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Typhoon Jebi causes record storm surge of b . A

over 3 meters in Osaka
: ) \\\\\‘\%\i\\mb

September 5. 2018 (Mainichi Japan) u Japanese v

A storm surge caused by Typhoon Jebi floods over a wharf as containers are washed out to sea at Rokko Island in Kobe's
Higashinada Ward, in western Japan, on Sept. 4, 2018. (Mainichi)

Powerful Typhoon Jebi triggered a historic storm surge of 3.29 meters in Osaka

Prefecture in western Japan on Sept. 4, surpassing the pre high of 2.93 meters =
amaged tanker is seen after collidi : $ Kansai International Airport to mainland Osaka

recorded in 1961 due to Typhoon Nancy, which Killed 194 people. Prefecture due to strong winds from Typhoon Jebi on Sept. 4, 2018. (Mainichi)
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T. Yasuda, T. Arikawa, T. Kataoka, S. Mkajo, K. S'uzuki,,
ka: 2018 Typhoon Jebi Post-Event"\S;

n the Kansai Region, Japan. Coastal Engineer
Image Landsat / Copernicus ¢
Data SIO. NOAA. U.S: Navy. NGA. GEBCO

—QO—1Jebi (2018) @—Nancy(l‘)(wl) —/\—Jane ( ) —¥—Muroto (1934)

e 1. Most notable storm tracks to affect Osaka Bay area. Best track data for Jebi and Nanc
Japan Meteorological Agency (JMA) [1,2], while Jane and Muroto’s are from NOAA's IBT
ase [3]. Note that there is no pressure information for Muroto’s track data.
Field Survey of 2018 Typhoon Jebi in Japan: Lessons for Disaster
Risk Management, by Takabatake,T. et al., Geoscience, 2018.

ternational Airport to mainland Osaka
1)
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This year 2019, September 9th Tyhoon no.15 Faxai behaved violently, ...
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Chiba blackouts might last another two weeks, Tepco unit says

3530
cHiBA - Tepco Power Grid Inc. said Friday that the blackouts in Chiba "

Prefecture caused by Typhoon Faxai could last another two weeks, leaving SEP13, 20
residents and a local mayor debilitated and frustrated. ARTICLE HISTORY

& PRINT 2 SHARE
The new timetable delivers another blow to residents deprived of air
conditioners near the end of another sweltering summer. A third fatal case of
suspected heat stroke was reported in the area on Friday.

PHOTOS

. CLICK TO ENLARGE
35N

As of 7 p.m. Friday, some 185,000 households were still without electricity,
down from the peak of 935,000 logged on Monday and 280,000 late Thursday,
according to Tokyo Electric officials.




Dependency of Extremes

When spatially near communities are attacked at the same time,
disaster will expand more.

Support, Back-up & Recovery will become more difficult than ...
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Extremes by POT requires a threshold.
(Peaks Over Threshold)

Thresh. Choice by the conventional method
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Integrated Research Program
for Advancing Climate Models

[
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This program aims to further develop climate models and to reflect the knowledge gained through them in
the adaptation plans of actual regions in coordination with socioeconomic scenarios.

Area Theme A Area Theme B Area Theme C Area Theme D

Prediction and Projection of
Large-Scale Climate Sophisticated Earth system
Changes Based on model for evaluating

Integrated Climate Change Integrated Hazard

Advanced Model emission reductions needed PeSgeEtion Prediction

Development

RO WORE




How will global warming affect typhoons, floods, sediment disasters, and river flows? Theme D aims to
project how devastating these disasters will change over the next 100 years and scientifically reveals
the relationship between global warming and disasters. Mainly the following two analysis methods will

be adopted: the first one is to quantify the probability of climate change impact on typhoons and
flooding etc. and the second one is to assess the impact of climate change with the worst case
scenarios that consider extraordinary situations such as super typhoons. In recent years, Japan as well

Integrated Hazard Prediction

as other countries have been affected by frequent and unprecedented disasters. Potential damages by

such record-breaking disasters enhanced by climate change should be assessed from scientific and

engineering perspectives. Moreover, we hope to provide basic information on appropriate measures

needed in the future by understanding also the economic impacts.
Subject

(i) Long-term assessment of intensity and
frequency of extreme hazards

(ii) Seamless hazard prediction until the end of the
21st century

(iii) Hazard analysis of past disasters and
assessment of climate change factors

(iv) Hazard assessment in Asian and Pacific
countries and international cooperation

(v) No-regret adaptation strategies with
consideration for various changes

(vi) Development of bias correction methods and
extreme values assessment technology

Representative

Nobuhito Mori
Disaster Prevention Research Institute, Kyoto
University, Associate Professor

Kenji Tanaka
Disaster Prevention Research Institute, Kyoto
University, Associate Professor

Tetsuya Takemi
Disaster Prevention Research Institute, Kyoto
University, Associate Professor

Yasuto Tachikawa
Graduate School of Engineering, Kyoto
University, Professor

Hirokazu Tatano
Disaster Prevention Research Institute, Kyoto
University, Professor

Toshikazu Kitano

Department of Civil Engineering, Nagoya

Institute of Technology, Professor

disasters and elucidating t
with no-regret adaptation strategies.

Projecting the impact of global warming on

trend in future

Area Representative : Elichi Nakakita (Professor, Disaster Prevention Research Institute, Kyoto University)

To evaluate the uncertainty requires the extreme value theory

and the statistical techniques to the applications.

Area Theme D

Integrated Hazard
Prediction

READ MORE



http://www.miroc-gcm.jp/~pub/d4PDF/index_en.html
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database for Policy Decision making for Future climate change (d4PDF)

English oW SE Publications
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Planning for adaptation to global warming will be based on impact assessments of disasters, agriculture, water resources,
ecosystems, human health, and so on, in each region. For each impact assessment, detailed projections of extreme events such as
heavy rainfall, heat wave, drought, and strong wind are required at the regional scale as well as projections of climatological
temperature and precipitation. An unprecedentedly large ensemble of climate simulations with a 60 km atmospheric general
circulation model and dynamical downscaling with a 20 km regional climate model have been performed to obtain probabilistic
future projections of low-frequency local-scale events. The simulation outputs are open to the public as a database called
“Database for Policy Decision-Making for Future Climate Change” (d4PDF), which is intended to be utilized for impact assessment
studies and adaptation planning for global warming.



The importance of bivariate extreme statistics:

Overlap of several hazards: storm surge, high waves, river runoff and
flooding etc. accumulates risk and its prediction will become troublesome.

Simultaneous occurrences (or joint occurrences) at several sites (at least
two important sites) also aggregate the loss by damage, and they will
enlarge the loss more than the proportional one.

The importance of statistical distribution of bivariate extremes is now
increasing in disaster risk reduction plan, but the bivariate GP distribution
has been not yet developed enough for those applications.



One of the reasons is the unclearness of mathematical understanding of
the multivariate (bivariate) extremes for the practical engineers.

Here let us give a glance

Me(ya Nua,yp ANup) — A(ya,
to the probability distribution:  Fu = (ya A ua, yp A up) Wa,yp)

)\* (uA7 UB)

4w~ case 1

2 A
SIS Dy 22 _ _ *(yA7 yB)
‘:‘::‘:t“‘ “&““‘:‘:‘é = Fu(:gA; yB) =1 — Fu(yA’ yB) —

e &‘:‘:‘: Z )\*(’LLA, UB)

case 2

Ag(up) — AB(yB) — {AaB(Ya,uB) — Aap(ya,yn)}

Fu(yAayB) — \ (UA uB)

where we make the function A, endlessly, ...
One of the simplest ones is:

A(yasys) = {A " wa) + A" ws)}



And therefore, though GP distribution requires a suitable threshold to
extract the extremes of hazard magnitudes, the methods of threshold
choice have not been enough discussed for bivariate extremes. This
research focuses on the correlation coefficient of occurrence rates,
whose efficiency is examined through the observed data of

wind velocities at two cities.

And the numerous datasets of daily rainfall in d4PDF are also

applied to nonparametric analysis of bivariate extremes to
demonstrate the spacial change of depemdence of the pairwise points
against the distances.
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Fig.1 shows the two types of occurrence numbers for bivariate extremes. When a threshold 2.4 (or #5) 1s given for

each component, we can count the excess number kA (or £B) of extremes YA (or ¥YB) for the threshold, as
n n

ka(ua) = Y 1{Ya(i) > ua}, kp(up) = ) 1{Yp(i) > up}
i=1 i=1 (D)
where 1{condition} stands for 1 or 0 as the condition 1s true or false, respectively, and 7 is an indicator to check all
data whose sample size 1s n. The joint occurrence number kAB is defined as the excess number against both
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Fig.1 Joint occurrence numbers and the inclusive occurrence numbers against two components’ thresholds
(The data of small values are marked not by circles but by dots simply on account of reducing image size)



Counting the excess numbers is another
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kap(ua, up) = ka(ua) + kp(up) — k«(ua, up)

way of evaluating extremes, ...



The jomnt occurrence number ¥AB 1s defined as the excess number against both thresholds (u.4, u8), whose contour
lines are shown as making thresholds of each point in the left figure. The excess numbers are given as the actual
ones in the observation time length (40 years). In order to extrapolate the occurrence number for the outside (white
region 1n that figure), we use the occurrence rate in the mathematical function to fit to the observed data. However
the mathematical theory cannot be build directly for the joint occurrence kAB, and it can be based on the inclusive
occurrence number &* which 1s the excess number against at least either of thresholds of two components, as

described in the mathematical terms:
n

ko(ua, up) = ka(ua) + kp(up) — kap(ua, up) = »_ 1{Ya(i) > ua} v 1{¥p(i) > up}
i=1 (2)
where avb = a for a = b, or avb = b for a < b. The left figure of Fig.1 shows the contour lines of the inclusive

occurrence numbers. One of the important keys to understand the occurrence of bivariate extremes is to know the
theoretical background that these counting numbers are related to the bivariate Poisson distribution.

1) — e A(ua,uB) 0L Ny (A a(ua) — A ap(ua, up)}a=7 {Ap(up) — Aap(ua, up)}e—
p(ka, kp) = e Z m 2 1 2 |
= 7 (ka —3)! (kB —J)! 3)
where aAb = b for a 2 b, or avb = a for a < b. The mean occurrences A4, AB, A4B and A* are the expected values of
the corresponding counting numbers k4, kB, k4B and k*. The case of no occurrence for both components kA= 0 and
kB = 0 gives the cumulative distribution function of the bivariate component-wise maxima

F(z,y) = e 209 )
which has a great history of many amounts of researches illustrated by the pioneering works by Sibuya (1960) and
Pickands (1981), etc. One of the most notable findings based on the measure theory for the multivariate extreme
value theory told us that the exponent of the cumulative distribution function F of component-wise maxima,
equivalently that 1s the inclusive occurrence rate A* 1s not given as an unique, nor several models, but infinite
number of functions which are described in the general form

M) = [ eAa@) VAL - ©)Ap()} dH ) “

by employing the so-called spectral function A, which is a kind of cumulative distribution so that the total amount 1s
the number of dimension in general sense, that 1s, H(1) = 2 in the bivariate case. Based on this fact, Beirlant et al.




For one-component, it will be easier to understand the relation between the
Poisson disitribution and the extreme variable.

The uni-variate Poisson distribution is described in terms of the mean rate
as follows: N
flh) = Spe™

The case of no occurrence gives the cumulative distribution (=
non-exceedance probability) function:

flk=0) = e~ M Gi(y) = e_Al}M:/\l(y) — e~ MW

_ —1/¢
where the rate functionis setto )\ (y) = (1 yed M )
01

then Eq.(*) corresponds to a GEV (Generalized Extreme Value) distribution.

Gi(y) = eXp{— <1+€y;1m )1/5}




Key 2’: A Poisson distribution into an extreme value d.

* Univariate case:

° _ —1/¢,
p(ky = 0) = M@)F 3@ _ eXp{ (1 et ux,l) }

O' Oz,1

= Fi(x)
No occurrence prob.
= cumulative prob. distribution of max.

* Bivariate case:
p(ka _ O, ky,l _ O) _ e—)\*,1(x,y) — F1(:L‘,y)

Therefore the inclusive occurrence rate becomes
Important in the theoretical treatment.
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pseudo polar coordinates
zy = 1t / { }dv(%a%)
yp = r(1—1)
/ { t }dV('r t)
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Rank for Wind Speed in Hanover

Essential for bivariate extremes: Homogeneity (of order - 1)
whose property shows the proportionality & similarity of the occurrence rate.

And it will be checked by using the sample data.
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where we know ranks in decreasing order indicate the occurrence numbers.



Correlation coef. of occurrence numbers is given by Py = X,
which is based on the bivariate Poisson distribution, and it will be
estimated by sample, as X Koy
Pry = ——
J

for the common number of rank j.
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Contingency tables for excess & no excess

Uy \ Uy | Excess No Excess | Total '
Excess 20 25 45 Da_"\(’jmax' ;
No Excess | 19 (667) | (686) Wihe speeds
for 2 years
Total 39 (692) | (731)
Uy \ Uy Excess No Excess Total
Excess Exy ke — kgy k.
No Excess Ky — kay (n—ky —ky +kzy) | (n—Eg)
Total k., (n —ky) (n)
Perfect dependent Independent
Uy \ Uy | Excess No Excess | Total uz \ uy | Excess No Excess | Total
FExcess 39 6 45 Excess 0 45 45
No Excess 0 (686) (686) No Excess | 39 (647) (686)
Total 39 (692) (731) Total 39 (692) (731)
ke = ko V Ky kv = ke + ky

& kgy =0



Conventional method uses the identity equation:

what this equation stands for?

H(1) =2

-> The occurrrence numbers are the same in the following two regions.
(The red line is a contourline of 1/rank_A + 1/rank_B.)
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However this method will be overestimated,
as seen in this example where

we can take r= 1281,

while the C.C. is not stable.

Actually the stable data is limited around 100.
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Aolz,y) = E(k) = EY X, > 2} vI{Y; >y}

= ... omitting the details of derivation - - -
1
_ / {wAa(@)}V{(1 - w)Ap(y)} dH (w)
0

The important thing is that demension reduction is possible by transforming
the occurrence rate M. (z,y) into the Pickands dependence function A(t).
(Bivariate extreme distribution is so simple that there are included the wide
range of the mathematical functions for the distributions.)

A(t) = /O (w1l =B}V {(1 —w)t) dH (w)

where we define a transverse variabele

A5 (Y) _ 1/Aa(y)
Aa(z)+As(y)  1/Aa(z) +1/As(y)
and the radius (lengthwise) variable

—

. | r = 1/xa(x) +1/AB(Y)
It is the pseudo polar coordinates.



Pickands dependence function shows well the dependency properties.
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We analyze the spatial dependence of daily precipitations by using d4PDF.

Map of cells in Tonegawa (in beige) and Arakawa (in light green) basins in Kanto

plain 1s shown below.

41 42

36 |37 |38 | 39 | 40

29 | 30 31 32 | 33 34 35
22 |23 | 24 | 25 (éé:i27 28
13114 115|116 |17 | 18 | 19| 20 21

-
>|6]7]|s (};}(EL/D10 11 [ 12




Correlaion

Correlaion coeff.
0.0 01 02 03

Return Period [Year] at Tsukuba
Return Period [Year] at Kamagatani

T
1000

200
Return Period [Year] at Kasukabe

04 05

T T T T T f

5 10 20 50 100 200
Rank

500 1000

T
1000
Return Period [Year] at Kasukabe

1
3000

Return Period [Year] at Sano

Correlaion

0.4

@ _|

o

o

o

S

o ! !

° 4 T T f T f T T T
5 10 20 50 100 200 500 1000

Rank

8 (l!: PP @

0 12 1

T 1
1000 3000

Return Period [Year] at Kasukabe

10 30 60 200

<- Cor.
Coef.

<- Pickands
Dependent
Function

<- Transverse
Density

<- Contours
of Retrun
Period of
joint
occurrences



Conclusions

What we show here today is actually not new in extreme value theory.

But these facts have not been well known for hydrology and water-lerated
engineerings (Coastal and Hydraulic Eng.).

Parametric approach as well as non-parametric approach should be applied,
because the wide range of parametric functions is possible to describe

the joint (or inclusive) occurrence rate.

200

It is so important to examine
the joint occurrence rates
(and the return period)

for the accumulative risk.
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For the future works, the bivariate
extreme analysis should be extended to
the spatial modeling of the whole river basin
and the comprehensive coastal zone.
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BIVARIATE EXTREME STATISTICS, 1
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0. Introduction and Summary

The largest and the smallest value in a sample, and other statistics
related to them are generally named extreme statistics. Their sampling
distributions, especially the limit distributions, have been studied by
many authors, and principal results are summarized in the recent Gum-
bel’s book [1].

The author extends here the notion of extreme statistics into bivariate
distributions and considers the joint distributions of maxima of compo-

nents in sample vectors. This Part I treats asymptotic properties of
the joint distributions.

In the univariate case the limit distributions of the sample maximum
were limited to only three types. In the bivariate case, however, types
of the limit joint distributions are various: Theorem 5 in Chapter 2 shows
that infinitely many types of limit distributions may exist. For a wide
class of distributions, two maxima are asymptotically independent or
degenerate on a curve. Theorems 2 and 4 give the attraction domains
for such limits. In bivariate normal case, two maxima are asympto-
tically independent unless the correlation coefficient is equal to one.

Throughout these arguments we remark only the dependence between
marginal distributions, whose behaviours are well established. For this
purpose a fundamental notion of ‘‘dependence function’ is introduced
and discussed in Section 1.

A practical application will be considered in the subsequent paper.




