
Kernel Recursive ABC: Point Estimation with
Intractable Likelihood

Motonobu Kanagawa

EURECOM, Sophia Antipolis, France
(Previously U. Tübingen)

ISM-UUlm Workshop, October 2019

1 / 44

Contents of This Talk

1. Kernel Recursive ABC: Point Estimation with
Intractable Likelihood (ICML 2018)
T. Kajihara, M. Kanagawa, K. Yamazaki and K. Fukumizu.

2 / 44

Outline

Background: Machine Learning for Computer Simulation

Preliminaries on Kernel Mean Embeddings

Proposed Approach: Kernel Recursive ABC

Prior Misspecification and the Auto-Correction Mechanism

Empirical Comparisons with Competing Methods

Conclusions

3 / 44

Machine Learning for Computer Simulation

Computer simulation has been used to study time-evolving
complex phenomena in various scientific fields.

I Climate science, social science, economics, ecology,
epidemiology, etc. etc...

The power of computer simulation is extrapolation, which
enables

I predictions of quantities/phenomena in the future.
I gaining understanding of the phenomena of interest.

4 / 44

Machine Learning for Computer Simulation

Computer simulation has been used to study time-evolving
complex phenomena in various scientific fields.

I Climate science, social science, economics, ecology,
epidemiology, etc. etc...

The power of computer simulation is extrapolation, which
enables

I predictions of quantities/phenomena in the future.
I gaining understanding of the phenomena of interest.

4 / 44

Machine Learning for Computer Simulation

Component A

Component Z

Observed data

Computer Simulator

Stochastic
errors

Numerical
errors

Model description

θ1, …, θd

2. Calibration

1. Simulation

Simulation outputs Total numerical
errors

Parameters

3. Interpretation

Numerical
errors

Computational
costs

5 / 44

Example: Tsunami Simulation [Saito, 2019, p.211]

6 / 44

Example: Pedestrian Flow Simulation
[Yamashita et al., 2010]

Multi-agent systems for pedestrians walking in Ginza.

Figure 1: Points representing individual pedestrians. (red = slow)
7 / 44

Calibration: Parameter Estimation and Model Selection

Component A

Component Z

Observed data

Computer Simulator

Stochastic
errors

Numerical
errors

Model description

θ1, …, θd

2. Calibration

1. Simulation

Simulation outputs Total numerical
errors

Parameters

3. Interpretation

Numerical
errors

Computational
costs

8 / 44

Calibration: Parameter Estimation and Model Selection

To obtain a “good” simulator, the following two tasks
regarding calibration to observed data must be addressed.

1. Parameter estimation
I Estimate parameters θ of a simulation model p(y∗|θ).

(y∗ denotes observed data.)
2. Model selection

I Select one model from multiple (K ≥ 2) candidate models:

p1(y∗|θ1), p2(y∗|θ2), . . . , pK (y∗|θK)

In the language of statistics, computer simulation can be
defined as sampling from a probabilistic model p(y |θ).

9 / 44

Calibration: Parameter Estimation and Model Selection

To obtain a “good” simulator, the following two tasks
regarding calibration to observed data must be addressed.

1. Parameter estimation
I Estimate parameters θ of a simulation model p(y∗|θ).

(y∗ denotes observed data.)

2. Model selection
I Select one model from multiple (K ≥ 2) candidate models:

p1(y∗|θ1), p2(y∗|θ2), . . . , pK (y∗|θK)

In the language of statistics, computer simulation can be
defined as sampling from a probabilistic model p(y |θ).

9 / 44

Calibration: Parameter Estimation and Model Selection

To obtain a “good” simulator, the following two tasks
regarding calibration to observed data must be addressed.

1. Parameter estimation
I Estimate parameters θ of a simulation model p(y∗|θ).

(y∗ denotes observed data.)
2. Model selection

I Select one model from multiple (K ≥ 2) candidate models:

p1(y∗|θ1), p2(y∗|θ2), . . . , pK (y∗|θK)

In the language of statistics, computer simulation can be
defined as sampling from a probabilistic model p(y |θ).

9 / 44

Calibration: Parameter Estimation and Model Selection

To obtain a “good” simulator, the following two tasks
regarding calibration to observed data must be addressed.

1. Parameter estimation
I Estimate parameters θ of a simulation model p(y∗|θ).

(y∗ denotes observed data.)
2. Model selection

I Select one model from multiple (K ≥ 2) candidate models:

p1(y∗|θ1), p2(y∗|θ2), . . . , pK (y∗|θK)

In the language of statistics, computer simulation can be
defined as sampling from a probabilistic model p(y |θ).

9 / 44

Calibration: Parameter Estimation and Model Selection

These tasks are harder than standard statistical problems,
since the likelihood function

`(θ) := p(y∗|θ)

is not available.

This is because
I The mapping θ → y is usually very complicated. (e.g., it

involves solving differential equations)

Thus one needs to solve these tasks by likelihood-free
inference, making use of sampling/forward simulations.

Approaches to likelihood-free inference include
I Approximate Bayesian Computation (ABC)

[Sisson et al., 2018].
I Bayesian optimization [Gutmann and Corander, 2016].

10 / 44

Calibration: Parameter Estimation and Model Selection

These tasks are harder than standard statistical problems,
since the likelihood function

`(θ) := p(y∗|θ)

is not available. This is because
I The mapping θ → y is usually very complicated. (e.g., it

involves solving differential equations)

Thus one needs to solve these tasks by likelihood-free
inference, making use of sampling/forward simulations.

Approaches to likelihood-free inference include
I Approximate Bayesian Computation (ABC)

[Sisson et al., 2018].
I Bayesian optimization [Gutmann and Corander, 2016].

10 / 44

Calibration: Parameter Estimation and Model Selection

These tasks are harder than standard statistical problems,
since the likelihood function

`(θ) := p(y∗|θ)

is not available. This is because
I The mapping θ → y is usually very complicated. (e.g., it

involves solving differential equations)

Thus one needs to solve these tasks by likelihood-free
inference, making use of sampling/forward simulations.

Approaches to likelihood-free inference include
I Approximate Bayesian Computation (ABC)

[Sisson et al., 2018].
I Bayesian optimization [Gutmann and Corander, 2016].

10 / 44

Calibration: Parameter Estimation and Model Selection

These tasks are harder than standard statistical problems,
since the likelihood function

`(θ) := p(y∗|θ)

is not available. This is because
I The mapping θ → y is usually very complicated. (e.g., it

involves solving differential equations)

Thus one needs to solve these tasks by likelihood-free
inference, making use of sampling/forward simulations.

Approaches to likelihood-free inference include
I Approximate Bayesian Computation (ABC)

[Sisson et al., 2018].
I Bayesian optimization [Gutmann and Corander, 2016].

10 / 44

Approximate Bayesian Computation (ABC)
– Set ε > 0 and J := {}.

– Generate parameter-data pairs from the model:

(θ1, y1), . . . , (θn, yn) ∼ p(y |θ)︸ ︷︷ ︸
simulator

π(θ)︸︷︷︸
prior

, i.i.d.

– For j = 1, . . . , n, set

J ← J ∪ {j} if dist(yi , y∗) ≤ ε,

where y∗ is observed data.
– Monte Carlo approximation of the posterior:

p(θ|y∗) ≈ p̂ε(θ|y∗) :=
1
|J|
∑
j∈J

δθj︸︷︷︸
Dirac at θj

11 / 44

Approximate Bayesian Computation (ABC)
– Set ε > 0 and J := {}.
– Generate parameter-data pairs from the model:

(θ1, y1), . . . , (θn, yn) ∼ p(y |θ)︸ ︷︷ ︸
simulator

π(θ)︸︷︷︸
prior

, i.i.d.

– For j = 1, . . . , n, set

J ← J ∪ {j} if dist(yi , y∗) ≤ ε,

where y∗ is observed data.
– Monte Carlo approximation of the posterior:

p(θ|y∗) ≈ p̂ε(θ|y∗) :=
1
|J|
∑
j∈J

δθj︸︷︷︸
Dirac at θj

11 / 44

Approximate Bayesian Computation (ABC)
– Set ε > 0 and J := {}.
– Generate parameter-data pairs from the model:

(θ1, y1), . . . , (θn, yn) ∼ p(y |θ)︸ ︷︷ ︸
simulator

π(θ)︸︷︷︸
prior

, i.i.d.

– For j = 1, . . . , n, set

J ← J ∪ {j} if dist(yi , y∗) ≤ ε,

where y∗ is observed data.

– Monte Carlo approximation of the posterior:

p(θ|y∗) ≈ p̂ε(θ|y∗) :=
1
|J|
∑
j∈J

δθj︸︷︷︸
Dirac at θj

11 / 44

Approximate Bayesian Computation (ABC)
– Set ε > 0 and J := {}.
– Generate parameter-data pairs from the model:

(θ1, y1), . . . , (θn, yn) ∼ p(y |θ)︸ ︷︷ ︸
simulator

π(θ)︸︷︷︸
prior

, i.i.d.

– For j = 1, . . . , n, set

J ← J ∪ {j} if dist(yi , y∗) ≤ ε,

where y∗ is observed data.
– Monte Carlo approximation of the posterior:

p(θ|y∗) ≈ p̂ε(θ|y∗) :=
1
|J|
∑
j∈J

δθj︸︷︷︸
Dirac at θj

11 / 44

Contributions

We propose a kernel-based method for point estimation of
simulation-based statistical models.

The proposed approach (termed kernel recursive ABC)
I is based on kernel mean embeddings,
I is a combination of kernel ABC and kernel herding, and
I recursively applies Bayes’ rule to the same observed data.

It should be useful when point estimation is more desirable than the
fully Bayesian approach. For instance:

I when your prior distribution π(θ) is not fully reliable,
I when one simulation is computationally very expensive, and
I when your purpose is on predictions based on simulations.

12 / 44

Contributions

We propose a kernel-based method for point estimation of
simulation-based statistical models.

The proposed approach (termed kernel recursive ABC)

I is based on kernel mean embeddings,
I is a combination of kernel ABC and kernel herding, and
I recursively applies Bayes’ rule to the same observed data.

It should be useful when point estimation is more desirable than the
fully Bayesian approach. For instance:

I when your prior distribution π(θ) is not fully reliable,
I when one simulation is computationally very expensive, and
I when your purpose is on predictions based on simulations.

12 / 44

Contributions

We propose a kernel-based method for point estimation of
simulation-based statistical models.

The proposed approach (termed kernel recursive ABC)
I is based on kernel mean embeddings,

I is a combination of kernel ABC and kernel herding, and
I recursively applies Bayes’ rule to the same observed data.

It should be useful when point estimation is more desirable than the
fully Bayesian approach. For instance:

I when your prior distribution π(θ) is not fully reliable,
I when one simulation is computationally very expensive, and
I when your purpose is on predictions based on simulations.

12 / 44

Contributions

We propose a kernel-based method for point estimation of
simulation-based statistical models.

The proposed approach (termed kernel recursive ABC)
I is based on kernel mean embeddings,
I is a combination of kernel ABC and kernel herding, and

I recursively applies Bayes’ rule to the same observed data.

It should be useful when point estimation is more desirable than the
fully Bayesian approach. For instance:

I when your prior distribution π(θ) is not fully reliable,
I when one simulation is computationally very expensive, and
I when your purpose is on predictions based on simulations.

12 / 44

Contributions

We propose a kernel-based method for point estimation of
simulation-based statistical models.

The proposed approach (termed kernel recursive ABC)
I is based on kernel mean embeddings,
I is a combination of kernel ABC and kernel herding, and
I recursively applies Bayes’ rule to the same observed data.

It should be useful when point estimation is more desirable than the
fully Bayesian approach. For instance:

I when your prior distribution π(θ) is not fully reliable,
I when one simulation is computationally very expensive, and
I when your purpose is on predictions based on simulations.

12 / 44

Contributions

We propose a kernel-based method for point estimation of
simulation-based statistical models.

The proposed approach (termed kernel recursive ABC)
I is based on kernel mean embeddings,
I is a combination of kernel ABC and kernel herding, and
I recursively applies Bayes’ rule to the same observed data.

It should be useful when point estimation is more desirable than the
fully Bayesian approach.

For instance:
I when your prior distribution π(θ) is not fully reliable,
I when one simulation is computationally very expensive, and
I when your purpose is on predictions based on simulations.

12 / 44

Contributions

We propose a kernel-based method for point estimation of
simulation-based statistical models.

The proposed approach (termed kernel recursive ABC)
I is based on kernel mean embeddings,
I is a combination of kernel ABC and kernel herding, and
I recursively applies Bayes’ rule to the same observed data.

It should be useful when point estimation is more desirable than the
fully Bayesian approach. For instance:

I when your prior distribution π(θ) is not fully reliable,

I when one simulation is computationally very expensive, and
I when your purpose is on predictions based on simulations.

12 / 44

Contributions

We propose a kernel-based method for point estimation of
simulation-based statistical models.

The proposed approach (termed kernel recursive ABC)
I is based on kernel mean embeddings,
I is a combination of kernel ABC and kernel herding, and
I recursively applies Bayes’ rule to the same observed data.

It should be useful when point estimation is more desirable than the
fully Bayesian approach. For instance:

I when your prior distribution π(θ) is not fully reliable,
I when one simulation is computationally very expensive, and

I when your purpose is on predictions based on simulations.

12 / 44

Contributions

We propose a kernel-based method for point estimation of
simulation-based statistical models.

The proposed approach (termed kernel recursive ABC)
I is based on kernel mean embeddings,
I is a combination of kernel ABC and kernel herding, and
I recursively applies Bayes’ rule to the same observed data.

It should be useful when point estimation is more desirable than the
fully Bayesian approach. For instance:

I when your prior distribution π(θ) is not fully reliable,
I when one simulation is computationally very expensive, and
I when your purpose is on predictions based on simulations.

12 / 44

Outline

Background: Machine Learning for Computer Simulation

Preliminaries on Kernel Mean Embeddings

Proposed Approach: Kernel Recursive ABC

Prior Misspecification and the Auto-Correction Mechanism

Empirical Comparisons with Competing Methods

Conclusions

13 / 44

Kernels and Reproducing Kernel Hilbert Spaces (RKHS)

Let k : X × X → R be a symmetric function on a set X .

The function k(x , x ′) is called a positive definite kernel, if

n∑
i=1

n∑
j=1

cicjk(xi , xj) ≥ 0 holds

for all n ∈ N, c1, . . . , cn ∈ R, x1, . . . , xn ∈ X .

Examples of positive definite kernels on X = Rd :

Gaussian k(x , x ′) = exp(−‖x − x ′‖2/γ2).

Laplace (Matérn) k(x , x ′) = exp(−‖x − x ′‖/γ).

Linear k(x , x ′) =
〈
x , x ′

〉
.

Polynomial k(x , x ′) = (
〈
x , x ′

〉
+ c)m.

In this talk, I will simply call k a kernel.

14 / 44

Kernels and Reproducing Kernel Hilbert Spaces (RKHS)

Let k : X × X → R be a symmetric function on a set X .
The function k(x , x ′) is called a positive definite kernel, if

n∑
i=1

n∑
j=1

cicjk(xi , xj) ≥ 0 holds

for all n ∈ N, c1, . . . , cn ∈ R, x1, . . . , xn ∈ X .

Examples of positive definite kernels on X = Rd :

Gaussian k(x , x ′) = exp(−‖x − x ′‖2/γ2).

Laplace (Matérn) k(x , x ′) = exp(−‖x − x ′‖/γ).

Linear k(x , x ′) =
〈
x , x ′

〉
.

Polynomial k(x , x ′) = (
〈
x , x ′

〉
+ c)m.

In this talk, I will simply call k a kernel.

14 / 44

Kernels and Reproducing Kernel Hilbert Spaces (RKHS)

Let k : X × X → R be a symmetric function on a set X .
The function k(x , x ′) is called a positive definite kernel, if

n∑
i=1

n∑
j=1

cicjk(xi , xj) ≥ 0 holds

for all n ∈ N, c1, . . . , cn ∈ R, x1, . . . , xn ∈ X .

Examples of positive definite kernels on X = Rd :

Gaussian k(x , x ′) = exp(−‖x − x ′‖2/γ2).

Laplace (Matérn) k(x , x ′) = exp(−‖x − x ′‖/γ).

Linear k(x , x ′) =
〈
x , x ′

〉
.

Polynomial k(x , x ′) = (
〈
x , x ′

〉
+ c)m.

In this talk, I will simply call k a kernel.

14 / 44

Kernels and Reproducing Kernel Hilbert Spaces (RKHS)

Let k : X × X → R be a symmetric function on a set X .
The function k(x , x ′) is called a positive definite kernel, if

n∑
i=1

n∑
j=1

cicjk(xi , xj) ≥ 0 holds

for all n ∈ N, c1, . . . , cn ∈ R, x1, . . . , xn ∈ X .

Examples of positive definite kernels on X = Rd :

Gaussian k(x , x ′) = exp(−‖x − x ′‖2/γ2).

Laplace (Matérn) k(x , x ′) = exp(−‖x − x ′‖/γ).

Linear k(x , x ′) =
〈
x , x ′

〉
.

Polynomial k(x , x ′) = (
〈
x , x ′

〉
+ c)m.

In this talk, I will simply call k a kernel.

14 / 44

Kernels and Reproducing Kernel Hilbert Spaces (RKHS)
For any kernel k , there is a uniquely associated Hilbert space H
consisting of functions on X such that

(i) k(·, x) ∈ H for all x ∈ X
where k(·, x) is the function of the first argument with x fixed:

x ′ ∈ X → k(x ′, x).

(ii) f (x) = 〈f , k(·, x)〉H for all f ∈ H and x ∈ X ,
which is called the reproducing property.

– H is called the RKHS of k .
– H can be written as

H = span {k(·, x) | x ∈ X}

15 / 44

Kernels and Reproducing Kernel Hilbert Spaces (RKHS)
For any kernel k , there is a uniquely associated Hilbert space H
consisting of functions on X such that

(i) k(·, x) ∈ H for all x ∈ X

where k(·, x) is the function of the first argument with x fixed:

x ′ ∈ X → k(x ′, x).

(ii) f (x) = 〈f , k(·, x)〉H for all f ∈ H and x ∈ X ,
which is called the reproducing property.

– H is called the RKHS of k .
– H can be written as

H = span {k(·, x) | x ∈ X}

15 / 44

Kernels and Reproducing Kernel Hilbert Spaces (RKHS)
For any kernel k , there is a uniquely associated Hilbert space H
consisting of functions on X such that

(i) k(·, x) ∈ H for all x ∈ X
where k(·, x) is the function of the first argument with x fixed:

x ′ ∈ X → k(x ′, x).

(ii) f (x) = 〈f , k(·, x)〉H for all f ∈ H and x ∈ X ,
which is called the reproducing property.

– H is called the RKHS of k .
– H can be written as

H = span {k(·, x) | x ∈ X}

15 / 44

Kernels and Reproducing Kernel Hilbert Spaces (RKHS)
For any kernel k , there is a uniquely associated Hilbert space H
consisting of functions on X such that

(i) k(·, x) ∈ H for all x ∈ X
where k(·, x) is the function of the first argument with x fixed:

x ′ ∈ X → k(x ′, x).

(ii) f (x) = 〈f , k(·, x)〉H for all f ∈ H and x ∈ X ,
which is called the reproducing property.

– H is called the RKHS of k .
– H can be written as

H = span {k(·, x) | x ∈ X}

15 / 44

Kernels and Reproducing Kernel Hilbert Spaces (RKHS)
For any kernel k , there is a uniquely associated Hilbert space H
consisting of functions on X such that

(i) k(·, x) ∈ H for all x ∈ X
where k(·, x) is the function of the first argument with x fixed:

x ′ ∈ X → k(x ′, x).

(ii) f (x) = 〈f , k(·, x)〉H for all f ∈ H and x ∈ X ,
which is called the reproducing property.

– H is called the RKHS of k .

– H can be written as

H = span {k(·, x) | x ∈ X}

15 / 44

Kernels and Reproducing Kernel Hilbert Spaces (RKHS)
For any kernel k , there is a uniquely associated Hilbert space H
consisting of functions on X such that

(i) k(·, x) ∈ H for all x ∈ X
where k(·, x) is the function of the first argument with x fixed:

x ′ ∈ X → k(x ′, x).

(ii) f (x) = 〈f , k(·, x)〉H for all f ∈ H and x ∈ X ,
which is called the reproducing property.

– H is called the RKHS of k .
– H can be written as

H = span {k(·, x) | x ∈ X}

15 / 44

Kernel Mean Embeddings [Smola et al., 2007]
A framework for representing distributions in an RKHS.

– Let P be the set of all probability distributions on X .
– Let k be a kernel on X , and H be its RKHS.

For each distribution P ∈ P, define the kernel mean:

µP :=

∫
k(·, x)dP(x) ∈ H.

which is a representation of P in H.
A key concept: Characteristic kernels [Fukumizu et al., 2008].

– The kernel k is called characteristic, if for any P,Q ∈ P,

µP = µQ if and only if P = Q.

– In other words, k is characteristic if

the mapping P ∈ P → µP ∈ H is injective.

16 / 44

Kernel Mean Embeddings [Smola et al., 2007]
A framework for representing distributions in an RKHS.

– Let P be the set of all probability distributions on X .

– Let k be a kernel on X , and H be its RKHS.

For each distribution P ∈ P, define the kernel mean:

µP :=

∫
k(·, x)dP(x) ∈ H.

which is a representation of P in H.
A key concept: Characteristic kernels [Fukumizu et al., 2008].

– The kernel k is called characteristic, if for any P,Q ∈ P,

µP = µQ if and only if P = Q.

– In other words, k is characteristic if

the mapping P ∈ P → µP ∈ H is injective.

16 / 44

Kernel Mean Embeddings [Smola et al., 2007]
A framework for representing distributions in an RKHS.

– Let P be the set of all probability distributions on X .
– Let k be a kernel on X , and H be its RKHS.

For each distribution P ∈ P, define the kernel mean:

µP :=

∫
k(·, x)dP(x) ∈ H.

which is a representation of P in H.
A key concept: Characteristic kernels [Fukumizu et al., 2008].

– The kernel k is called characteristic, if for any P,Q ∈ P,

µP = µQ if and only if P = Q.

– In other words, k is characteristic if

the mapping P ∈ P → µP ∈ H is injective.

16 / 44

Kernel Mean Embeddings [Smola et al., 2007]
A framework for representing distributions in an RKHS.

– Let P be the set of all probability distributions on X .
– Let k be a kernel on X , and H be its RKHS.

For each distribution P ∈ P, define the kernel mean:

µP :=

∫
k(·, x)dP(x) ∈ H.

which is a representation of P in H.

A key concept: Characteristic kernels [Fukumizu et al., 2008].

– The kernel k is called characteristic, if for any P,Q ∈ P,

µP = µQ if and only if P = Q.

– In other words, k is characteristic if

the mapping P ∈ P → µP ∈ H is injective.

16 / 44

Kernel Mean Embeddings [Smola et al., 2007]
A framework for representing distributions in an RKHS.

– Let P be the set of all probability distributions on X .
– Let k be a kernel on X , and H be its RKHS.

For each distribution P ∈ P, define the kernel mean:

µP :=

∫
k(·, x)dP(x) ∈ H.

which is a representation of P in H.
A key concept: Characteristic kernels [Fukumizu et al., 2008].

– The kernel k is called characteristic, if for any P,Q ∈ P,

µP = µQ if and only if P = Q.

– In other words, k is characteristic if

the mapping P ∈ P → µP ∈ H is injective.

16 / 44

Kernel Mean Embeddings [Smola et al., 2007]
A framework for representing distributions in an RKHS.

– Let P be the set of all probability distributions on X .
– Let k be a kernel on X , and H be its RKHS.

For each distribution P ∈ P, define the kernel mean:

µP :=

∫
k(·, x)dP(x) ∈ H.

which is a representation of P in H.
A key concept: Characteristic kernels [Fukumizu et al., 2008].

– The kernel k is called characteristic, if for any P,Q ∈ P,

µP = µQ if and only if P = Q.

– In other words, k is characteristic if

the mapping P ∈ P → µP ∈ H is injective.

16 / 44

Kernel Mean Embeddings [Smola et al., 2007]
Intuitively, k being characteristic implies that H is large enough.

Figure 2: Injective embedding [Muandet et al., 2017, Figure 2.3]

Examples of characteristic kernels on X = Rd :
– Gaussian and Matérn kernels [Sriperumbudur et al., 2010].

Examples of non-characteristic kernels on X = Rd :
– Linear and polynomial kernels.

17 / 44

Kernel Mean Embeddings [Smola et al., 2007]
Intuitively, k being characteristic implies that H is large enough.

Figure 2: Injective embedding [Muandet et al., 2017, Figure 2.3]

Examples of characteristic kernels on X = Rd :
– Gaussian and Matérn kernels [Sriperumbudur et al., 2010].

Examples of non-characteristic kernels on X = Rd :
– Linear and polynomial kernels.

17 / 44

Kernel Mean Embeddings [Smola et al., 2007]
Intuitively, k being characteristic implies that H is large enough.

Figure 2: Injective embedding [Muandet et al., 2017, Figure 2.3]

Examples of characteristic kernels on X = Rd :
– Gaussian and Matérn kernels [Sriperumbudur et al., 2010].

Examples of non-characteristic kernels on X = Rd :
– Linear and polynomial kernels.

17 / 44

Outline

Background: Machine Learning for Computer Simulation

Preliminaries on Kernel Mean Embeddings

Proposed Approach: Kernel Recursive ABC

Prior Misspecification and the Auto-Correction Mechanism

Empirical Comparisons with Competing Methods

Conclusions

18 / 44

Recursive Bayes Updates and Power Posteriors
Given observed data y∗, Bayes’ rule yields a posterior distribution:

p(θ|y∗)︸ ︷︷ ︸
Posterior

∝ p(y∗|θ)︸ ︷︷ ︸
Likelihood

π(θ)︸︷︷︸
Prior

.

Recursive Bayes updates: Apply Bayes’ rule recursively to the
same observed data y∗.

1st recursion π1(θ) := p1(θ|y∗) ∝ p(y∗|θ)π(θ).

2nd recursion π2(θ) := p2(θ|y∗) ∝ p(y∗|θ)π1(θ)

= p(y∗|θ)2π(θ).

3rd recursion π3(θ) := p3(θ|y∗) ∝ p(y∗|θ)π2(θ)

= p(y∗|θ)3π(θ).

· · ·
N-th recursion πN(θ) := pN(θ|y∗) ∝ p(y∗|θ)πN−1(θ)

= p(y∗|θ)Nπ(θ).

19 / 44

Recursive Bayes Updates and Power Posteriors
Given observed data y∗, Bayes’ rule yields a posterior distribution:

p(θ|y∗)︸ ︷︷ ︸
Posterior

∝ p(y∗|θ)︸ ︷︷ ︸
Likelihood

π(θ)︸︷︷︸
Prior

.

Recursive Bayes updates: Apply Bayes’ rule recursively to the
same observed data y∗.

1st recursion π1(θ) := p1(θ|y∗) ∝ p(y∗|θ)π(θ).

2nd recursion π2(θ) := p2(θ|y∗) ∝ p(y∗|θ)π1(θ)

= p(y∗|θ)2π(θ).

3rd recursion π3(θ) := p3(θ|y∗) ∝ p(y∗|θ)π2(θ)

= p(y∗|θ)3π(θ).

· · ·
N-th recursion πN(θ) := pN(θ|y∗) ∝ p(y∗|θ)πN−1(θ)

= p(y∗|θ)Nπ(θ).

19 / 44

Recursive Bayes Updates and Power Posteriors
Given observed data y∗, Bayes’ rule yields a posterior distribution:

p(θ|y∗)︸ ︷︷ ︸
Posterior

∝ p(y∗|θ)︸ ︷︷ ︸
Likelihood

π(θ)︸︷︷︸
Prior

.

Recursive Bayes updates: Apply Bayes’ rule recursively to the
same observed data y∗.

1st recursion π1(θ) := p1(θ|y∗) ∝ p(y∗|θ)π(θ).

2nd recursion π2(θ) := p2(θ|y∗) ∝ p(y∗|θ)π1(θ)

= p(y∗|θ)2π(θ).

3rd recursion π3(θ) := p3(θ|y∗) ∝ p(y∗|θ)π2(θ)

= p(y∗|θ)3π(θ).

· · ·
N-th recursion πN(θ) := pN(θ|y∗) ∝ p(y∗|θ)πN−1(θ)

= p(y∗|θ)Nπ(θ).

19 / 44

Recursive Bayes Updates and Power Posteriors
Given observed data y∗, Bayes’ rule yields a posterior distribution:

p(θ|y∗)︸ ︷︷ ︸
Posterior

∝ p(y∗|θ)︸ ︷︷ ︸
Likelihood

π(θ)︸︷︷︸
Prior

.

Recursive Bayes updates: Apply Bayes’ rule recursively to the
same observed data y∗.

1st recursion π1(θ) := p1(θ|y∗) ∝ p(y∗|θ)π(θ).

2nd recursion π2(θ) := p2(θ|y∗) ∝ p(y∗|θ)π1(θ)

= p(y∗|θ)2π(θ).

3rd recursion π3(θ) := p3(θ|y∗) ∝ p(y∗|θ)π2(θ)

= p(y∗|θ)3π(θ).

· · ·
N-th recursion πN(θ) := pN(θ|y∗) ∝ p(y∗|θ)πN−1(θ)

= p(y∗|θ)Nπ(θ).

19 / 44

Recursive Bayes Updates and Power Posteriors
Given observed data y∗, Bayes’ rule yields a posterior distribution:

p(θ|y∗)︸ ︷︷ ︸
Posterior

∝ p(y∗|θ)︸ ︷︷ ︸
Likelihood

π(θ)︸︷︷︸
Prior

.

Recursive Bayes updates: Apply Bayes’ rule recursively to the
same observed data y∗.

1st recursion π1(θ) := p1(θ|y∗) ∝ p(y∗|θ)π(θ).

2nd recursion π2(θ) := p2(θ|y∗) ∝ p(y∗|θ)π1(θ)

= p(y∗|θ)2π(θ).

3rd recursion π3(θ) := p3(θ|y∗) ∝ p(y∗|θ)π2(θ)

= p(y∗|θ)3π(θ).

· · ·
N-th recursion πN(θ) := pN(θ|y∗) ∝ p(y∗|θ)πN−1(θ)

= p(y∗|θ)Nπ(θ).

19 / 44

Recursive Bayes Updates and Power Posteriors
Given observed data y∗, Bayes’ rule yields a posterior distribution:

p(θ|y∗)︸ ︷︷ ︸
Posterior

∝ p(y∗|θ)︸ ︷︷ ︸
Likelihood

π(θ)︸︷︷︸
Prior

.

Recursive Bayes updates: Apply Bayes’ rule recursively to the
same observed data y∗.

1st recursion π1(θ) := p1(θ|y∗) ∝ p(y∗|θ)π(θ).

2nd recursion π2(θ) := p2(θ|y∗) ∝ p(y∗|θ)π1(θ)

= p(y∗|θ)2π(θ).

3rd recursion π3(θ) := p3(θ|y∗) ∝ p(y∗|θ)π2(θ)

= p(y∗|θ)3π(θ).

· · ·
N-th recursion πN(θ) := pN(θ|y∗) ∝ p(y∗|θ)πN−1(θ)

= p(y∗|θ)Nπ(θ).

19 / 44

Recursive Bayes Updates and Power Posteriors
Given observed data y∗, Bayes’ rule yields a posterior distribution:

p(θ|y∗)︸ ︷︷ ︸
Posterior

∝ p(y∗|θ)︸ ︷︷ ︸
Likelihood

π(θ)︸︷︷︸
Prior

.

Recursive Bayes updates: Apply Bayes’ rule recursively to the
same observed data y∗.

1st recursion π1(θ) := p1(θ|y∗) ∝ p(y∗|θ)π(θ).

2nd recursion π2(θ) := p2(θ|y∗) ∝ p(y∗|θ)π1(θ)

= p(y∗|θ)2π(θ).

3rd recursion π3(θ) := p3(θ|y∗) ∝ p(y∗|θ)π2(θ)

= p(y∗|θ)3π(θ).

· · ·

N-th recursion πN(θ) := pN(θ|y∗) ∝ p(y∗|θ)πN−1(θ)

= p(y∗|θ)Nπ(θ).

19 / 44

Recursive Bayes Updates and Power Posteriors
Given observed data y∗, Bayes’ rule yields a posterior distribution:

p(θ|y∗)︸ ︷︷ ︸
Posterior

∝ p(y∗|θ)︸ ︷︷ ︸
Likelihood

π(θ)︸︷︷︸
Prior

.

Recursive Bayes updates: Apply Bayes’ rule recursively to the
same observed data y∗.

1st recursion π1(θ) := p1(θ|y∗) ∝ p(y∗|θ)π(θ).

2nd recursion π2(θ) := p2(θ|y∗) ∝ p(y∗|θ)π1(θ)

= p(y∗|θ)2π(θ).

3rd recursion π3(θ) := p3(θ|y∗) ∝ p(y∗|θ)π2(θ)

= p(y∗|θ)3π(θ).

· · ·
N-th recursion πN(θ) := pN(θ|y∗) ∝ p(y∗|θ)πN−1(θ)

= p(y∗|θ)Nπ(θ).

19 / 44

Recursive Bayes Updates and Power Posteriors
Given observed data y∗, Bayes’ rule yields a posterior distribution:

p(θ|y∗)︸ ︷︷ ︸
Posterior

∝ p(y∗|θ)︸ ︷︷ ︸
Likelihood

π(θ)︸︷︷︸
Prior

.

Recursive Bayes updates: Apply Bayes’ rule recursively to the
same observed data y∗.

1st recursion π1(θ) := p1(θ|y∗) ∝ p(y∗|θ)π(θ).

2nd recursion π2(θ) := p2(θ|y∗) ∝ p(y∗|θ)π1(θ)

= p(y∗|θ)2π(θ).

3rd recursion π3(θ) := p3(θ|y∗) ∝ p(y∗|θ)π2(θ)

= p(y∗|θ)3π(θ).

· · ·
N-th recursion πN(θ) := pN(θ|y∗) ∝ p(y∗|θ)πN−1(θ)

= p(y∗|θ)Nπ(θ).

19 / 44

Power Posteriors and Maximum Likelihood Estimation

N recursive Bayes updates yield the power posterior

pN(θ|y∗) ∝ p(y∗|θ)Nπ(θ)

Theorem [Lele et al., 2010].
Assume that p(y∗|θ) has a unique global maximizer:

θ∗ := argmax
θ∈Θ

p(y∗|θ).

Then, if π(θ∗) > 0, under mild conditions on π(θ) and p(y |θ),

pN(θ|y∗)→ δθ∗︸︷︷︸
Dirac at θ∗

as N →∞ (weak convergence).

This implies that recursive Bayes updates provide a way of
Maximum Likelihood Estimation.

20 / 44

Power Posteriors and Maximum Likelihood Estimation

N recursive Bayes updates yield the power posterior

pN(θ|y∗) ∝ p(y∗|θ)Nπ(θ)

Theorem [Lele et al., 2010].
Assume that p(y∗|θ) has a unique global maximizer:

θ∗ := argmax
θ∈Θ

p(y∗|θ).

Then, if π(θ∗) > 0, under mild conditions on π(θ) and p(y |θ),

pN(θ|y∗)→ δθ∗︸︷︷︸
Dirac at θ∗

as N →∞ (weak convergence).

This implies that recursive Bayes updates provide a way of
Maximum Likelihood Estimation.

20 / 44

Power Posteriors and Maximum Likelihood Estimation

N recursive Bayes updates yield the power posterior

pN(θ|y∗) ∝ p(y∗|θ)Nπ(θ)

Theorem [Lele et al., 2010].
Assume that p(y∗|θ) has a unique global maximizer:

θ∗ := argmax
θ∈Θ

p(y∗|θ).

Then, if π(θ∗) > 0, under mild conditions on π(θ) and p(y |θ),

pN(θ|y∗)→ δθ∗︸︷︷︸
Dirac at θ∗

as N →∞ (weak convergence).

This implies that recursive Bayes updates provide a way of
Maximum Likelihood Estimation.

20 / 44

Power Posteriors and Maximum Likelihood Estimation

N recursive Bayes updates yield the power posterior

pN(θ|y∗) ∝ p(y∗|θ)Nπ(θ)

Theorem [Lele et al., 2010].
Assume that p(y∗|θ) has a unique global maximizer:

θ∗ := argmax
θ∈Θ

p(y∗|θ).

Then, if π(θ∗) > 0, under mild conditions on π(θ) and p(y |θ),

pN(θ|y∗)→ δθ∗︸︷︷︸
Dirac at θ∗

as N →∞ (weak convergence).

This implies that recursive Bayes updates provide a way of
Maximum Likelihood Estimation.

20 / 44

Proposed Method: Kernel Recursive ABC (Sketch)
– Recursive Applications of 1.Bayes’ rule and 2.sampling.

For N = 1, 2, . . . ,Niter, iterate the following procedures:

1. Kernel ABC: If N = 1: generate θ1, . . . , θn ∼ π(θ), i.i.d.
– Simulate pseudo-data for each θi :

yi ∼ p(y |θi) (i = 1, . . . , n).

– Estimate the kernel mean of the power posterior using (θi , yi)ni=1:

µPN
:=

∫
kΘ(·, θ)︸ ︷︷ ︸

Kernel on Θ

pN(θ|y∗)dθ (1)

where pN(θ|y∗) ∝ pN(y |θ)π(θ)

2. Kernel Herding: Sampling θ′1, . . . , θ
′
n from the estimate of (1):

Set: N ← N + 1 and (θ1, . . . , θn)← (θ′1, . . . , θ
′
n)

21 / 44

Proposed Method: Kernel Recursive ABC (Sketch)
– Recursive Applications of 1.Bayes’ rule and 2.sampling.

For N = 1, 2, . . . ,Niter, iterate the following procedures:

1. Kernel ABC: If N = 1: generate θ1, . . . , θn ∼ π(θ), i.i.d.
– Simulate pseudo-data for each θi :

yi ∼ p(y |θi) (i = 1, . . . , n).

– Estimate the kernel mean of the power posterior using (θi , yi)ni=1:

µPN
:=

∫
kΘ(·, θ)︸ ︷︷ ︸

Kernel on Θ

pN(θ|y∗)dθ (1)

where pN(θ|y∗) ∝ pN(y |θ)π(θ)

2. Kernel Herding: Sampling θ′1, . . . , θ
′
n from the estimate of (1):

Set: N ← N + 1 and (θ1, . . . , θn)← (θ′1, . . . , θ
′
n)

21 / 44

Proposed Method: Kernel Recursive ABC (Sketch)
– Recursive Applications of 1.Bayes’ rule and 2.sampling.

For N = 1, 2, . . . ,Niter, iterate the following procedures:

1. Kernel ABC: If N = 1: generate θ1, . . . , θn ∼ π(θ), i.i.d.

– Simulate pseudo-data for each θi :

yi ∼ p(y |θi) (i = 1, . . . , n).

– Estimate the kernel mean of the power posterior using (θi , yi)ni=1:

µPN
:=

∫
kΘ(·, θ)︸ ︷︷ ︸

Kernel on Θ

pN(θ|y∗)dθ (1)

where pN(θ|y∗) ∝ pN(y |θ)π(θ)

2. Kernel Herding: Sampling θ′1, . . . , θ
′
n from the estimate of (1):

Set: N ← N + 1 and (θ1, . . . , θn)← (θ′1, . . . , θ
′
n)

21 / 44

Proposed Method: Kernel Recursive ABC (Sketch)
– Recursive Applications of 1.Bayes’ rule and 2.sampling.

For N = 1, 2, . . . ,Niter, iterate the following procedures:

1. Kernel ABC: If N = 1: generate θ1, . . . , θn ∼ π(θ), i.i.d.
– Simulate pseudo-data for each θi :

yi ∼ p(y |θi) (i = 1, . . . , n).

– Estimate the kernel mean of the power posterior using (θi , yi)ni=1:

µPN
:=

∫
kΘ(·, θ)︸ ︷︷ ︸

Kernel on Θ

pN(θ|y∗)dθ (1)

where pN(θ|y∗) ∝ pN(y |θ)π(θ)

2. Kernel Herding: Sampling θ′1, . . . , θ
′
n from the estimate of (1):

Set: N ← N + 1 and (θ1, . . . , θn)← (θ′1, . . . , θ
′
n)

21 / 44

Proposed Method: Kernel Recursive ABC (Sketch)
– Recursive Applications of 1.Bayes’ rule and 2.sampling.

For N = 1, 2, . . . ,Niter, iterate the following procedures:

1. Kernel ABC: If N = 1: generate θ1, . . . , θn ∼ π(θ), i.i.d.
– Simulate pseudo-data for each θi :

yi ∼ p(y |θi) (i = 1, . . . , n).

– Estimate the kernel mean of the power posterior using (θi , yi)ni=1:

µPN
:=

∫
kΘ(·, θ)︸ ︷︷ ︸

Kernel on Θ

pN(θ|y∗)dθ (1)

where pN(θ|y∗) ∝ pN(y |θ)π(θ)

2. Kernel Herding: Sampling θ′1, . . . , θ
′
n from the estimate of (1):

Set: N ← N + 1 and (θ1, . . . , θn)← (θ′1, . . . , θ
′
n)

21 / 44

Proposed Method: Kernel Recursive ABC (Sketch)
– Recursive Applications of 1.Bayes’ rule and 2.sampling.

For N = 1, 2, . . . ,Niter, iterate the following procedures:

1. Kernel ABC: If N = 1: generate θ1, . . . , θn ∼ π(θ), i.i.d.
– Simulate pseudo-data for each θi :

yi ∼ p(y |θi) (i = 1, . . . , n).

– Estimate the kernel mean of the power posterior using (θi , yi)ni=1:

µPN
:=

∫
kΘ(·, θ)︸ ︷︷ ︸

Kernel on Θ

pN(θ|y∗)dθ (1)

where pN(θ|y∗) ∝ pN(y |θ)π(θ)

2. Kernel Herding: Sampling θ′1, . . . , θ
′
n from the estimate of (1):

Set: N ← N + 1 and (θ1, . . . , θn)← (θ′1, . . . , θ
′
n)

21 / 44

Proposed Method: Kernel Recursive ABC (Sketch)
– Recursive Applications of 1.Bayes’ rule and 2.sampling.

For N = 1, 2, . . . ,Niter, iterate the following procedures:

1. Kernel ABC: If N = 1: generate θ1, . . . , θn ∼ π(θ), i.i.d.
– Simulate pseudo-data for each θi :

yi ∼ p(y |θi) (i = 1, . . . , n).

– Estimate the kernel mean of the power posterior using (θi , yi)ni=1:

µPN
:=

∫
kΘ(·, θ)︸ ︷︷ ︸

Kernel on Θ

pN(θ|y∗)dθ (1)

where pN(θ|y∗) ∝ pN(y |θ)π(θ)

2. Kernel Herding: Sampling θ′1, . . . , θ
′
n from the estimate of (1):

Set: N ← N + 1 and (θ1, . . . , θn)← (θ′1, . . . , θ
′
n)

21 / 44

Kernel ABC [Nakagome et al., 2013]
– Define

I a kernel kY(y , y ′) on the data space Y,
I a kernel kΘ(θ, θ′) on the parameter space Θ, and
I a regularisation constant λ > 0.

1. Sampling: Generate parameter-data pairs from the model:

(θ1, y1), . . . , (θn, yn) ∼ p(y |θ)π(θ), i.i.d.

2. Weight computation: Given observed data y∗, compute

kY (y∗) := (kY(y∗, y1), . . . , kY(y∗, yn))> ∈ Rn.

(w1(y∗), . . . ,wn(y∗))> := (GY + nλIn)−1kY (y∗) ∈ Rn,

where GY := (kY(yi , yj)) ∈ Rn×n is the kernel matrix.

Output: An estimate of the posterior kernel mean:∫
kΘ(·, θ)p(θ|y∗)dθ ≈

n∑
i=1

wi (y∗)kΘ(·, θi),

p(θ|y∗) ∝ p(y∗|θ)π(θ).

22 / 44

Kernel ABC [Nakagome et al., 2013]
– Define

I a kernel kY(y , y ′) on the data space Y,
I a kernel kΘ(θ, θ′) on the parameter space Θ, and
I a regularisation constant λ > 0.

1. Sampling: Generate parameter-data pairs from the model:

(θ1, y1), . . . , (θn, yn) ∼ p(y |θ)π(θ), i.i.d.

2. Weight computation: Given observed data y∗, compute

kY (y∗) := (kY(y∗, y1), . . . , kY(y∗, yn))> ∈ Rn.

(w1(y∗), . . . ,wn(y∗))> := (GY + nλIn)−1kY (y∗) ∈ Rn,

where GY := (kY(yi , yj)) ∈ Rn×n is the kernel matrix.

Output: An estimate of the posterior kernel mean:∫
kΘ(·, θ)p(θ|y∗)dθ ≈

n∑
i=1

wi (y∗)kΘ(·, θi),

p(θ|y∗) ∝ p(y∗|θ)π(θ).

22 / 44

Kernel ABC [Nakagome et al., 2013]
– Define

I a kernel kY(y , y ′) on the data space Y,
I a kernel kΘ(θ, θ′) on the parameter space Θ, and
I a regularisation constant λ > 0.

1. Sampling: Generate parameter-data pairs from the model:

(θ1, y1), . . . , (θn, yn) ∼ p(y |θ)π(θ), i.i.d.

2. Weight computation: Given observed data y∗, compute

kY (y∗) := (kY(y∗, y1), . . . , kY(y∗, yn))> ∈ Rn.

(w1(y∗), . . . ,wn(y∗))> := (GY + nλIn)−1kY (y∗) ∈ Rn,

where GY := (kY(yi , yj)) ∈ Rn×n is the kernel matrix.

Output: An estimate of the posterior kernel mean:∫
kΘ(·, θ)p(θ|y∗)dθ ≈

n∑
i=1

wi (y∗)kΘ(·, θi),

p(θ|y∗) ∝ p(y∗|θ)π(θ).

22 / 44

Kernel ABC [Nakagome et al., 2013]
– Define

I a kernel kY(y , y ′) on the data space Y,
I a kernel kΘ(θ, θ′) on the parameter space Θ, and
I a regularisation constant λ > 0.

1. Sampling: Generate parameter-data pairs from the model:

(θ1, y1), . . . , (θn, yn) ∼ p(y |θ)π(θ), i.i.d.

2. Weight computation: Given observed data y∗, compute

kY (y∗) := (kY(y∗, y1), . . . , kY(y∗, yn))> ∈ Rn.

(w1(y∗), . . . ,wn(y∗))> := (GY + nλIn)−1kY (y∗) ∈ Rn,

where GY := (kY(yi , yj)) ∈ Rn×n is the kernel matrix.

Output: An estimate of the posterior kernel mean:∫
kΘ(·, θ)p(θ|y∗)dθ ≈

n∑
i=1

wi (y∗)kΘ(·, θi),

p(θ|y∗) ∝ p(y∗|θ)π(θ).

22 / 44

Kernel ABC: The Sampling Step
1. Sampling: Generate parameter-data pairs from the model:

(θ1, y1), . . . , (θn, yn) ∼ p(y |θ)π(θ), i.i.d.

θ1 θ2θ3 θ4

y1 y4 y2y3 y*

Θ

"

π(θ)

Observed data

Prior distribution

θ*
Sampling

Parameter
space

Data space

Sampling

23 / 44

Kernel ABC: The Weight Computation Step
2. Weight computation: Given observed data y∗, compute

1. Similarities: kY (y∗) = (kY(y∗, y1), . . . , kY(y∗, yn))>,

2. Weights: (w1(y∗), . . . ,wn(y∗))> = (GY + nλIn)−1kY (y∗).

θ1 θ2θ3 θ4

y1 y4 y2y3 y*

Θ

"

θ*
Parameter

space

Data space 1. Similarity
computation

2. Weight
computation

∫
kΘ(·, θ)p(θ|y∗)dθ ≈

n∑
i=1

wi (y∗)kΘ(·, θi).
24 / 44

Kernel Herding [Chen et al., 2010]
Let
– P be a known probability distribution on Θ; and
– µP =

∫
kΘ(·, θ)dP(θ) be its kernel mean.

Kernel herding is a deterministic sampling method that
– sequentially generates sample points θ′1, . . . , θ

′
n from P as

θ′1 := argmax
θ∈Θ

µP(θ),

θ′T := argmax
θ∈Θ

µP(θ)︸ ︷︷ ︸
mode seeking

− 1
T

T−1∑
`=1

kΘ(θ, θ′`)︸ ︷︷ ︸
repulsive force

(T = 2, . . . , n).

– is equivalent to greedily approximating the kernel mean µP :

θ′T = argmin
θ∈Θ

∥∥∥∥∥µP − 1
T

(
kΘ(·, θ) +

T−1∑
i=1

kΘ(·, θ′i)
)∥∥∥∥∥
HΘ

,

if kΘ is shift-invariant. (HΘ is the RKHS of kΘ.)

25 / 44

Kernel Herding [Chen et al., 2010]
Let
– P be a known probability distribution on Θ; and
– µP =

∫
kΘ(·, θ)dP(θ) be its kernel mean.

Kernel herding is a deterministic sampling method that

– sequentially generates sample points θ′1, . . . , θ
′
n from P as

θ′1 := argmax
θ∈Θ

µP(θ),

θ′T := argmax
θ∈Θ

µP(θ)︸ ︷︷ ︸
mode seeking

− 1
T

T−1∑
`=1

kΘ(θ, θ′`)︸ ︷︷ ︸
repulsive force

(T = 2, . . . , n).

– is equivalent to greedily approximating the kernel mean µP :

θ′T = argmin
θ∈Θ

∥∥∥∥∥µP − 1
T

(
kΘ(·, θ) +

T−1∑
i=1

kΘ(·, θ′i)
)∥∥∥∥∥
HΘ

,

if kΘ is shift-invariant. (HΘ is the RKHS of kΘ.)

25 / 44

Kernel Herding [Chen et al., 2010]
Let
– P be a known probability distribution on Θ; and
– µP =

∫
kΘ(·, θ)dP(θ) be its kernel mean.

Kernel herding is a deterministic sampling method that
– sequentially generates sample points θ′1, . . . , θ

′
n from P as

θ′1 := argmax
θ∈Θ

µP(θ),

θ′T := argmax
θ∈Θ

µP(θ)︸ ︷︷ ︸
mode seeking

− 1
T

T−1∑
`=1

kΘ(θ, θ′`)︸ ︷︷ ︸
repulsive force

(T = 2, . . . , n).

– is equivalent to greedily approximating the kernel mean µP :

θ′T = argmin
θ∈Θ

∥∥∥∥∥µP − 1
T

(
kΘ(·, θ) +

T−1∑
i=1

kΘ(·, θ′i)
)∥∥∥∥∥
HΘ

,

if kΘ is shift-invariant. (HΘ is the RKHS of kΘ.)

25 / 44

Kernel Herding [Chen et al., 2010]
Let
– P be a known probability distribution on Θ; and
– µP =

∫
kΘ(·, θ)dP(θ) be its kernel mean.

Kernel herding is a deterministic sampling method that
– sequentially generates sample points θ′1, . . . , θ

′
n from P as

θ′1 := argmax
θ∈Θ

µP(θ),

θ′T := argmax
θ∈Θ

µP(θ)︸ ︷︷ ︸
mode seeking

− 1
T

T−1∑
`=1

kΘ(θ, θ′`)︸ ︷︷ ︸
repulsive force

(T = 2, . . . , n).

– is equivalent to greedily approximating the kernel mean µP :

θ′T = argmin
θ∈Θ

∥∥∥∥∥µP − 1
T

(
kΘ(·, θ) +

T−1∑
i=1

kΘ(·, θ′i)
)∥∥∥∥∥
HΘ

,

if kΘ is shift-invariant. (HΘ is the RKHS of kΘ.)

25 / 44

Kernel Herding [Chen et al., 2010]
Let
– P be a known probability distribution on Θ; and
– µP =

∫
kΘ(·, θ)dP(θ) be its kernel mean.

Kernel herding is a deterministic sampling method that
– sequentially generates sample points θ′1, . . . , θ

′
n from P as

θ′1 := argmax
θ∈Θ

µP(θ),

θ′T := argmax
θ∈Θ

µP(θ)︸ ︷︷ ︸
mode seeking

− 1
T

T−1∑
`=1

kΘ(θ, θ′`)︸ ︷︷ ︸
repulsive force

(T = 2, . . . , n).

– is equivalent to greedily approximating the kernel mean µP :

θ′T = argmin
θ∈Θ

∥∥∥∥∥µP − 1
T

(
kΘ(·, θ) +

T−1∑
i=1

kΘ(·, θ′i)
)∥∥∥∥∥
HΘ

,

if kΘ is shift-invariant. (HΘ is the RKHS of kΘ.)
25 / 44

Kernel Herding [Chen et al., 2010]
Red squares: Sample points generated from kernel herding
Purple circles: Randomly generated i.i.d. sample points.

Super-Samples from Kernel Herding

Yutian Chen
Department of Computer Science
University of California, Irvine

Irvine, CA 92697

Max Welling
Department of Computer Science
University of California, Irvine

Irvine, CA 92697

Alex Smola
Yahoo! Research
Santa Clara, CA

Abstract

We extend the herding algorithm to continuous
spaces by using the kernel trick. The resulting
“kernel herding” algorithm is an infinite mem-
ory deterministic process that learns to approx-
imate a PDF with a collection of samples. We
show that kernel herding decreases the error of
expectations of functions in the Hilbert space at
a rateO(1/T)which is much faster than the usual
O(1/

√
T) for iid random samples. We illustrate

kernel herding by approximating Bayesian pre-
dictive distributions.

1 INTRODUCTION

Herding has been understood as a weakly chaotic, non-
linear dynamical system in parameter space, i.e. one can
think of it as a mappingwt+1 = F (wt) [Welling, 2009a,b,
Welling and Chen, 2010, Chen and Welling, 2010]. The
discrete states x play the role of auxiliary variables in this
view. However, under this interpretation it has proven diffi-
cult to extend herding to continuous spaces. The basic rea-
son is that a finite number of features can not sufficiently
control the infinite number of degrees of freedom in con-
tinuous spaces leading to strange artifacts in the pseudo-
samples1. To overcome this we wish to perform herding on
an infinite number of features implying the need to switch
to a kernel representation.

To achieve that, we will first reinterpret herding as an in-
finite memory process in the state space x where we now
“marginalize out” the parameters w. Thus, we can con-
sider herding as a mapping xt+1 = G(x1, ...,xt,w0).
With two additional very natural assumptions, herding is
seen to minimize the squared error between expected fea-
ture values evaluated at the true distribution and the em-
pirical distribution obtained from herding. In this new

1For instance, herding in a continuous space with features
given by the mean and variance will produce two delta-peaks in-
stead of a Gaussian.

−6 −4 −2 0 2 4 6
−6

−5

−4

−3

−2

−1

0

1

2

3

4

Figure 1: First 20 samples form herding (red squares) ver-
sus i.i.d. random sampling (purple circles).

formulation the kernel trick is then straightforward. The
main result of this paper is that the error in approximating
any function in the RK-Hilbert space defined by the ker-
nel through a Monte Carlo sum decreases as O(1/T). This
is significantly faster than the standard O(1/

√
T) conver-

gence obtained for iid random samples from p. In fact, un-
der the assumption that we perform an unweighed Monte
Carlo sum, O(1/T) convergence is known to be optimal
[Kuo and Sloan, 2005]. The reason for the fast conver-
gence is due to negative autocorrelations: the process re-
members all previous samples and steers away from re-
gions which have already been (over) sampled. This is
illustrated in Figure 1 for a mixture of Gaussians. Simi-
lar ideas are the basis for methods such as Quasi Monte
Carlo sampling, Quadrature integration and more recently
Bayesian integration [Rasmussen and Ghahramani, 2002].

For kernel herding one needs to be able to convolve the
density p with the kernel of choice. While this is possi-

Figure 3: [Chen et al., 2010, Fig 1] 26 / 44

Proposed Method: Kernel Recursive ABC (Algorithm)
For N = 1, 2, . . . ,Niter, iterate the following procedure:

1. Kernel ABC: If N = 1: generate θ1, . . . , θn ∼ π(θ), i.i.d.
– Generate pseudo-data from each θi :

yi ∼ p(y |θi) (i = 1, . . . , n),

– Compute weights for θ1, . . . , θn:

kY (y∗) = (kY(y∗, y1), . . . , kY(y∗, yn))>,

(w1(y∗), . . . ,wn(y∗))> = (GY + nλIn)−1kY (y∗).

2. Kernel Herding: Sampling from µ̂PN
:=
∑n

i=1 wi (y∗)kΘ(·, θi):

θ′T := argmax
θ∈Θ

µ̂PN
(θ)− 1

T

T−1∑
`=1

k(θ, θ′`) (T = 1, . . . , n).

Set: N ← N + 1 and (θ1, . . . , θn)← (θ′1, . . . , θ
′
n)

27 / 44

Proposed Method: Kernel Recursive ABC (Algorithm)
For N = 1, 2, . . . ,Niter, iterate the following procedure:
1. Kernel ABC: If N = 1: generate θ1, . . . , θn ∼ π(θ), i.i.d.

– Generate pseudo-data from each θi :

yi ∼ p(y |θi) (i = 1, . . . , n),

– Compute weights for θ1, . . . , θn:

kY (y∗) = (kY(y∗, y1), . . . , kY(y∗, yn))>,

(w1(y∗), . . . ,wn(y∗))> = (GY + nλIn)−1kY (y∗).

2. Kernel Herding: Sampling from µ̂PN
:=
∑n

i=1 wi (y∗)kΘ(·, θi):

θ′T := argmax
θ∈Θ

µ̂PN
(θ)− 1

T

T−1∑
`=1

k(θ, θ′`) (T = 1, . . . , n).

Set: N ← N + 1 and (θ1, . . . , θn)← (θ′1, . . . , θ
′
n)

27 / 44

Proposed Method: Kernel Recursive ABC (Algorithm)
For N = 1, 2, . . . ,Niter, iterate the following procedure:
1. Kernel ABC: If N = 1: generate θ1, . . . , θn ∼ π(θ), i.i.d.
– Generate pseudo-data from each θi :

yi ∼ p(y |θi) (i = 1, . . . , n),

– Compute weights for θ1, . . . , θn:

kY (y∗) = (kY(y∗, y1), . . . , kY(y∗, yn))>,

(w1(y∗), . . . ,wn(y∗))> = (GY + nλIn)−1kY (y∗).

2. Kernel Herding: Sampling from µ̂PN
:=
∑n

i=1 wi (y∗)kΘ(·, θi):

θ′T := argmax
θ∈Θ

µ̂PN
(θ)− 1

T

T−1∑
`=1

k(θ, θ′`) (T = 1, . . . , n).

Set: N ← N + 1 and (θ1, . . . , θn)← (θ′1, . . . , θ
′
n)

27 / 44

Proposed Method: Kernel Recursive ABC (Algorithm)
For N = 1, 2, . . . ,Niter, iterate the following procedure:
1. Kernel ABC: If N = 1: generate θ1, . . . , θn ∼ π(θ), i.i.d.
– Generate pseudo-data from each θi :

yi ∼ p(y |θi) (i = 1, . . . , n),

– Compute weights for θ1, . . . , θn:

kY (y∗) = (kY(y∗, y1), . . . , kY(y∗, yn))>,

(w1(y∗), . . . ,wn(y∗))> = (GY + nλIn)−1kY (y∗).

2. Kernel Herding: Sampling from µ̂PN
:=
∑n

i=1 wi (y∗)kΘ(·, θi):

θ′T := argmax
θ∈Θ

µ̂PN
(θ)− 1

T

T−1∑
`=1

k(θ, θ′`) (T = 1, . . . , n).

Set: N ← N + 1 and (θ1, . . . , θn)← (θ′1, . . . , θ
′
n)

27 / 44

Proposed Method: Kernel Recursive ABC (Algorithm)
For N = 1, 2, . . . ,Niter, iterate the following procedure:
1. Kernel ABC: If N = 1: generate θ1, . . . , θn ∼ π(θ), i.i.d.
– Generate pseudo-data from each θi :

yi ∼ p(y |θi) (i = 1, . . . , n),

– Compute weights for θ1, . . . , θn:

kY (y∗) = (kY(y∗, y1), . . . , kY(y∗, yn))>,

(w1(y∗), . . . ,wn(y∗))> = (GY + nλIn)−1kY (y∗).

2. Kernel Herding: Sampling from µ̂PN
:=
∑n

i=1 wi (y∗)kΘ(·, θi):

θ′T := argmax
θ∈Θ

µ̂PN
(θ)− 1

T

T−1∑
`=1

k(θ, θ′`) (T = 1, . . . , n).

Set: N ← N + 1 and (θ1, . . . , θn)← (θ′1, . . . , θ
′
n)

27 / 44

Proposed Method: Kernel Recursive ABC (Algorithm)
For N = 1, 2, . . . ,Niter, iterate the following procedure:
1. Kernel ABC: If N = 1: generate θ1, . . . , θn ∼ π(θ), i.i.d.
– Generate pseudo-data from each θi :

yi ∼ p(y |θi) (i = 1, . . . , n),

– Compute weights for θ1, . . . , θn:

kY (y∗) = (kY(y∗, y1), . . . , kY(y∗, yn))>,

(w1(y∗), . . . ,wn(y∗))> = (GY + nλIn)−1kY (y∗).

2. Kernel Herding: Sampling from µ̂PN
:=
∑n

i=1 wi (y∗)kΘ(·, θi):

θ′T := argmax
θ∈Θ

µ̂PN
(θ)− 1

T

T−1∑
`=1

k(θ, θ′`) (T = 1, . . . , n).

Set: N ← N + 1 and (θ1, . . . , θn)← (θ′1, . . . , θ
′
n)

27 / 44

Why Kernels?

– The combination of Kernel ABC and Kernel Herding leads
to robustness against misspecfication of the prior π(θ).

28 / 44

Outline

Background: Machine Learning for Computer Simulation

Preliminaries on Kernel Mean Embeddings

Proposed Approach: Kernel Recursive ABC

Prior Misspecification and the Auto-Correction Mechanism

Empirical Comparisons with Competing Methods

Conclusions

29 / 44

Prior Misspecification

Assume that
I there is a “true” parameter θ∗ such that

y∗ ∼ p(y |θ∗)

I but you don’t know much about θ∗.

In such a case, you may misspecify the prior π(θ).
I e.g., the support of π(θ) may not contain θ∗.

As a result, simulated data

y i ∼ p(y |θi), θi ∼ π(θ) (i = 1, . . . , n).

may become far apart from observed data y∗.

30 / 44

Prior Misspecification

Assume that
I there is a “true” parameter θ∗ such that

y∗ ∼ p(y |θ∗)

I but you don’t know much about θ∗.

In such a case, you may misspecify the prior π(θ).

I e.g., the support of π(θ) may not contain θ∗.

As a result, simulated data

y i ∼ p(y |θi), θi ∼ π(θ) (i = 1, . . . , n).

may become far apart from observed data y∗.

30 / 44

Prior Misspecification

Assume that
I there is a “true” parameter θ∗ such that

y∗ ∼ p(y |θ∗)

I but you don’t know much about θ∗.

In such a case, you may misspecify the prior π(θ).
I e.g., the support of π(θ) may not contain θ∗.

As a result, simulated data

y i ∼ p(y |θi), θi ∼ π(θ) (i = 1, . . . , n).

may become far apart from observed data y∗.

30 / 44

Prior Misspecification

Assume that
I there is a “true” parameter θ∗ such that

y∗ ∼ p(y |θ∗)

I but you don’t know much about θ∗.

In such a case, you may misspecify the prior π(θ).
I e.g., the support of π(θ) may not contain θ∗.

As a result, simulated data

y i ∼ p(y |θi), θi ∼ π(θ) (i = 1, . . . , n).

may become far apart from observed data y∗.

30 / 44

Prior Misspecification

θ1 θ2θ3 θ4

y1 y4 y2y3 y*

Θ

"

π(θ)

Dissimilar

Observed data

Prior distribution

θ*
True parameter

Parameter
space

Misspecification

Data space

Prior support

31 / 44

Auto-Correction Mechanism: The Kernel ABC Step

θ1 θ2θ3 θ4

y1 y4 y2y3 y*

Θ

"

π(θ)

Dissimilar

Observed data

Prior distribution

θ*
True parameter

Parameter
space

Misspecification

Data space

Prior support

– Recall kY(y∗, yi) quantifies the similarity between y∗ and yi .

— e.g. a Gaussian kernel:

kY(y∗, yi) = exp(−dist2(y∗, yi)/γ2)

– Therefore, if y∗ and each yi are dissimilar, we have

kY (y∗) = (kY(y∗, y1), . . . , kY(y∗, yn))>≈ 0

– As a result, the weights by Kernel ABC become

(w1(y∗), . . . ,wn(y∗))> = (GY + nλIn)−1kY (y∗)≈ 0

32 / 44

Auto-Correction Mechanism: The Kernel ABC Step

θ1 θ2θ3 θ4

y1 y4 y2y3 y*

Θ

"

π(θ)

Dissimilar

Observed data

Prior distribution

θ*
True parameter

Parameter
space

Misspecification

Data space

Prior support

– Recall kY(y∗, yi) quantifies the similarity between y∗ and yi .
— e.g. a Gaussian kernel:

kY(y∗, yi) = exp(−dist2(y∗, yi)/γ2)

– Therefore, if y∗ and each yi are dissimilar, we have

kY (y∗) = (kY(y∗, y1), . . . , kY(y∗, yn))>≈ 0

– As a result, the weights by Kernel ABC become

(w1(y∗), . . . ,wn(y∗))> = (GY + nλIn)−1kY (y∗)≈ 0

32 / 44

Auto-Correction Mechanism: The Kernel ABC Step

θ1 θ2θ3 θ4

y1 y4 y2y3 y*

Θ

"

π(θ)

Dissimilar

Observed data

Prior distribution

θ*
True parameter

Parameter
space

Misspecification

Data space

Prior support

– Recall kY(y∗, yi) quantifies the similarity between y∗ and yi .
— e.g. a Gaussian kernel:

kY(y∗, yi) = exp(−dist2(y∗, yi)/γ2)

– Therefore, if y∗ and each yi are dissimilar, we have

kY (y∗) = (kY(y∗, y1), . . . , kY(y∗, yn))>≈ 0

– As a result, the weights by Kernel ABC become

(w1(y∗), . . . ,wn(y∗))> = (GY + nλIn)−1kY (y∗)≈ 0

32 / 44

Auto-Correction Mechanism: The Kernel ABC Step

θ1 θ2θ3 θ4

y1 y4 y2y3 y*

Θ

"

π(θ)

Dissimilar

Observed data

Prior distribution

θ*
True parameter

Parameter
space

Misspecification

Data space

Prior support

– Recall kY(y∗, yi) quantifies the similarity between y∗ and yi .
— e.g. a Gaussian kernel:

kY(y∗, yi) = exp(−dist2(y∗, yi)/γ2)

– Therefore, if y∗ and each yi are dissimilar, we have

kY (y∗) = (kY(y∗, y1), . . . , kY(y∗, yn))>≈ 0

– As a result, the weights by Kernel ABC become

(w1(y∗), . . . ,wn(y∗))> = (GY + nλIn)−1kY (y∗)≈ 0
32 / 44

Auto-Correction Mechanism: The Kernel Herding Step

Deterministically sample θ′1, . . . , θ
′
n

θ′1 := argmax
θ∈Θ

n∑
i=1

wi (y∗)k(θ, θi)

For T = 2, . . . , n,

θ′T := argmax
θ∈Θ

n∑
i=1

wi (y∗)︸ ︷︷ ︸
≈0

k(θ, θi)−
1
T

T−1∑
`=1

k(θ, θ′`)

≈ argminθ∈Θ

T−1∑
`=1

k(θ, θ′`)

Therefore, θ′T is chosen to be distant from θ′1, . . . , θ
′
T−1.

33 / 44

Auto-Correction Mechanism: The Kernel Herding Step

Deterministically sample θ′1, . . . , θ
′
n

θ′1 := argmax
θ∈Θ

n∑
i=1

wi (y∗)k(θ, θi)

For T = 2, . . . , n,

θ′T := argmax
θ∈Θ

n∑
i=1

wi (y∗)︸ ︷︷ ︸
≈0

k(θ, θi)−
1
T

T−1∑
`=1

k(θ, θ′`)

≈ argminθ∈Θ

T−1∑
`=1

k(θ, θ′`)

Therefore, θ′T is chosen to be distant from θ′1, . . . , θ
′
T−1.

33 / 44

Auto-Correction Mechanism: The Kernel Herding Step

Deterministically sample θ′1, . . . , θ
′
n

θ′1 := argmax
θ∈Θ

n∑
i=1

wi (y∗)k(θ, θi)

For T = 2, . . . , n,

θ′T := argmax
θ∈Θ

n∑
i=1

wi (y∗)︸ ︷︷ ︸
≈0

k(θ, θi)−
1
T

T−1∑
`=1

k(θ, θ′`)

≈ argminθ∈Θ

T−1∑
`=1

k(θ, θ′`)

Therefore, θ′T is chosen to be distant from θ′1, . . . , θ
′
T−1.

33 / 44

Auto-Correction Mechanism: The Kernel Herding Step

Deterministically sample θ′1, . . . , θ
′
n

θ′1 := argmax
θ∈Θ

n∑
i=1

wi (y∗)k(θ, θi)

For T = 2, . . . , n,

θ′T := argmax
θ∈Θ

n∑
i=1

wi (y∗)︸ ︷︷ ︸
≈0

k(θ, θi)−
1
T

T−1∑
`=1

k(θ, θ′`)

≈ argminθ∈Θ

T−1∑
`=1

k(θ, θ′`)

Therefore, θ′T is chosen to be distant from θ′1, . . . , θ
′
T−1.

33 / 44

Auto-Correction Mechanism: A Numerical Illustration

– Parameter space: Θ = R.

– Observed data y∗ = {y1, . . . , y100} ⊂ R, where

y1, . . . , y100 ∼ N (θ∗, 40)︸ ︷︷ ︸
Normal dist.

, i.i.d. with θ∗ = 0︸ ︷︷ ︸
Unknown, to be estimated

.

– Assume your prior about θ∗ is severely misspecified: let

π(θ) = uniform[2000, 3000].

(The support of π(θ) does not contain θ∗.)

We applied the proposed method to estimate θ∗, with
– kΘ, kY being Gaussian, the latter based on the energy distance
[Székely and Rizzo, 2013].
In each iteration, 300 (θi , yi)-pairs are simulated.

34 / 44

Auto-Correction Mechanism: A Numerical Illustration

– Parameter space: Θ = R.
– Observed data y∗ = {y1, . . . , y100} ⊂ R, where

y1, . . . , y100 ∼ N (θ∗, 40)︸ ︷︷ ︸
Normal dist.

, i.i.d. with θ∗ = 0︸ ︷︷ ︸
Unknown, to be estimated

.

– Assume your prior about θ∗ is severely misspecified: let

π(θ) = uniform[2000, 3000].

(The support of π(θ) does not contain θ∗.)

We applied the proposed method to estimate θ∗, with
– kΘ, kY being Gaussian, the latter based on the energy distance
[Székely and Rizzo, 2013].
In each iteration, 300 (θi , yi)-pairs are simulated.

34 / 44

Auto-Correction Mechanism: A Numerical Illustration

– Parameter space: Θ = R.
– Observed data y∗ = {y1, . . . , y100} ⊂ R, where

y1, . . . , y100 ∼ N (θ∗, 40)︸ ︷︷ ︸
Normal dist.

, i.i.d. with θ∗ = 0︸ ︷︷ ︸
Unknown, to be estimated

.

– Assume your prior about θ∗ is severely misspecified: let

π(θ) = uniform[2000, 3000].

(The support of π(θ) does not contain θ∗.)

We applied the proposed method to estimate θ∗, with
– kΘ, kY being Gaussian, the latter based on the energy distance
[Székely and Rizzo, 2013].
In each iteration, 300 (θi , yi)-pairs are simulated.

34 / 44

Auto-Correction Mechanism: A Numerical Illustration

– Parameter space: Θ = R.
– Observed data y∗ = {y1, . . . , y100} ⊂ R, where

y1, . . . , y100 ∼ N (θ∗, 40)︸ ︷︷ ︸
Normal dist.

, i.i.d. with θ∗ = 0︸ ︷︷ ︸
Unknown, to be estimated

.

– Assume your prior about θ∗ is severely misspecified: let

π(θ) = uniform[2000, 3000].

(The support of π(θ) does not contain θ∗.)

We applied the proposed method to estimate θ∗, with

– kΘ, kY being Gaussian, the latter based on the energy distance
[Székely and Rizzo, 2013].
In each iteration, 300 (θi , yi)-pairs are simulated.

34 / 44

Auto-Correction Mechanism: A Numerical Illustration

– Parameter space: Θ = R.
– Observed data y∗ = {y1, . . . , y100} ⊂ R, where

y1, . . . , y100 ∼ N (θ∗, 40)︸ ︷︷ ︸
Normal dist.

, i.i.d. with θ∗ = 0︸ ︷︷ ︸
Unknown, to be estimated

.

– Assume your prior about θ∗ is severely misspecified: let

π(θ) = uniform[2000, 3000].

(The support of π(θ) does not contain θ∗.)

We applied the proposed method to estimate θ∗, with
– kΘ, kY being Gaussian, the latter based on the energy distance
[Székely and Rizzo, 2013].

In each iteration, 300 (θi , yi)-pairs are simulated.

34 / 44

Auto-Correction Mechanism: A Numerical Illustration

– Parameter space: Θ = R.
– Observed data y∗ = {y1, . . . , y100} ⊂ R, where

y1, . . . , y100 ∼ N (θ∗, 40)︸ ︷︷ ︸
Normal dist.

, i.i.d. with θ∗ = 0︸ ︷︷ ︸
Unknown, to be estimated

.

– Assume your prior about θ∗ is severely misspecified: let

π(θ) = uniform[2000, 3000].

(The support of π(θ) does not contain θ∗.)

We applied the proposed method to estimate θ∗, with
– kΘ, kY being Gaussian, the latter based on the energy distance
[Székely and Rizzo, 2013].
In each iteration, 300 (θi , yi)-pairs are simulated.

34 / 44

Auto-Correction Mechanism: A Nummerical Illustration

Initial sampling from the prior π(θ) = uniform[2000, 3000]:
(Recall θ∗ = 0.)

B Demonstration of the auto-correction mechanism for a mis-
specified prior

Figure 1: Each figure shows a histogram of simulated parameters for the mean of the Gaussian
distribution in each iteration, as produced with the proposed method. “The sum of the weights” on the
top of each figure is the sum of the weights given by kernel ABC at each iteration, as defined by Eq. (3)
of the main text.

We demonstrate here how the auto-correction mechanism of the proposed method works; for an
explanation of this mechanism, see Section 3 of the main text. We performed an experiment similar to
the one in Section 4.2 of the main text, but under a simpler setting. The task was to estimate the mean

4

After 1 recursion of Kernel ABC + Kernel Herding:

B Demonstration of the auto-correction mechanism for a mis-
specified prior

Figure 1: Each figure shows a histogram of simulated parameters for the mean of the Gaussian
distribution in each iteration, as produced with the proposed method. “The sum of the weights” on the
top of each figure is the sum of the weights given by kernel ABC at each iteration, as defined by Eq. (3)
of the main text.

We demonstrate here how the auto-correction mechanism of the proposed method works; for an
explanation of this mechanism, see Section 3 of the main text. We performed an experiment similar to
the one in Section 4.2 of the main text, but under a simpler setting. The task was to estimate the mean

4

35 / 44

Auto-Correction Mechanism: A Nummerical Illustration

Initial sampling from the prior π(θ) = uniform[2000, 3000]:
(Recall θ∗ = 0.)

B Demonstration of the auto-correction mechanism for a mis-
specified prior

Figure 1: Each figure shows a histogram of simulated parameters for the mean of the Gaussian
distribution in each iteration, as produced with the proposed method. “The sum of the weights” on the
top of each figure is the sum of the weights given by kernel ABC at each iteration, as defined by Eq. (3)
of the main text.

We demonstrate here how the auto-correction mechanism of the proposed method works; for an
explanation of this mechanism, see Section 3 of the main text. We performed an experiment similar to
the one in Section 4.2 of the main text, but under a simpler setting. The task was to estimate the mean

4

After 1 recursion of Kernel ABC + Kernel Herding:

B Demonstration of the auto-correction mechanism for a mis-
specified prior

Figure 1: Each figure shows a histogram of simulated parameters for the mean of the Gaussian
distribution in each iteration, as produced with the proposed method. “The sum of the weights” on the
top of each figure is the sum of the weights given by kernel ABC at each iteration, as defined by Eq. (3)
of the main text.

We demonstrate here how the auto-correction mechanism of the proposed method works; for an
explanation of this mechanism, see Section 3 of the main text. We performed an experiment similar to
the one in Section 4.2 of the main text, but under a simpler setting. The task was to estimate the mean

4

35 / 44

Auto-Correction Mechanism: A Nummerical Illustration

After 2 recursions of Kernel ABC + Kernel Herding:

B Demonstration of the auto-correction mechanism for a mis-
specified prior

Figure 1: Each figure shows a histogram of simulated parameters for the mean of the Gaussian
distribution in each iteration, as produced with the proposed method. “The sum of the weights” on the
top of each figure is the sum of the weights given by kernel ABC at each iteration, as defined by Eq. (3)
of the main text.

We demonstrate here how the auto-correction mechanism of the proposed method works; for an
explanation of this mechanism, see Section 3 of the main text. We performed an experiment similar to
the one in Section 4.2 of the main text, but under a simpler setting. The task was to estimate the mean

4

After 3 recursions of Kernel ABC + Kernel Herding:

B Demonstration of the auto-correction mechanism for a mis-
specified prior

Figure 1: Each figure shows a histogram of simulated parameters for the mean of the Gaussian
distribution in each iteration, as produced with the proposed method. “The sum of the weights” on the
top of each figure is the sum of the weights given by kernel ABC at each iteration, as defined by Eq. (3)
of the main text.

We demonstrate here how the auto-correction mechanism of the proposed method works; for an
explanation of this mechanism, see Section 3 of the main text. We performed an experiment similar to
the one in Section 4.2 of the main text, but under a simpler setting. The task was to estimate the mean

4

36 / 44

Auto-Correction Mechanism: A Nummerical Illustration

After 2 recursions of Kernel ABC + Kernel Herding:

B Demonstration of the auto-correction mechanism for a mis-
specified prior

Figure 1: Each figure shows a histogram of simulated parameters for the mean of the Gaussian
distribution in each iteration, as produced with the proposed method. “The sum of the weights” on the
top of each figure is the sum of the weights given by kernel ABC at each iteration, as defined by Eq. (3)
of the main text.

We demonstrate here how the auto-correction mechanism of the proposed method works; for an
explanation of this mechanism, see Section 3 of the main text. We performed an experiment similar to
the one in Section 4.2 of the main text, but under a simpler setting. The task was to estimate the mean

4

After 3 recursions of Kernel ABC + Kernel Herding:

B Demonstration of the auto-correction mechanism for a mis-
specified prior

Figure 1: Each figure shows a histogram of simulated parameters for the mean of the Gaussian
distribution in each iteration, as produced with the proposed method. “The sum of the weights” on the
top of each figure is the sum of the weights given by kernel ABC at each iteration, as defined by Eq. (3)
of the main text.

We demonstrate here how the auto-correction mechanism of the proposed method works; for an
explanation of this mechanism, see Section 3 of the main text. We performed an experiment similar to
the one in Section 4.2 of the main text, but under a simpler setting. The task was to estimate the mean

4

36 / 44

Outline

Background: Machine Learning for Computer Simulation

Preliminaries on Kernel Mean Embeddings

Proposed Approach: Kernel Recursive ABC

Prior Misspecification and the Auto-Correction Mechanism

Empirical Comparisons with Competing Methods

Conclusions

37 / 44

Summary

The proposed method outperformed competitors in most cases ...

Please look at the paper for details!!

38 / 44

Point Estimation with a Misspecified Prior Distribution

The task: Estimate the mean vector of a 20-dim Gaussian
distribution using a severely misspecified prior.

– The true mean vector: µ ∈ [0, 2000]20 ⊂ R20.
– The prior: the uniform distribution on [9× 106, 107]20 ⊂ R20.

Algorithm parameter error data error cputime
KR-ABC 0.70(0.29) 0.008(0.004) 866.02(26.12)
KR-ABC (less samples) 7.22(3.28) 0.02(0.24) 353.498(23.05)
K2-ABC >1e+6 (>1e+3) >1e+5 (>1e+3) 209.51(11.49)
K-ABC >1e+6 (>1e+3) >1e+5 (>1e+3)) 403.93(24.97)
SMC-ABC (mean) >1e+6 (>1e+3) >1e+5 (>1e+3) 590.41(29.54)
SMC-ABC (MAP) >1e+6 (>1e+3) >1e+5 (>1e+3) 590.41(29.54)
ABC-DC >1e+6 (>1e+3) >1e+5 (>1e+3) 313.99(16.85)
BO >1e+5(>1e+4) >1e+5 (>1e+4) 25940.86(936.40)
MSM >1e+5(>1e+4) >1e+5(>1e+4) 307.42(67.94)

39 / 44

Point Estimation with a Misspecified Prior Distribution

The task: Estimate the mean vector of a 20-dim Gaussian
distribution using a severely misspecified prior.
– The true mean vector: µ ∈ [0, 2000]20 ⊂ R20.

– The prior: the uniform distribution on [9× 106, 107]20 ⊂ R20.

Algorithm parameter error data error cputime
KR-ABC 0.70(0.29) 0.008(0.004) 866.02(26.12)
KR-ABC (less samples) 7.22(3.28) 0.02(0.24) 353.498(23.05)
K2-ABC >1e+6 (>1e+3) >1e+5 (>1e+3) 209.51(11.49)
K-ABC >1e+6 (>1e+3) >1e+5 (>1e+3)) 403.93(24.97)
SMC-ABC (mean) >1e+6 (>1e+3) >1e+5 (>1e+3) 590.41(29.54)
SMC-ABC (MAP) >1e+6 (>1e+3) >1e+5 (>1e+3) 590.41(29.54)
ABC-DC >1e+6 (>1e+3) >1e+5 (>1e+3) 313.99(16.85)
BO >1e+5(>1e+4) >1e+5 (>1e+4) 25940.86(936.40)
MSM >1e+5(>1e+4) >1e+5(>1e+4) 307.42(67.94)

39 / 44

Point Estimation with a Misspecified Prior Distribution

The task: Estimate the mean vector of a 20-dim Gaussian
distribution using a severely misspecified prior.
– The true mean vector: µ ∈ [0, 2000]20 ⊂ R20.
– The prior: the uniform distribution on [9× 106, 107]20 ⊂ R20.

Algorithm parameter error data error cputime
KR-ABC 0.70(0.29) 0.008(0.004) 866.02(26.12)
KR-ABC (less samples) 7.22(3.28) 0.02(0.24) 353.498(23.05)
K2-ABC >1e+6 (>1e+3) >1e+5 (>1e+3) 209.51(11.49)
K-ABC >1e+6 (>1e+3) >1e+5 (>1e+3)) 403.93(24.97)
SMC-ABC (mean) >1e+6 (>1e+3) >1e+5 (>1e+3) 590.41(29.54)
SMC-ABC (MAP) >1e+6 (>1e+3) >1e+5 (>1e+3) 590.41(29.54)
ABC-DC >1e+6 (>1e+3) >1e+5 (>1e+3) 313.99(16.85)
BO >1e+5(>1e+4) >1e+5 (>1e+4) 25940.86(936.40)
MSM >1e+5(>1e+4) >1e+5(>1e+4) 307.42(67.94)

39 / 44

Point Estimation with a Misspecified Prior Distribution

The task: Estimate the mean vector of a 20-dim Gaussian
distribution using a severely misspecified prior.
– The true mean vector: µ ∈ [0, 2000]20 ⊂ R20.
– The prior: the uniform distribution on [9× 106, 107]20 ⊂ R20.

Algorithm parameter error data error cputime
KR-ABC 0.70(0.29) 0.008(0.004) 866.02(26.12)
KR-ABC (less samples) 7.22(3.28) 0.02(0.24) 353.498(23.05)
K2-ABC >1e+6 (>1e+3) >1e+5 (>1e+3) 209.51(11.49)
K-ABC >1e+6 (>1e+3) >1e+5 (>1e+3)) 403.93(24.97)
SMC-ABC (mean) >1e+6 (>1e+3) >1e+5 (>1e+3) 590.41(29.54)
SMC-ABC (MAP) >1e+6 (>1e+3) >1e+5 (>1e+3) 590.41(29.54)
ABC-DC >1e+6 (>1e+3) >1e+5 (>1e+3) 313.99(16.85)
BO >1e+5(>1e+4) >1e+5 (>1e+4) 25940.86(936.40)
MSM >1e+5(>1e+4) >1e+5(>1e+4) 307.42(67.94)

39 / 44

Parameter Estimation of a Pedestrian Flow Simulator
[Yamashita et al., 2010]

Estimate certain parameters characterising groups of pedestrians.

Figure 4: Points representing individual pedestrians. (red = slow)
40 / 44

Parameter Estimation of a Pedestrian Flow Simulator

Algorithm θ(N) error θ(T) error data error cputime
KR-ABC 61.58(74.42) 70.93(102.08) 0.008(0.009) 2233.45(97.54)
KR-ABC (less samples) 82.46(75.05) 134.00(161.85) 0.014(0.014) 1875.32(147.16)
K2-ABC 298.94(120.71) 308.95(109.43) 0.10(0.10) 1547.32(56.31)
K-ABC 354.72(145.76) 389.52(140.91) 0.12(0.09) 1773.74(84.91)
SMC-ABC (mean) 271.51(104.64) 363.12(91.28) 0.09(0.07) 2017.89(110.02)
SMC-ABC (MAP) 255.15(139.33) 348.43(104.74) 0.09(0.1) 2017.89(110.02)
ABC-DC 273.93(136.14) 327.48(98.12) 0.09(0.14) 1984.43(59.12)
BO 194.57(65.83) 291.73(105.33) 0.04(0.06) 37541.23(3047.46)
MSM 453.58(89.43) 510.04(55.10) 0.24(0.17) 1869.83(49.51)

41 / 44

Outline

Background: Machine Learning for Computer Simulation

Preliminaries on Kernel Mean Embeddings

Proposed Approach: Kernel Recursive ABC

Prior Misspecification and the Auto-Correction Mechanism

Empirical Comparisons with Competing Methods

Conclusions

42 / 44

Conclusions

We proposed the Kernel Recursive ABC, a method for point
estimation of simulator-based statistical models that is robust to
misspecification of a prior distribution.

Extension to Model Selection:
Model Selection for Simulator-based Statistical Models: A
Kernel Approach (ArXiv, 2019)
T. Kajihara and M. Kanagawa and Y. Nakaguchi and K. Khandelwal
and K. Fukumizu.

– Perform model selection by mixture modelling, using the Kernel
Recursive ABC.

Future Work:
– Statistical convergence analysis.
– Scalability to large scale problems.

43 / 44

Conclusions

We proposed the Kernel Recursive ABC, a method for point
estimation of simulator-based statistical models that is robust to
misspecification of a prior distribution.

Extension to Model Selection:
Model Selection for Simulator-based Statistical Models: A
Kernel Approach (ArXiv, 2019)
T. Kajihara and M. Kanagawa and Y. Nakaguchi and K. Khandelwal
and K. Fukumizu.

– Perform model selection by mixture modelling, using the Kernel
Recursive ABC.

Future Work:
– Statistical convergence analysis.
– Scalability to large scale problems.

43 / 44

Conclusions

We proposed the Kernel Recursive ABC, a method for point
estimation of simulator-based statistical models that is robust to
misspecification of a prior distribution.

Extension to Model Selection:
Model Selection for Simulator-based Statistical Models: A
Kernel Approach (ArXiv, 2019)
T. Kajihara and M. Kanagawa and Y. Nakaguchi and K. Khandelwal
and K. Fukumizu.

– Perform model selection by mixture modelling, using the Kernel
Recursive ABC.

Future Work:
– Statistical convergence analysis.
– Scalability to large scale problems.

43 / 44

Conclusions

We proposed the Kernel Recursive ABC, a method for point
estimation of simulator-based statistical models that is robust to
misspecification of a prior distribution.

Extension to Model Selection:
Model Selection for Simulator-based Statistical Models: A
Kernel Approach (ArXiv, 2019)
T. Kajihara and M. Kanagawa and Y. Nakaguchi and K. Khandelwal
and K. Fukumizu.

– Perform model selection by mixture modelling, using the Kernel
Recursive ABC.

Future Work:
– Statistical convergence analysis.
– Scalability to large scale problems.

43 / 44

Collaborators
I Takafumi Kajihara (NEC/AIST/RIKEN)
I Keisuke Yamazaki (AIST)
I Kenji Fukumizu (ISM)
I Yuuki Nakaguchi (NEC)
I Kanishk Khandelwal (NEC)

44 / 44

Chen, Y., Welling, M., and Smola, A. (2010).
Supersamples from kernel-herding.
In Proceedings of the 26th Conference on Uncertainty in
Artificial Intelligence (UAI 2010), pages 109–116.

Fukumizu, K., Gretton, A., Sun, X., and Schölkopf, B. (2008).
Kernel measures of conditional dependence.
In Advances in Neural Information Processing Systems 20, pages
489–496.

Gutmann, M. U. and Corander, J. (2016).
Bayesian optimization for likelihood-free inference of
simulator-based statistical models.
Journal of Machine Learning Research, 17(125):1–47.

Lele, S. R., Nadeem, K., , and Schmuland, B. (2010).
Estimability and likelihood inference for generalized linear mixed
models using data cloning.
Journal of the American Statistical Association,
105(492):1617–1625.

44 / 44

Muandet, K., Fukumizu, K., Sriperumbudur, B. K., and
Schölkopf, B. (2017).
Kernel mean embedding of distributions : A review and beyond.
Foundations and Trends in Machine Learning, 10(1–2):1–141.

Nakagome, S., Fukumizu, K., and Mano, S. (2013).
Kernel approximate Bayesian computation in population genetic
inferences.
Statistical Applications in Genetics and Molecular Biology,
12(6):667–678.

Saito, T. (2019).
Tsunami Generation and Propagation.
Springer.

Sisson, S. A., Fan, Y., and Beaumont, M. (2018).
Handbook of Approximate Bayesian Computation.
Chapman and Hall/CRC.

Smola, A., Gretton, A., Song, L., and Schölkopf, B. (2007).
A Hilbert space embedding for distributions.

44 / 44

In Proceedings of the International Conference on Algorithmic
Learning Theory, volume 4754, pages 13–31. Springer.

Sriperumbudur, B. K., Gretton, A., Fukumizu, K., Schölkopf, B.,
and Lanckriet, G. R. (2010).
Hilbert space embeddings and metrics on probability measures.
Jounal of Machine Learning Research, 11:1517–1561.

Székely, G. J. and Rizzo, M. L. (2013).
Energy statistics: A class of statistics based on distances.
Journal of Statistical Planning and Inference, 143:1249–1272.

Yamashita, T., Soeda, S., and Noda, I. (2010).
Assistance of evacuation planning with high-speed network
model-based pedestrian simulator.
In Proceedings of Fifth International Conference on Pedestrian
and Evacuation Dynamics (PED 2010), page 58. PED 2010.

44 / 44

	Background: Machine Learning for Computer Simulation
	Preliminaries on Kernel Mean Embeddings
	Proposed Approach: Kernel Recursive ABC
	Prior Misspecification and the Auto-Correction Mechanism
	Empirical Comparisons with Competing Methods
	Conclusions

