrow}\max_{j\in\mathbb{Z}}(\widehat{X}_{j+U})$$

where $U \sim \mathcal{U}(0,1)$ is independent of \widehat{X} and \mathcal{F} .

Sketch of proof: Note that

$$\Delta_n^{-1/\alpha} \left(X_{\left(\left\lceil \tau/\Delta_n \right\rceil + i \right) \Delta_n} - X_{\tau} \right) = Z_{i + \left\{ \tau/\Delta_n \right\}}^n$$

Recall that $\{\tau/\Delta_n\} \xrightarrow{d_{st}} U \sim \mathcal{U}(0,1)$. Since $Z^n \xrightarrow{d_{st}} \widehat{X}$, we conclude that

$$\Delta_n^{-1/\alpha} \left(M_n - \overline{X} \right) \stackrel{d}{\to} \max_{j \in \mathbb{Z}} (\widehat{X}_{j+U})$$

Computation of the optimal estimator: The Brownian case

The basis of our approach is the computation of the conditional probability

$$H_n(x) := \mathbb{P}\left(\overline{X} \leq x \mid (X_{i\Delta_n})_{0 \leq i \leq \lfloor 1/\Delta_n \rfloor}\right) \qquad x > 0.$$

Due to Markov and self-similarity property of X, we easily see that

$$H_n(x) = \prod_{i=1}^n F\left(\Delta_n^{-1/2}(x - X_{\frac{i-1}{n}}), \Delta_n^{-1/2}\Delta_i^n X\right)$$

where $F(x, y) = \mathbb{P}(\overline{X} \le x | X_1 = y) = 1 - \exp(-2x(x - y))$. After rescaling we deduce the stable convergence

$$H_n\left(\Delta_n^{1/2}x+M_n\right)=\prod_{i\in\mathbb{Z}}F\left(x+\Delta_n^{-1/2}(M_n-X_{(i-1)\Delta_n}),\Delta_n^{-1/2}\Delta_i^nX\right)$$

$$\stackrel{d_{\mathrm{st}}}{\to} G(x) := \prod_{i \in \mathbb{Z}} F\left(x + \max_{j \in \mathbb{Z}} \widehat{X}_{j+U} - \widehat{X}_{i+U}, \widehat{X}_{i+1+U} - \widehat{X}_{i+U} \right).$$

■ For the conditional mean T⁽²⁾_n := ℝ [X | (X_{i∆n})_i] we obtain the formula

$$T_n^{(2)} - \overline{X} = (M_n - \overline{X}) + \Delta_n^{1/2} \int_0^\infty \left(1 - H_n \left(\Delta_n^{1/2} x + M_n \right) \right) dx$$

Hence, the probabilistic structure of \boldsymbol{X} only affects the second order term.

• Similarly, for the conditional median $T_n^{(1)} := \text{median} \left[\overline{X} | (X_{i\Delta_n})_i \right]$ we deduce the identity

$$T_n^{(1)} - \overline{X} = (M_n - \overline{X}) + \Delta_n^{1/2} H_n \left(\Delta_n^{1/2} \cdot + M_n \right)^{-1} (1/2)$$

and again the probabilistic structure of X only affects the second order term.

Theorem (Ivanovs & P. (19))

Define the estimates

$$T_n^{(1)} = median\left[\overline{X}| (X_{i\Delta_n})_i\right], \qquad T_n^{(2)} = \mathbb{E}\left[\overline{X}| (X_{i\Delta_n})_i\right]$$

(i) It holds that

$$\Delta_n^{-1/2}\left(T_n^{(1)}-\overline{X}
ight) \stackrel{d}{
ightarrow} \max_{j\in\mathbb{Z}}(\widehat{X}_{j+U})+G^{-1}(1/2)$$

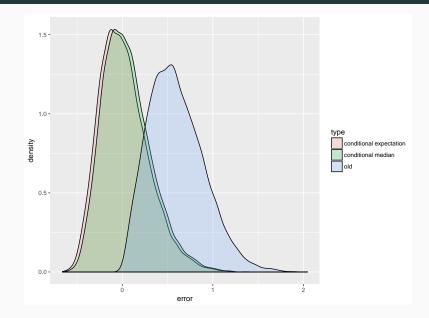
(ii) Furthermore,

$$\Delta_n^{-1/2}\left(T_n^{(2)}-\overline{X}
ight) \stackrel{d}{
ightarrow} \max_{j\in\mathbb{Z}}(\widehat{X}_{j+U}) + \int_0^\infty (1-G(y))dy.$$

In particular, we have that

$$\frac{MSE(M_n)}{MSE(T_n^{(2)})} \approx 6.25 !$$

Simulation of asymptotic distributions



Theorem (Ivanovs & P. (19))

Let X be a α -stable Lévy motion with $\alpha \in (0, 2)$.

(i) Define $T_n^{(1)} = median[\overline{X}| (X_{i\Delta_n})_i]$. Then we obtain

$$\Delta_n^{-1/lpha}\left(T_n^{(1)}-\overline{X}
ight)\stackrel{d}{
ightarrow}\max_{j\in\mathbb{Z}}(\widehat{X}_{j+U})+G^{-1}(1/2).$$

and the estimator is L^1 -optimal for $\alpha \in (1, 2)$.

(ii) Define $T_n^{(2)} = \mathbb{E}[\overline{X}| (X_{i\Delta_n})_i]$ for $\alpha \in (1,2)$. Then it holds that

$$\Delta_n^{-1/lpha}\left(T_n^{(2)}-\overline{X}
ight)\stackrel{d}{
ightarrow}\max_{j\in\mathbb{Z}}(\widehat{X}_{j+U})+\int_0^\infty(1-G(y))dy.$$

Naive estimators for the local time

In this chapter we assume that X is a Brownian motion. Recall the definition of local time:

$$I(x) = \lim_{\epsilon \downarrow 0} \frac{1}{2\epsilon} \int_0^1 \mathbb{1}_{(-\epsilon,\epsilon)} (X_s - x) ds$$

where $x \in \mathbb{R}$.

• A straightforward estimator of I(x) is given as

$$l^n(x) := a_n \Delta_n \sum_{i=1}^{\lfloor 1/\Delta_n \rfloor} g\left(a_n(X_{i\Delta_n} - x)\right) \stackrel{\mathbb{P}}{\to} l(x)$$

where g is a kernel satisfying $\int_{\mathbb{R}} g(x) dx = 1$, and $a_n \to \infty$ with $a_n \Delta_n \to 0$.

We will focus on a more general class of statistics:

$$V(h,x)^{n} := a_{n} \Delta_{n} \sum_{i=1}^{\lfloor 1/\Delta_{n} \rfloor} h\left(a_{n}(X_{i\Delta_{n}}-x), \Delta_{n}^{-1/2} \Delta_{i}^{n} X\right)$$

Theorem (Borodin (86), Jacod (98))

Assume that $a_n = \Delta_n^{-1/2}$ and h satisfies the condition $|h(y,z)| \le h_1(y) \exp(\lambda |z|)$ for some $\lambda > 0$ and $\int_{\mathbb{R}} |y|^p h_1(y) dy < \infty$ for some p > 3. Then it holds that

$$V(h,x)^n \stackrel{\mathbb{P}}{\to} c_h l(x)$$

where $c_h = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} h(y, z) \varphi(z) dz \right) dy$ and φ denotes the density of the standard normal distribution. Furthermore, we obtain the stable convergence

$$\Delta_n^{-1/4} \left(V(h, x)^n - c_h I(x) \right) \stackrel{d_{st}}{\to} \mathcal{MN}(0, v_h I(x))$$

for a certain constant $v_h > 0$.

An interesting example is the **number of crossings at level 0** which corresponds to x = 0 and $h(y, z) = 1_{(-\infty,0)}(y(y + z))$.

L²-optimal estimator of the local time

As we mentioned earlier, the L^2 -optimal estimator of the local time is given by

 $\widehat{I}^n(x) = \mathbb{E}\left[I(x)|\ (X_{i\Delta_n})_{1\leq i\leq \lfloor 1/\Delta_n \rfloor}\right]$

The following distributional identity connects the law of local times to the law of the supremum:

$$(I_t(0), |X_t|)_{t \in \mathbb{R}} = (\overline{X}_t, \overline{X}_t - X_t)_{t \in \mathbb{R}}$$

Applying the Markov and self-similarity property of the Brownian motion we deduce that

$$\widehat{l}^n(x) = V(h_0,x)^n$$
 with $a_n = \Delta_n^{-1/2}$

and

$$h_0(y,z) = 2|y|e^{z^2/2} \int_0^1 s^{-3/2} e^{-y^2/(2s)} \overline{\Phi}\left(\frac{|y+z|}{\sqrt{1-s}}\right) ds$$

Here $\overline{\Phi}$ denotes the tail distribution of the standard normal law.

Theorem (Ivanovs & P. (19))

We obtain the stable convergence

$$\Delta_n^{-1/4} \left(V(h_0, x)^n - I(x) \right) \stackrel{d_{st}}{\to} \mathcal{MN}(0, v_{h_0}I(x))$$

We conjecture that this result can be extended to continuous stochastic differential equations.

 In this part we consider a Brownian motion X. The object of interest is the occupation time measure

$$L(x) = \int_0^1 \mathbb{1}_{(x,\infty)}(X_s) ds$$

which turns out to be easier to treat than the previous two cases.

We will again compute the conditional mean estimator

$$L^n(x) := \mathbb{E}\left[L(x) \mid (X_{i\Delta_n})_{1 \le i \le \lfloor 1/\Delta_n \rfloor}\right]$$

Define $L_{i-1}^i(x) = \int_{(i-1)\Delta_n}^{i\Delta_n} 1_{(x,\infty)}(X_s) ds$ and observe the identity

$$\mathbb{E}\left[L_{i-1}^{i}(x)|X_{(i-1)\Delta_{n}},\Delta_{n}^{-1/2}\Delta_{i}^{n}X\right]$$
$$=\Delta_{n}\int_{0}^{1}\overline{\Phi}_{t(1-t)}\left(\Delta_{n}^{-1/2}(x-X_{(i-1)\Delta_{n}}-t\Delta_{i}^{n}X)\right)dt$$

where $\overline{\Phi}_t$ is the tail distribution of $\mathcal{N}(0, t)$.

Using again the Markov property of the Brownian motion we obtain the formula

$$\begin{split} \mathcal{L}^n(x) &= \sum_{i=1}^{\lfloor 1/\Delta_n \rfloor} \mathbb{E} \left[\mathcal{L}_{i-1}^i(x) | \ (X_{i\Delta_n})_{1 \le i \le \lfloor 1/\Delta_n \rfloor} \right] \\ &= \Delta_n \sum_{i=1}^{\lfloor 1/\Delta_n \rfloor} f \left(\Delta_n^{-1/2} (x - X_{(i-1)\Delta_n}), \Delta_n^{-1/2} \Delta_i^n X \right) \end{split}$$

with

$$f(y,z) = \int_0^1 \overline{\Phi}_{t(1-t)} (y - tz) dt$$

Theorem (Ivanovs & P. (19))

We obtain the stable convergence

$$\Delta_n^{-3/4}\left(L^n(x)-\int_0^1 \mathbb{1}_{(x,\infty)}(X_s)ds\right) \xrightarrow{d_{st}} \mathcal{MN}(0, v_f I(x))$$

where $v_f > 0$ is a certain constant.

The rate optimality of the rate $\Delta_n^{-3/4}$ has been shown in Ngo & Ogawa (11) in the setting of continuous diffusion models.

Thank you very much for your attention!