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Continuous time stochastic volatility models

Consider the log price process of a financial asset

pt = at + Mt ,

where M is a local martingale and a is a cádlág adapted process of
locally bounded variation.
We take M to have a stochastic volatility:

Mt =
∫ t

0

√
XsdWs

where the non-negative spot volatility X is assumed to have cádlág
sample paths (which implies it can posses jumps!)
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Continuous time stochastic volatility models
I Xs independent of W
I Xs can be Itô diffusion as in the Heston model (1993)

dXs = α(β − Xs) ds + ν
√

Xs dZs

where Z is a Brownian motion correlated with W , and 2αβ > ν2.
I Xs can be a Lévy driven Ornstein Uhlenbeck process

dXs = −a Xs ds + dLs , a > 0

where L is a subordinator independent of W , (Lévy process with
positive increments and no drift), Barndorff-Nielsen and Shepard
(2001).
For E[log(|L1| ∨ 1)] <∞ and a > 0, a unique stationary solution
exists:

Xt =
∫ t

−∞
e−a(t−s)dLs
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Lévy driven Ornstein Uhlenbeck Process

For L a Lévy process with characteristic triplet (γ,Σ, ν),

Xt =
∫ t

−∞
e−a(t−s)dLs

I The parameter a is called mean reversion parameter
I Corr(X0,Xr ) = e−ar with r > 0.
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Superposition of Ornstein-Uhlenbeck process

I Typically, the autocovariance function of the squared returns of
financial prices decays much faster at the beginning than at higher
lags.

Hence:
I Add up countably many independent OU-type processes

Xt =
∞∑

k=1
wi

∫ t

−∞
e−ai (t−s)dLi,s

with independent identically distributed Lévy processes (Li )i∈N and
appropriate ai > 0, wi > 0 with

∑∞
i=1 wi = 1.
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Superposition of Ornstein-Uhlenbeck process

More generally we can “integrate” over all possible mean reversion
parameters.

Xt =
∫
R−

∫ t

−∞
eA(t−s)Λ(dA, ds)

where Λ is called a Lévy basis and the mean reversion parameter A
becomes a random variable.

The supOU process was first introduced by Barndorff-Nielsen (2001) and
further investigated in Barndorff-Nielsen and St.(2011) and Fuchs and St.
(2013).
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Lévy basis I

Let B(S) the Borel σ-field on S and π some probability measure on (S,B(S)).

Definition
A family Λ = {Λ(B) : B ∈ Bb(S ×R)} of real-valued random variables is called
a d-dimensional Lévy basis on S × R if:

I the distribution of Λ(B) is infinitely divisible for all B ∈ Bb(S × R),
I for arbitrary n ∈ N and pairwise disjoint sets B1, . . . ,Bn ∈ Bb(S × R) the

random variables Λ(B1), . . . ,Λ(Bn) are independent and
I for any pairwise disjoint sets B1,B2, . . . ∈ Bb(S × R) with⋃

n∈N Bn ∈ Bb(S ×R) we have, almost surely, Λ(
⋃

n∈N Bn) =
∑

n∈N Λ(Bn).
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Lévy basis II

We restrict ourselves to time-homogeneous and factorisable Lévy bases,
i.e. Lévy bases with characteristic function

E[ei〈u,Λ(B)〉] = eΦ(u)Π(B) (1)

for all u ∈ Rd and B ∈ Bb(S × R), where Π = π × λ is the product of
the probability measure π on S and the Lebesgue measure λ on R and

Φ(u) = i〈γ, u〉 − 1
2 〈u,Σu〉+

∫
Rd

ei〈u,x〉 − 1− i〈u, x〉1[0,1](‖x‖) ν(dx),

where γ ∈ Rd , Σ ∈ S+
d - i.e. the space of the positive semi-definite

matrix- and ν is a Lévy measure. By L we denote the underlying Lévy
process with characteristic triplet (γ,Σ, ν). The quadruple (γ,Σ, ν, π)
determines the distribution of the Lévy bases completely and therefore it
is called the generating quadruple.
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Mixed Moving Average Processes

The process
Xt =

∫
S

∫
R

f (A, t − s) Λ(dA, ds),

is infinitely divisible and strictly stationary and called a MMA process. f
is a deterministic kernel function and integrable in the sense of Rajput
and Rosiński (1989).

I The class of mixed moving average processes allows to obtain
models with flexible autocorrelation structure and that at the same
time can generate many kinds of marginal distribution by choosing
an appropriate Lévy basis.

I In Fuchs and St. (2013), it is shown that a MMA process is mixing
and consequently ergodic.
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Example

Let us assume that π is a probability distribution with support in R−
defined as Bξ where B ∈ R− and ξ is Γ(α, 1) with α > 1 (distribution
function of the random mean reverting parameter A). The
autocovariance of the supOU process

Xt =
∫
R−

∫ t

−∞
eA(t−s) Λ(dA, ds)

is
Cov(X0,Xk) = −σ

2(1− Bk)1−α
2B(α− 1) ,

where σ2 = Var [L1].
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Weak dependence

Let
F =

⋃
u∈N∗

Fu and G =
⋃

v∈N∗
Gv

where Fu and Gv are respectively two classes of measurable functions
from (Rd )u to R and (Rd )v to R.
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Ψ-weak dependence
A process X = (Xt)t∈R with values in Rd is called a Ψ-weakly dependent
process if there exists a sequence (ε(r))r∈R+ converging to 0, satisfying

|Cov(F (Xi1 , . . . ,Xiu ),G(Xj1 , . . . ,Xjv ))| ≤ c Ψ(F ,G , u, v) ε(r)

for all

(u, v) ∈ N∗ × N∗;
r ∈ R+;
(i1, . . . , iu) ∈ Ru and (j1, . . . , jv ) ∈ Rv ,
with i1 ≤ . . . ≤ iu ≤ iu + r ≤ j1 ≤ . . . ≤ jv ;
functions F : (Rd )u → R and G : (Rd )v → R
belonging respectively to F and G

and where c is a constant independent of r .
The sequence (ε(r))r∈R+ corresponds to different sequences of weak
dependence coefficients
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η-weak dependence

Let F = G and Fu be the class of bounded Lipschitz functions. We
consider Rd equipped with the Euclidean norm and
Lip(F ) = supx 6=y

|F (x)−F (y)|
‖x1−y1‖+‖x2−y2‖+...+‖xd−yd‖ .

The η-coefficients correspond to

Ψ(F ,G , u, v) = u‖G‖∞Lip(F ) + v‖F‖∞Lip(G)

and have been introduced in Doukhan and Louhichi (1999).
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θ-weak dependence

Let Fu the class of bounded measurable functions, Gv be the Lipschitz
functions.

The θ-coefficients correspond to

Ψ(F ,G , u, v) = v‖F‖∞Lip(G).

and have been introduced in Dedecker and Doukhan (2003).
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Remarks

I Let (At)t∈R be the filtration generated by Λ defined as the σ-algebras At
generated by the set of random variables {Λ(B) : B ∈ B(S × (−∞, t])}
for t ∈ R. If an MMA process is adapted to (At)t∈R, we call it causal.
Otherwise it is referred to as being non-causal.

I An MMA process is (under moment assumptions) always η-weakly
dependent and in the causal case also θ-weakly dependent.

I Different versions and proofs of the above statement can be found in
Curato and St. (2019) in function of different moment conditions on the
underlying Lévy process.
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MMA: θ-weak dependence conditions
(Curato and St., 2019)

Let Λ be an Rd -valued Lévy basis with characteristic quadruple
(γ,Σ, ν, π) such that E[L1] = 0 and

∫
‖x‖>1 ‖x‖

2ν(dx) <∞,
f : S × R+ → Mn×d (R) a B(S × R+)-measurable function and
f ∈ L2(S × R+, π ⊗ λ). Then, the resulting causal MMA process X is a
θ-weakly dependent process with coefficients

θX (r) =
(∫

S

∫ −r

−∞
tr(f (A,−s)ΣLf (A,−s)′) ds π(dA)

) 1
2

for all r ≥ 0, where E[L1L′1] = ΣL = Σ +
∫
Rd xx ′ν(dx).
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Sample mean: asymptotics
Let Λ be an Rd -valued Lévy basis with characteristic quadruple
(γ,Σ, ν, π) such that E[L1] = 0 and

∫
‖x‖>1 ‖x‖

2+δν(dx) <∞, for some
δ > 0, f : S × R+ → M1×d (R) a B(S × R+)-measurable function and
f ∈ L2+δ(S × R+, π ⊗ λ) ∩ L2(S × R+, π ⊗ λ). If (Xi )i∈Z is a θ-weakly
dependent process with coefficients θX (r) = O(r−α) and α > 1 + 1

δ , then

σ2θ =
∑
k∈Z

Cov(X0,Xk)

is finite, non-negative and as N →∞

1√
N

N∑
i=1

Xi
d→ N (0, σ2θ).

Proof: Apply Dedecker and Rio (2000) and Dedecker and Douckhan
(2003).
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Proposition: hereditary properties (Curato and St.,
2019)

Let (Xt)t∈R be an Rn-valued stationary process and assume there exists
some constant C > 0 such that E[|X0|p]

1
p ≤ C , with p > 1, h : Rn → Rm

be a function such that h(0) = 0, h(x) = (h1(x), . . . , hm(x)) and

‖h(x)− h(y)‖ ≤ c‖x − y‖(1 + ‖x‖a−1 + ‖y‖a−1),

for x , y ∈ Rn, c > 0 and 1 ≤ a < p. Define (Yt)t∈R by Yt = h(Xt). If
(Xt)t∈R is an η or θ-weakly dependent process, then (Yt)t∈R is a η or
θ-weakly dependent process such that

∀ r ≥ 0, ηY (r) = C ηX (r)
p−a
p−1 ,

or
∀ r ≥ 0, θY (r) = C θX (r)

p−a
p−1 ,

with the constant C independent of r .
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Sample autocovariance function at lag k

1
N

N∑
j=1

(Xj∆ − E[X0])(X(j+k)∆ − E[X0]).

W.l.o.g we consider that E[X0] = 0 and ∆ = 1 and when the asymptotic
properties of the autocovariance functions are investigated, we focus on
the features of the processes

Yj,k = XjXj+k − E[X0Xk ].
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Sample autocovariance: asymptotics

Let Λ be an Rd -valued Lévy basis with characteristic quadruple
(γ,Σ, ν, π) such that E[L1] = 0,

∫
‖x‖>1 ‖x‖

4+δν(dx) <∞, for some
δ > 0, f : S × R→ M1×d (R) a B(S × R)-measurable function and
f ∈ L4+δ(S × R, π ⊗ λ) ∩ L2(S × R, π ⊗ λ). Let Zj = (Yj,0, . . . ,Yj,k) for
all j ∈ Z. If (Xi )i∈Z is η-weakly dependent with coefficients
ηX (r) = O(r−β) such that β > (4 + 2

δ )( 3+δ
2+δ ) or it is θ-weakly dependent

with coefficients θX (r) = O(r−α) such that α > (1 + 1
δ )( 3+δ

2+δ ), then
respectively for each p, q ∈ {0, . . . , k} with k ∈ N,

Ξ =
∑
l∈Z

Cov(X0Xp,XlXl+q) <∞

and as N →∞
1√
N

N∑
j=1
Zj

d→ Nk+1(0,Ξ).
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Back to the supOU SV model

Let us choose a Lévy basis having as underlying Lévy process a
subordinator and consider a supOU process X . We define the logarithmic
asset price

Jt =
∫ t

0

√
Xs dWs , J0 = 0,

where (Wt)t∈R+ is a standard Brownian motion and (Xt)t∈R+ is an
adapted, stationary and square-integrable process with values in R+

being independent of W .
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Return process

In Curato and St. (2019), it is shown that, over equidistant time intervals
[(t − 1)∆, t∆] for t ∈ R,

Yt = Jt∆ − J(t−1)∆ =
∫ t∆

(t−1)∆

√
XsdWs

is θ-weakly dependent with coefficients

θY (r) =
√

∆ θX ((r − 1)∆).
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Assumption 1

Let us assume that the mean reversion parameter A is Gamma
distributed. That is, we assume that π is the distribution of Bξ where
B ∈ R− and ξ is Γ(απ, 1) distributed with απ > 2.
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Moment function

We work now with a sample {Yt : t = 1, . . . ,N} and define
Y (m)

t = (Yt+1,Yt+2, . . . ,Yt+m+1) for t = 1, . . . ,N −m.
The moment function is given by the measurable function
h̃ : Rm+1 ×Θ→ Rm+2 as

h̃(Yt , θ) =


h̃Var (Y (m)

t , θ)

h̃0(Y (m)
t , θ)

h̃1(Y (m)
t , θ)

.

.

.
h̃m(Y (m)

t , θ)

 =


Y 2

t+1 + µ∆
B(απ−1)

Y 4
t+1 − 3

(
∆µ

B(απ−1)

)2
+ 3σ2 (1−B∆)3−απ−1−∆B(απ−3)

B3(απ−1)(απ−2)(απ−3)

Y 2
t+1Y 2

t+2 −
(

∆µ
B(απ−1)

)2
+ σ2 f2−2f1+f0

2B3(απ−1)(απ−2)(απ−3)
.
.
.

Y 2
t+1Y 2

t+1+m −
(

∆µ
B(απ−1)

)2
+ σ2

fm+1−2fm+fm−1
2B3(απ−1)(απ−2)(απ−3)

 ,

where fk := (1− B∆k)3−απ .
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Sample moments

In this case, the sample moment function of the return process is

gN,m(Y , θ) =


1

N−m

∑N−m
t=1

(
Y 2

t+1 + µ∆
B(απ−1)

)
1

N−m

∑N−m
t=1

(
Y 4

t+1 − 3
(

∆µ
B(απ−1)

)2
+ 3σ2 (1−B∆)3−απ−1−∆B(απ−3)

B3(απ−1)(απ−2)(απ−3)

)
1

N−m

∑N−m
t=1

(
Y 2

t+1Y 2
t+2 −

(
∆µ

B(απ−1)

)2
+ σ2 f2−2f1+f0

2B3(απ−1)(απ−2)(απ−3)

)
.
.
.

1
N−m

∑N−m
t=1

(
Y 2

t+1Y 2
t+1+m −

(
∆µ

B(απ−1)

)2
+ σ2

fm+1−2fm+fm−1
2B3(απ−1)(απ−2)(απ−3)

)

 ,

and θ0 can be estimated by minimizing the objective function

θ̂∗N,m0 = argmin gN,m(Y , θ)′AN,mgN,m(Y , θ)

where AN,m is a positive definite matrix to weight the m + 2 different
moments collected in gN,m(Y , θ).
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Asymptotic properties

I The consistency of the GMM estimator is shown in St., Tosstorff,
Wittlinger (2015).

I We show the asymptotic normality of the GMM estimator in Curato
and St. (2019).
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Assumptions

I Assumption 2: the parameter space Θ is compact and large enough
to include the true parameter vector θ0.

I Assumption 3: the matrix AN,m converges in probability to a
positive definite matrix of constants A.

I Assumption 4: the parameter vector θ0 is identifiable, i.e.
E[h̃(Y , θ)] = 0 for all Y if and only if θ = θ0.

I Assumption 5: the matrix WΣ is positive definite.

Note: It is shown in St. et al (2011) that the supOU SV model is
asymptotically identifiable!
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Theorem: asymptotic normality of the GMM estimator

Let Λ be a real valued Lévy basis with generating quadruple (γ, 0, ν, π),
Assumptions (H) be satisfied such that

∫
|x |>1 |x |

4+δ ν(dx) <∞, for
some δ > 0, and let Assumption 1 hold with απ − 1 > (1 + 1

δ )( 6+2δ
δ ). If,

moreover, Assumptions 2, 3, 4 and 5 hold, then as N goes to infinity
√

N(θ̂∗N,m0 − θ0) d−→ N (0,MWΣM ′)

where
M = E[G∗′0 AG∗0 ]−1G∗′0 A, G∗0 = E[∂h̃(Yt , θ)

∂θ′
]θ=θ0 ,

and
W Σ =

∑
l∈Z

Cov(h̃(Y0, θ0), h̃(Yl , θ0)).
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GMM parameter estimates from 1000 simulated paths
with 2000 observations: short memory

Estimation of the parameter µ
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Estimation of the parameter απ
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Convergence of the estimator for α in a supOU process:
short memory

Estimation of the parameter απ based on 500 observations
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α̂
π

F
re

q
u

e
n

c
y

2 4 6 8 10

0
1

0
2

0
3

0
4

0
5

0

Estimation of the parameter απ based on 5.000 observations
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Estimation of the parameter απ based on 10.000 observations
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