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Machine Learning for Computer Simulation

Computer simulation has been used to study time-evolving
complex phenomena in various scientific fields.

» Climate science, social science, economics, ecology,
epidemiology, etc. etc...

The power of computer simulation is extrapolation, which
enables
» predictions of quantities/phenomena in the future.

» gaining understanding of the phenomena of interest.
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Example: Tsunami Simulation [Saito, 2019, p.211]

Fig. 6.5 An example of a tsunami simulation (JAGURS code) in the Nankai subduction zone,
southwestern Japan. (Courtesy of T. Baba)
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Example: Pedestrian Flow Simulation
[Yamashita et al., 2010]

Multi-agent systems for pedestrians walking in Ginza.

~ s T AP
A 7

Figure 1: Points representing individual pedestrians. (red = slow)
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Calibration: Parameter Estimation and Model Selection
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Calibration: Parameter Estimation and Model Selection

To obtain a “good” simulator, the following two tasks
regarding calibration to observed data must be addressed.
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To obtain a “good” simulator, the following two tasks
regarding calibration to observed data must be addressed.
1. Parameter estimation

» Estimate parameters 6 of a simulation model p(y*|9).
(y* denotes observed data.)

2. Model selection

» Select one model from multiple (K > 2) candidate models:

p1(y*101), p2(y*102), ... Pk (y*[0k)

In the language of statistics, computer simulation can be
defined as sampling from a probabilistic model p(y|6).
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Calibration: Parameter Estimation and Model Selection

These tasks are harder than standard statistical problems,
since the likelihood function

£(0) := p(y*10)

is not available. This is because
» The mapping 6 — y is usually very complicated. (e.g., it
involves solving differential equations)

Thus one needs to solve these tasks by likelihood-free
inference, making use of sampling/forward simulations.
Approaches to likelihood-free inference include

» Approximate Bayesian Computation (ABC)
[Sisson et al., 2018].

» Bayesian optimization [Gutmann and Corander, 2016].
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Approximate Bayesian Computation (ABC)
—-Sete>0and J:={}.
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Approximate Bayesian Computation (ABC)
—-Sete >0and J:= {}.

— Generate parameter-data pairs from the model:

(01,y1), -+, (0n, yn) ~ p(y|0) m(0), i.id.
——

~—~—

simulator prior

—Forj=1,...,n, set
JJUu{j} if dist(y;,y7) <e,

where y* is observed data.
— Monte Carlo approximation of the posterior:

p(Oly”) = p(0ly™)
O") = p0ly) = 1 Z
D|racat9

11/ 44



Contributions

We propose a kernel-based method for point estimation of
simulation-based statistical models.
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Contributions

We propose a kernel-based method for point estimation of
simulation-based statistical models.

The proposed approach (termed kernel recursive ABC)
» is based on kernel mean embeddings,
» is a combination of kernel ABC and kernel herding, and

» recursively applies Bayes' rule to the same observed data.

It should be useful when point estimation is more desirable than the
fully Bayesian approach. For instance:

» when your prior distribution 7(#) is not fully reliable,
» when one simulation is computationally very expensive, and

» when your purpose is on predictions based on simulations.
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Preliminaries on Kernel Mean Embeddings
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Kernels and Reproducing Kernel Hilbert Spaces (RKHS)

Let k: X x X — R be a symmetric function on a set X.
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Let k: X x X — R be a symmetric function on a set X.

The function k(x, x’) is called a positive definite kernel, if

zn:zn:qqk(x,uxj) >0 holds

i=1 j=1

forall neN, ¢,...,cpe€R, xi,...,x,€ X.

Examples of positive definite kernels on X = R¥:

Gaussian  k(

Laplace (Matérn)  k(
Linear  k( = (x,x).

(

)
) = exp(=[x = X||/7).
)
) = (<X,x'>+c)m.

Polynomial k&

In this talk, | will simply call k a kernel.

= exp(—[lx = X|[*/7?).
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Kernels and Reproducing Kernel Hilbert Spaces (RKHS)

For any kernel k, there is a uniquely associated Hilbert space H
consisting of functions on X’ such that

(i) k(.x)eH forallxe X

where k(-, x) is the function of the first argument with x fixed:

x' € X — k(X' x).

(i) f(x)=(f,k(-,x)),, forallfeHandxeX,
which is called the reproducing property.

— H is called the RKHS of k.
— H can be written as

H =span{k(-,x) | x € X}

15/ 44
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— Let P be the set of all probability distributions on X'.
— Let k be a kernel on X', and H be its RKHS.

For each distribution P € P, define the kernel mean:
pp = /k(-,x)dP(x) € H.

which is a representation of P in H.
A key concept: Characteristic kernels [Fukumizu et al., 2008].
— The kernel k is called characteristic, if for any P, Q € P,

up =g ifandonly if P=Q.
— In other words, k is characteristic if

the mapping P €P — up € H s injective.
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Kernel Mean Embeddings [Smola et al., 2007]

Intuitively, k being characteristic implies that # is large enough.

p(x) RKHS #
P
Q e
S eur
X

Figure 2: Injective embedding [Muandet et al., 2017, Figure 2.3]

17/ 44



Kernel Mean Embeddings [Smola et al., 2007]

Intuitively, k being characteristic implies that # is large enough.

RKHS 57

Q e

e

Figure 2: Injective embedding [Muandet et al., 2017, Figure 2.3]

Examples of characteristic kernels on X = R¢:
— Gaussian and Matérn kernels [Sriperumbudur et al., 2010].

17/ 44



Kernel Mean Embeddings [Smola et al., 2007]

Intuitively, k being characteristic implies that # is large enough.

RKHS 57

Q e
T eur

Figure 2: Injective embedding [Muandet et al., 2017, Figure 2.3]

Examples of characteristic kernels on X = R¢:
— Gaussian and Matérn kernels [Sriperumbudur et al., 2010].

Examples of non-characteristic kernels on X = R¥:
— Linear and polynomial kernels.
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Proposed Approach: Kernel Recursive ABC
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Power Posteriors and Maximum Likelihood Estimation

N recursive Bayes updates yield the power posterior

p(0]y™) oc p(y*|6)Vr(0)

Theorem [Lele et al., 2010].
Assume that p(y*|0) has a unique global maximizer:

0" = *10).
arg max p(y"|0)
Then, if 7(6*) > 0, under mild conditions on 7(#) and p(y|6),

pn(0ly") —  dp«  as N — oo (weak convergence).
~—~—
Dirac at 6*
This implies that recursive Bayes updates provide a way of

Maximum Likelihood Estimation.
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pe = [ ke(0) pu(oly")d0 1)

Kernel on ©

where  py(0ly”) oc p(y]6)m(6)

2. Kernel Herding: Sampling 61,..., 0, from the estimate of (1):

Set: N« N+1and (01,...,0,) < (01,...,0)
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» a regularisation constant \ > 0.
1. Sampling: Generate parameter-data pairs from the model:

(01,¥1)s -, (On, yn) ~ p(yl0)m(0), i.id.

2. Weight computation: Given observed data y*, compute
ky(y?) = (kp(y" ), kp(y" yn))" € R™.

(wi(y™),...,wa(y")" = (Gy + n\,)tky(y*) € R,

where Gy = (ky(yi, yj)) € R™" is the kernel matrix.

Output: An estimate of the posterior kernel mean:

/ ke(0)p(Bly")do ~ > wily")ke(-.6),
i=1
p(Oly*) o p(y*|0)=(6).
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Kernel ABC: The Sampling Step

1. Sampling: Generate parameter-data pairs from the model:

(91,Y1)77(9n,yn) Np(y]9)7r(0), i.i.d.

Date ehace |11
Observed data .

? Y3 Y1 Y'Y4 Y,
: A A A A A

4

Sampling

Paramater 7 L) .....................................
space o o0 o0 o
e 0, 06, 0,

]'[(9) Prior distribution
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Kernel ABC: The Weight Computation Step

2. Weight computation: Given observed data y*, compute

1. Similarities: ky(y*) = (ky(y*,y1), .-, ky(y", Yn))Tv
2. Weights: (wi(y®), ..., wo(y*)) " = (Gy+n)\l ) Lky(

1. Similarity

computation :

Parameter 2. Weight ™.
space ® °® . ® @ computation :
: ” :
© 6 0,06, 0

y)
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Kernel Herding [Chen et al., 2010]

Let
— P be a known probability distribution on ©; and
— up = [ ko(:,0)dP(0) be its kernel mean.
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Kernel Herding [Chen et al., 2010]

Let
— P be a known probability distribution on ©; and

— up = [ ko(:,0)dP(0) be its kernel mean.

Kernel herding is a deterministic sampling method that
— sequentially generates sample points 61, ...,6, from P as

0, = 0
1 arg max yip(0),
1 T-1
07 = argmax pup(d) —= ko(0,607) (T =2,...,n).
00 — — T ——
mode seeking t=1 repulsive force

— is equivalent to greedily approximating the kernel mean pp:
1 T-1

mp — 7 (k@(ve) + Z k@(70:)>
i=1

if ko is shift-invariant. (He is the RKHS of kg.)

Y

Ho

0 = arg min
T & heo

25/ 44



Kernel Herding [Chen et al., 2010]

Red squares: Sample points generated from kernel herding
Purple circles: Randomly generated i.i.d. sample points.

4
3
2
1
0

b
2
3
4
5
6

Figure 3: [Chen et al., 2010, Fig 1] 26/ 44



Proposed Method: Kernel Recursive ABC (Algorithm)

For N =1,2,..., Njtr, iterate the following procedure:
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T g 96@/ N E_l

27 /44



Proposed Method: Kernel Recursive ABC (Algorithm)
For N =1,2,..., Njtr, iterate the following procedure:
1. Kernel ABC: If N = 1: generate ¢1,...,0, ~ w(0),i.i.d.
— Generate pseudo-data from each 6;:

yi~p(yl0)) (i=1,...,n),
— Compute weights for 61,...,0,:

ky(y*) = (ky(y*, 31), - ky(y* yn)) T,
(w1 (y")s o wa(y™) " = (Gy + ) ky (y*).

2. Kernel Herding: Sampling from fip, :=>"7_; wi(y*)ke(-, 0)):

1 T-1
= argmax/ip, (6) k(0,0;) (T =1,...,n).
0O E:l

Set: N« N+1and (01,...,0,) < (01,...,0))
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Why Kernels?

— The combination of Kernel ABC and Kernel Herding leads
to robustness against misspecfication of the prior 7(0).
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Outline

Prior Misspecification and the Auto-Correction Mechanism
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Prior Misspecification

Assume that

» there is a “true” parameter 6* such that
y* ~ p(yl07)

» but you don’t know much about 6*.
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Prior Misspecification

Assume that

» there is a “true” parameter 6* such that
y* ~ p(yl07)
» but you don’t know much about 6*.

In such a case, you may misspecify the prior 7(0).

> e.g., the support of m(6) may not contain 6*.

As a result, simulated data

Yi~ p(y|9,), 0; ~ 7'('(9) (I =1,.. -an)'

may become far apart from observed data y*.
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Prior Misspecification

Observed data
Y Yi3Y1 Y4 )2 y*

Dissimilar

A A A A A
4
b e,
= o e @@ o

@ 93 0, 0, 0, o*

Prior support \\ Misspecification

71(6)  Prior distribution
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Auto-Correction Mechanism: The Kernel ABC Step

..................................................................... .

Observed data

Y ViY1 V4 Yo ——— y*

A A A A A

S T I A

— Recall ky(y*,yi) quantifies the similarity between y* and y;.
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— Recall ky(y*,yi) quantifies the similarity between y* and y;.
— e.g. a Gaussian kernel:

ky(y*, yi) = exp(—dist*(y*, y;)/7°)
— Therefore, if y* and each y; are dissimilar, we have
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Auto-Correction Mechanism: The Kernel ABC Step

..................................................................... .

Observed data

? y3 yl y4 y2 Dissimilar y*

A A A A A

S T I A

— Recall ky(y*,yi) quantifies the similarity between y* and y;.
— e.g. a Gaussian kernel:

ky(y™, yi) = exp(—dist*(y*, y1)/7%)
— Therefore, if y* and each y; are dissimilar, we have
ky (v*) = (ky(y*. 1), ky(y*, ) '~ 0
— As a result, the weights by Kernel ABC become
(wi(y®), ..., wa(y"))" = (Gy 4+ n\ly) ky (y*)= 0
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Auto-Correction Mechanism: The Kernel Herding Step

/

Deterministically sample 6}, ..., 6,

n

1= arg f;eagz wi(y*)k(6,0;)

1=
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Auto-Correction Mechanism: The Kernel Herding Step

/

Deterministically sample 6}, ..., 6,

n

1= arg '97163(5(2 wi(y*)k(6,0;)

1=

For T=2,...,n,

n
1
9’ = fi Y k(0 9; i k 9,9/
T arg max I_E_IW(y) (6,6) T2 (0,0,)
et -
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Auto-Correction Mechanism: The Kernel Herding Step

Deterministically sample 6}, ..., 6,

n

L i=arg '97163(5(2 wi(y™)k(6,6;)

1=

For T=2,...,n

0 = ; —
T argmaxZW(y 0;) — T

-1
A argmingeo Z k(0,0;)
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Auto-Correction Mechanism: The Kernel Herding Step

Deterministically sample 6}, ..., 6,

n

L i=arg '97163(5(2 wi(y™)k(6,6;)

1=

For T=2,...,n,

—
T!
—

0F = argmaxZW,(y 0;) — - k(6,0))

~
Il
—

-1
A argmingeo Z k(0,0;)

Therefore, ¢ is chosen to be distant from 07,... 0% ;.
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Auto-Correction Mechanism: A Numerical Illustration

— Parameter space: © = R.
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Auto-Correction Mechanism: A Numerical Illustration

— Parameter space: © = R.
— Observed data y* = {y1,...,y100} C R, where

Y1,-..5Y100 NN(H*,4O), i.id. with 0" =0
Normal dist. Unknown, to be estimated

— Assume your prior about 6* is severely misspecified: let
7(#) = uniform[2000, 3000].
(The support of 7(#) does not contain 6*.)

We applied the proposed method to estimate 6*, with

— ko, ky being Gaussian, the latter based on the energy distance
[Székely and Rizzo, 2013].

In each iteration, 300 (0;, y;)-pairs are simulated.
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Auto-Correction Mechanism: A Nummerical lllustration

Initial sampling from the prior 7(#) = uniform|[2000, 3000]:
(Recall 6* =0.)

Prior samples. The sum of the weights = 0.00064
40— T . T -
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Auto-Correction Mechanism: A Nummerical lllustration

Initial sampling from the prior 7(#) = uniform|[2000, 3000]:
(Recall 6* =0.)

Prior samples. The sum of the weights = 0.00064

40— T . T -

120

100 |-

80

60 |-

a0t

201

ol . . . . .
~30000 ~20000 ~10000 0 10000 20000

After 1 recursion of Kernel ABC + Kernel Herding:

Herded samples after 1-th iteration. The sum of the weights = 1.05551
140 . T T T
120
100 |
80 |
60 |-
40 1
20+

0 L s
—30000 —20000

—10000 0 10000 20000
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Auto-Correction Mechanism: A Nummerical lllustration

After 2 recursions of Kernel ABC + Kernel Herding:

Herded samples after 2-th iteration. The sum of the weights = 0.9891
1o T T T T
120+
100 -
80
60 |-
LS
201
° 30000 —20000 -10000 0 10000 20000
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Auto-Correction Mechanism: A Nummerical lllustration

After 2 recursions of Kernel ABC + Kernel Herding:

Herded samples after 2-th iteration. The sum of the weights = 0.9891
4o T T T T

120
100
80
60
40
20

T T

—30000 —20000 —10000 ]

10000 20000

After 3 recursions of Kernel ABC + Kernel Herding:

Herded samples after 3-th iteration. The sum of the weights = 0.91164
140 - - T

120 B
100 B!
80 |

60 |
40

—30000 —20000 —10000 0 10000 20000
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Outline

Empirical Comparisons with Competing Methods
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Summary

The proposed method outperformed competitors in most cases ...

¥
7

RN

INDIA PAL

Please look at the paper for details!!
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Point Estimation with a Misspecified Prior Distribution

The task: Estimate the mean vector of a 20-dim Gaussian
distribution using a severely misspecified prior.
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Point Estimation with a Misspecified Prior Distribution

The task: Estimate the mean vector of a 20-dim Gaussian
distribution using a severely misspecified prior.
— The true mean vector: 1 € [0,2000]%° c R%.
— The prior: the uniform distribution on [9 x 10°,107]?° ¢ R2°.

Algorithm parameter error data error cputime
KR-ABC 0.70(0.29) 0.008(0.004) | 866.02(26.12)
KR-ABC (less samples) | 7.22(3.28) 0.02(0.24) | 353.498(23.05)
K2-ABC Slet6 (>1e+3) | >letb (>1let+3) |  209.51(11.49)
K-ABC >1et6 (>1e+3) | >1letb (>1e+3)) |  403.93(24.07)
SMC-ABC (mean) >le+6 (>1e+3) | >le+5 (>1le+3) 590.41(29.54)
SMC-ABC (MAP) >let6 (>1e+3) | >letb (>1let+3) |  590.41(29.54)
ABC-DC >1et6 (>1e+3) | >1letb (>1et+3) |  313.99(16.85)
BO >let5(>le+4) | >le+b (>le+4) | 25940.86(936.40)
MSM Slet5(>1etd) | >letb(>letd) |  307.42(67.94)
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Parameter Estimation of a Pedestrian Flow Simulator
[Yamashita et al., 2010]

Estimate certain parameters characterising groups of pedestrians.

T Vi, 2z ; “H N
gl i b/ Ay 4

Figure 4: Points representing individual pedestrians. (red = slow)
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Parameter Estimation of a Pedestrian Flow Simulator

Algorithm ™) error 6(T) error data error cputime
KR-ABC 61.58(74.42) | 70.03(102.08) | 0.008(0.009) |  2233.45(97.54)
KR-ABC (less samples) | 82.46(75.05) | 134.00(161.85) | 0.014(0.014) |  1875.32(147.16)
K2-ABC 298.94(120.71) | 308.95(109.43) |  0.10(0.10) 1547.32(56.31)
K-ABC 354.72(145.76) | 389.52(140.91) |  0.12(0.09) 1773.74(84.91)
SMC-ABC (mean) 271.51(104.64) | 363.12(91.28) | 0.09(0.07) | 2017.89(110.02)
SMC-ABC (MAP) 255.15(139.33) | 348.43(104.74) | 0.09(0.1) | 2017.89(110.02)
ABC-DC 273.93(136.14) | 327.48(98.12) |  0.09(0.14) 1084.43(59.12)
BO 104.57(65.83) | 291.73(105.33) |  0.04(0.06) | 37541.23(3047.46)
MSM 453.58(80.43) | 510.04(55.10) | 0.24(0.17) 1869.83(49.51)
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Outline

Conclusions
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Conclusions

We proposed the Kernel Recursive ABC, a method for point
estimation of simulator-based statistical models that is robust to
misspecification of a prior distribution.
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Conclusions

We proposed the Kernel Recursive ABC, a method for point
estimation of simulator-based statistical models that is robust to
misspecification of a prior distribution.

Extension to Model Selection:

Model Selection for Simulator-based Statistical Models: A
Kernel Approach (ArXiv, 2019)

T. Kajihara and M. Kanagawa and Y. Nakaguchi and K. Khandelwal
and K. Fukumizu.

— Perform model selection by mixture modelling, using the Kernel
Recursive ABC.

Future Work:
— Statistical convergence analysis.
— Scalability to large scale problems.
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