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One of the biggest disasters in Japan, 2018



Field Survey of 2018 Typhoon Jebi in Japan: Lessons for Disaster 

Risk Management, by Takabatake,T. et al., Geoscience, 2018.

Mori, N. & T. Yasuda, T. Arikawa, T. Kataoka, S. Nakajo, K. Suzuki, 

Y. Yamanaka: 2018 Typhoon Jebi Post-Event Survey of Coastal 

Damage in the Kansai Region, Japan. Coastal Engineering Journal





台風２１号による高潮は，第二室戸台風（昭和３６年）を越える規模（ほぼ同程度）
淀川での高潮の河川遡上，高潮による水位が堤防高を超過．大阪府の３大水門の閉鎖による浸水回避．
淀川本川の３橋の防潮鉄扉（陸閘）の閉鎖（１９７９年以来）



1959, September 26th

Isewan Typhoon

* Large area innandated

* Yodo River also damaged 

* Ship landed (like 2011)





This year 2019, September 9th Tyhoon no.15 Faxai behaved violently, ...
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Dependency of Extremes
When spatially near communities are attacked at the same time, 

disaster will expand more.

Support, Back-up & Recovery will become more difficult than ...
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By formula
By prod.−mom.
By EM algo.

r = 1281
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Thresh.  Choice by the conventional method

Thresh. Choice by the method of 

              correlation coefficient 
                          of occurrence numbers

Extremes by POT requires a threshold.

         (Peaks Over Threshold)

Thresh. Choice should 

be determined by the 

correlations, because 

the dependence problem

can be solved by the 

properties of dependence. 

          It is a logic.



http://www.jamstec.go.jp/tougou/program/index.html



To evaluate the uncertainty requires the extreme value theory

and the statistical techniques to the applications. 



http://www.miroc-gcm.jp/~pub/d4PDF/index_en.html



The importance of bivariate extreme statistics:

Overlap of several hazards: storm surge, high waves, river runoff and 
ÁoodLQJ HWF. accumulates risk and its prediction will become troublesome. 

Simultaneous occurrences (or joint occurrences) at several sites (at least 
two important sites) also aggregate the loss by damage, and they will 
enlarge the loss more than the proportional one.

The importance of statistical distribution of bivariate extremes is now 
increasing in disaster risk reduction plan, but the bivariate GP distribution 
has been not yet developed enough for those applications. 



One of the reasons is the unclearness of mathematical understanding of 
the multivariate (bivariate) extremes for the practical engineers. 

Fu =
λ∗(yA ∧ uA, yB ∧ uB)− λ∗(yA, yB)

λ∗(uA, uB)

D1

(uA, uB)

(yA, yB)

(uA, uB)

(yA, yB)

D2

F̄u(yA, yB) = 1 − Fu(yA, yB) =
λ∗(yA, yB)

λ∗(uA, uB)

case 1

case 2

Here let us give a glance 
to the probability distribution:

Fu(yA, yB) =
λB(uB)− λB(yB) − {λAB(yA, uB)− λAB(yA, yB)}

λ∗(uA, uB)

where we make the function λ∗ endlessly, ...
One of the simplest ones is:

λ∗(yA, yB) =
{
λ 1/α

A (yA) + λ 1/α
B (yB)

}α



And therefore, though GP distribution requires a suitable threshold to 
extract the extremes of hazard magnitudes, the methods of threshold 
choice have not been enough discussed for bivariate extremes. This 
research focuses on the ForrHODWLoQ FoHIÀFLHQW oI oFFXrrHQFH rDWHV, 
ZKoVH HIÀFLHQFy LV H[DmLQHd WKroXJK WKH oEVHrYHd dDWD oI 
wind velocities at two cities.
And the numerous datasets of daily rainfall in d4PDF are also 
applied to nonparametric analysis of bivariate extremes to 
demonstrate the spacial change of depemdence of the pairwise points 
against the distances.

dependent <---           --->  independent 

Kasukabe to     Tsukuba,      Kamagatani,       Sano
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Counting the excess numbers is another way of evaluating extremes, ...

kA(uA) =
n∑

i=1

1{YA(i) > uA}, kB(uB) =
n∑

i=1

1{YB(i) > uB}

kA = 4 kB = 3

uB
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k∗ = 5 kAB = 2

(uA, uB)

uB

uA

Inclusive occurrence number   Joint occurrence number 

k∗(uA, uB) =
n∑

i=1

1{YA(i) > uA} ∨ 1{YB(i) > uB} kAB(uA, uB) = kA(uA) + kB(uB) − k∗(uA, uB)





For one-component, it will be easier to understand the relation between the 
Poisson disitribution and the extreme variable.
The uni-variate Poisson distribution is described in terms of  the mean rate 
as follows:

The case of no occurrence    gives the cumulative distribution (=
non-exceedance probability) function:

where the rate function is set to

then Eq.(*) corresponds to a GEV (Generalized Extreme Value) distribution.

f(k) =
λk
1

k!
e−λ1

f(k = 0) = e−λ1 →

λ1(y) =

(
1 + ξ

y − µ1

σ1

)−1/ξ

G1(y) = exp

{
−

(
1 + ξ

y − µ1

σ1

)−1/ξ
}

G1(y) = e−λ1
∣∣
λ1 =λ1(y)

= e−λ1(y)
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Essential for bivariate extremes:  Homogeneity (of order - 1)
whose property shows the proportionality & similarity of the occurrence rate.
And it will be checked by using the sample data.
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where we know ranks in decreasing order indicate the occurrence numbers.



Correlation coef. of occurrence numbers is given by
which is based on the bivariate Poisson distribution, and it will be 
estimated by sample, as 

for the common number of rank j.
cf. c.c. by prod. mom. est.

ρxy =
λxy√
λx λy

ρ̃xy =

∑
(kx − k̄x)(ky − k̄y)√∑

(kx − k̄x)2
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(ky − k̄y)2
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Conventional method uses the identity equation: 
what this equation stands for?   
-> The occurrrence numbers are the same in the following two regions.
(The red line is a contourline of 1/rank_A + 1/rank_B.)

H(1) = 2

However this method will be overestimated, 
as seen in this example where
we can take r= 1281, 
while the C.C. is not stable.
Actually the stable data is limited around 100.
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The important thing is that demension reduction is possible by transforming 
the occurrence rate λ∗(x, y) into the Pickands dependence function A(t).
(Bivariate extreme distribution is so simple that there are included the wide 
range of the mathematical functions for the distributions.)

λ∗(x, y) = E(k∗) = E
∑

i

1{Xi > x} ∨ 1{Yi > y}

= · · · omitting the details of derivation · · ·

=

∫ 1

0
{ωλA(x)} ∨ {(1− ω)λB(y)} dH(ω)

A(t) =

∫ 1

0
{ω(1− t)} ∨ {(1− ω)t} dH(ω)

t =
λB(y)

λA(x) + λB(y)
=

1/λA(y)

1/λA(x) + 1/λB(y)

ZKHrH ZH dHÀQH D WrDQVYHrVH YDrLDEHOH

and the radius (lengthwise) variable

It is the pseudo polar coordinates.
r = 1/λA(x) + 1/λB(y)



t

A(
t)

0.0 0.5 1.0

0.
5

1.
0 independent

pe
rfe

ct 
de

pe
nd

en
tperfect dependent

A(t) ≡ 1

A(
t)
=
t

A(t) =
1−

t

t

De
ns

ity

0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

0.005 < r < 0.02

Sample Pareto Margin for Hamburg

Sa
m

ple
 P

ar
et

o 
M

ar
gin

 fo
r H

an
ov

er

.0002 .001 .01 .1 1

.0
00

2
.0

01
.0

1
.1

1

r=0.02
r=0.01
r=0.005

Pickands dependence function shows well the dependency properties. 

ti = pi/ri

ri = pi + qi

pi (= 1/rankA)

qi (= 1/rankB)

pseudo-polar coordinate
Ãi =

k∗
rankA + rankB



We analyze the spatial dependence of daily precipitations by using d4PDF.
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Conclusions
What we show here today is actually not new in extreme value theory.
But these facts have not been well known for hydrology and water-lerated 
engineerings (Coastal and Hydraulic Eng.).
Parametric approach as well as non-parametric approach should be applied,
because the wide range of parametric functions is possible to describe
the joint (or inclusive) occurrence rate.

It is so important to examine 
the joint occurrence rates 
(and the return period)
for the accumulative risk.

For the future works, the bivariate 
extreme analysis should be extended to 
the spatial modeling of the whole river basin 
and the comprehensive coastal zone.
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