

Weak dependence of mixed moving average fields and applications

Bennet Ströh|October 9, 2019|Institute of Mathematical Finance

Based on joint work with Imma Curato and Robert Stelzer

Motivation

- 1. Let Λ be a Lévy basis, $(\mathcal{A}_t)_{t \in \mathbb{R}}$ the σ -algebra generated by the set of random variables { $\Lambda(B), B \in \mathcal{B}(S \times (-\infty, t])$ }.
- 2. X is called causal if X_t is adapted to A_t .
- Causal MMA processes are (under moment assumptions) θ-weakly dependent.
- 4. Weak dependence properties are used to derive central limit theorems.
- 5. Aim: Generalize the concept of causality and give a suitable definition of weak dependence. Derive distributional limit theorems for such random fields.

Notation

- ▶ \mathcal{F}_u^* is the class of bounded functions from $(\mathbb{R}^n)^u$ to \mathbb{R} .
- F_u is the class of bounded, Lipschitz functions from (ℝⁿ)^u
 to ℝ.

•
$$\mathcal{F} = \bigcup_{u \in \mathbb{N}^*} \mathcal{F}_u$$
 and $\mathcal{F}^* = \bigcup_{u \in \mathbb{N}^*} \mathcal{F}_u^*$.

• $Lip(G) = \sup_{x \neq y} \frac{|G(x) - G(y)|}{\|x_1 - y_1\| + \ldots + \|x_n - y_n\|}$, where $G : \mathbb{R}^n \to \mathbb{R}$.

Notation

- ▶ \mathcal{F}_u^* is the class of bounded functions from $(\mathbb{R}^n)^u$ to \mathbb{R} .
- F_u is the class of bounded, Lipschitz functions from (ℝⁿ)^u
 to ℝ.

$$\blacktriangleright \ \mathcal{F} = \bigcup_{u \in \mathbb{N}^*} \mathcal{F}_u \text{ and } \mathcal{F}^* = \bigcup_{u \in \mathbb{N}^*} \mathcal{F}_u^*.$$

► $Lip(G) = \sup_{x \neq y} \frac{|G(x) - G(y)|}{\|x_1 - y_1\| + \dots + \|x_n - y_n\|}$, where $G : \mathbb{R}^n \to \mathbb{R}$.

Definition (θ -weakly dependent processes)

Let $X = (X_t)_{t \in \mathbb{R}}$ be an \mathbb{R}^n -valued stochastic process. Then, X is called θ -weakly dependent if the θ -coefficients

$$\theta(h) = \sup_{u,v\in\mathbb{N}^*} \theta_{u,v}(h) \xrightarrow[h\to\infty]{} 0,$$

where

$$\theta_{u,v}(h) = \sup \left\{ \frac{|Cov(F(X_{i_1},\ldots,X_{i_u}),G(X_{j_1},\ldots,X_{j_v}))|}{\|F\|_{\infty}Lip(G)}, F \in \mathcal{F}_u^*, G \in \mathcal{F}_u, \\ (i_1,\ldots,i_u) \in \mathbb{R}^u, (j_1,\ldots,j_v) \in \mathbb{R}^v, i_1 \leq \ldots i_u \leq i_u + h \leq j_1 \leq \ldots \leq j_v \right\}.$$

Under θ -weak dependence central limit theorems can be proven under slower decay of the weak dependence coefficient compared to η -weak dependence.

Definition (θ -weakly dependent processes)

Let $X = (X_t)_{t \in \mathbb{R}}$ be an \mathbb{R}^n -valued stochastic process. Then, X is called θ -weakly dependent if the θ -coefficients

$$\theta(h) = \sup_{u,v\in\mathbb{N}^*} \theta_{u,v}(h) \xrightarrow[h\to\infty]{} 0,$$

where

$$\theta_{u,v}(h) = \sup \left\{ \frac{|Cov(F(X_{i_1}, \ldots, X_{i_u}), G(X_{j_1}, \ldots, X_{j_v}))|}{\|F\|_{\infty} Lip(G)}, F \in \mathcal{F}_u^*, G \in \mathcal{F}_u, \\ (i_1, \ldots, i_u) \in \mathbb{R}^u, (j_1, \ldots, j_v) \in \mathbb{R}^v, i_1 \leq \ldots i_u \leq i_u + h \leq j_1 \leq \ldots \leq j_v \right\}.$$

Under θ -weak dependence central limit theorems can be proven under slower decay of the weak dependence coefficient compared to η -weak dependence. Definition (θ -weakly dependent random fields) Let $X = (X_t)_{t \in \mathbb{R}^m}$ be an \mathbb{R}^n -valued random field. Then, X is called θ -weakly dependent if

$$\theta(h) = \sup_{u,v\in\mathbb{N}^*} \theta_{u,v}(h) \xrightarrow[h\to\infty]{} 0,$$

where

$$\begin{split} \theta_{u,v}(h) &= \sup \left\{ \frac{|Cov(F(X_{\Gamma}), G(X_{\tilde{\Gamma}}))|}{\|F\|_{\infty} Lip(G)}, \\ F &\in \mathcal{F}^*, G \in \mathcal{F}, \Gamma, \tilde{\Gamma} \subset \mathbb{R}^m, dist(\Gamma, \tilde{\Gamma}) \geq h, |\Gamma| \leq u, |\tilde{\Gamma}| \leq v \right\}. \end{split}$$

There are no central limit theorems available achieving the weaker decay demands on the weak dependence coefficient under θ -weak dependence known from the process case.

Definition (θ -weakly dependent random fields) Let $X = (X_t)_{t \in \mathbb{R}^m}$ be an \mathbb{R}^n -valued random field. Then, X is called θ -weakly dependent if

$$\theta(h) = \sup_{u,v\in\mathbb{N}^*} \theta_{u,v}(h) \xrightarrow[h\to\infty]{} 0,$$

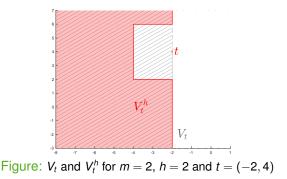
where

$$\begin{split} \theta_{u,v}(h) &= \sup \bigg\{ \frac{|\textit{Cov}(F(X_{\Gamma}), G(X_{\tilde{\Gamma}}))|}{\|F\|_{\infty}\textit{Lip}(G)}, \\ &\quad F \in \mathcal{F}^*, G \in \mathcal{F}, \Gamma, \tilde{\Gamma} \subset \mathbb{R}^m, \textit{dist}(\Gamma, \tilde{\Gamma}) \geq h, |\Gamma| \leq u, |\tilde{\Gamma}| \leq v \bigg\}. \end{split}$$

There are no central limit theorems available achieving the weaker decay demands on the weak dependence coefficient under θ -weak dependence known from the process case.

Lexicographic order on \mathbb{R}^m

Consider $y = (y_1, \ldots, y_m) \in \mathbb{R}^m$ and $z = (z_1, \ldots, z_m) \in \mathbb{R}^m$. We say $y <_{lex} z$ if and only if $y_1 < z_1$ or $y_p < z_p$ and $y_q = z_q$ for some $p \in \{2, \ldots, m\}$ and $q = 1, \ldots, p - 1$. Define the sets $V_t = \{s \in \mathbb{R}^m : s <_{lex} t\} \cup \{t\}$ and $V_t^h = V_t \cap \{s \in \mathbb{R}^m : ||t - s||_{\infty} \ge h\}$ for h > 0.



Definition (θ -lex-weak dependence (Curato, Stelzer and St.)) Let $X = (X_t)_{t \in \mathbb{R}^m}$ be an \mathbb{R}^n -valued random field. Then, X is called θ -lex-weakly dependent if

$$heta_X^{\text{lex}}(h) = \sup_{\pmb{u} \in \mathbb{N}^*} heta_{\pmb{u}}(h) \xrightarrow[h \to \infty]{} 0,$$

where

$$\theta_u(h) = \sup \left\{ \frac{|Cov(F(X_{\Gamma}), G(X_j))|}{\|F\|_{\infty} Lip(G)}, \\ F \in \mathcal{F}^*, G \in \mathcal{F}, j \in \mathbb{R}^m, \Gamma \subset V_j^h, |\Gamma| \le u \right\}.$$

Central Limit Theorem

Let $(D_n)_{n \in \mathbb{N}}$ be a sequence of finite subsets of \mathbb{Z}^m with

$$\lim_{n\to\infty} |D_n| = \infty \text{ and } \lim_{n\to\infty} \frac{|D_n|}{|\partial D_n|} = 0.$$

Consider the random quantity

$$\frac{1}{|D_n|^{\frac{1}{2}}}\sum_{j\in D_n}X_j.$$

What can we say about its asymptotic distribution?

Central Limit Theorem (Curato, Stelzer and St.)

Let $X = (X_t)_{t \in \mathbb{Z}^m}$ be a stationary centered real-valued random field such that $E[|X_t|^{2+\delta}] < \infty$ for some $\delta > 0$. Assume that $\theta_X^{\text{lex}}(h) \in \mathcal{O}(h^{-\alpha})$ with $\alpha > m(1 + \frac{1}{\delta})$. Let $\sigma^2 = \sum_{k \in \mathbb{Z}^m} E[X_0 X_k | \mathcal{I}]$, where \mathcal{I} is the σ -algebra of shift invariant sets. Then

$$\frac{1}{|\Gamma_n|^{\frac{1}{2}}}\sum_{j\in D_n}X_j\xrightarrow[n\to\infty]{d}\varepsilon\sigma,$$

with ε standard Gaussian, independent of σ^2 .

Let $X = (X_t)_{t \in \mathbb{R}^m}$ be a random field, $A = (A_t)_{t \in \mathbb{R}^m} \subset \mathbb{R}^m$ a family of Borel sets and $M = \{M(B), B \in \mathcal{B}_b(S \times \mathbb{R}^m)\}$ a random measure.

Assume X_t to be measurable w.r.t. $\sigma(M(B), B \in \mathcal{B}_b(S \times A_t))$. Then, A is the sphere of influence and X an (A, M)-influenced random field.

If A is translation invariant ($A_t = t + A_0$), the sphere of influence is described by the set A_0 . We call A_0 the **initial sphere of influence**.

Let $X = (X_t)_{t \in \mathbb{R}^m}$ be a random field, $A = (A_t)_{t \in \mathbb{R}^m} \subset \mathbb{R}^m$ a family of Borel sets and $M = \{M(B), B \in \mathcal{B}_b(S \times \mathbb{R}^m)\}$ a random measure.

Assume X_t to be measurable w.r.t. $\sigma(M(B), B \in \mathcal{B}_b(S \times A_t))$. Then, A is the **sphere of influence** and X an (A, M)-influenced random field.

If A is translation invariant ($A_t = t + A_0$), the sphere of influence is described by the set A_0 . We call A_0 the **initial sphere of influence**.

Let $X = (X_t)_{t \in \mathbb{R}^m}$ be a random field, $A = (A_t)_{t \in \mathbb{R}^m} \subset \mathbb{R}^m$ a family of Borel sets and $M = \{M(B), B \in \mathcal{B}_b(S \times \mathbb{R}^m)\}$ a random measure.

Assume X_t to be measurable w.r.t. $\sigma(M(B), B \in \mathcal{B}_b(S \times A_t))$. Then, A is the **sphere of influence** and X an (A, M)-influenced random field.

If *A* is translation invariant ($A_t = t + A_0$), the sphere of influence is described by the set A_0 . We call A_0 the **initial sphere of influence**.

Let $X = (X_t)_{t \in \mathbb{R}^m}$ be a random field, $A = (A_t)_{t \in \mathbb{R}^m} \subset \mathbb{R}^m$ a family of Borel sets and $M = \{M(B), B \in \mathcal{B}_b(S \times \mathbb{R}^m)\}$ a random measure.

Assume X_t to be measurable w.r.t. $\sigma(M(B), B \in \mathcal{B}_b(S \times A_t))$. Then, A is the **sphere of influence** and X an (A, M)-influenced random field.

If *A* is translation invariant ($A_t = t + A_0$), the sphere of influence is described by the set A_0 . We call A_0 the **initial sphere of influence**.

Definition (Mixed moving average field)

Let Λ be an \mathbb{R}^d -valued Lévy basis with characteristic quadruplet $(\gamma, \Sigma, \nu, \pi)$ and $f : S \times \mathbb{R}^m \to M_{n \times d}(\mathbb{R})$ be a $\mathcal{B}(S \times \mathbb{R}^m)$ -measurable Λ -integrable function. Then,

$$X_t = \int_{\mathcal{S}} \int_{\mathbb{R}^m} f(A, t-s) \Lambda(dA, ds),$$

is called a mixed moving average (MMA) field with kernel f.

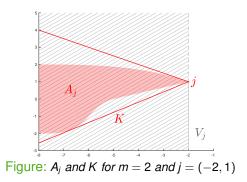
(A, Λ) -influenced MMA field

Let $(A_t)_{t \in \mathbb{R}^m}$ be a full dimensional, translation invariant sphere of influence with initial sphere of influence $A_0 \subset V_0$. This also implies $A_t \subset V_t$. If X is adapted to the σ -algebra generated by $\{\Lambda(B), B \in \mathcal{B}(S \times A_t)\}$ it can be written as

$$X_t = \int_S \int_{A_t} f(A, t - s) \wedge (dA, ds)$$
$$= \int_S \int_{V_t} f(A, t - s) \mathbb{1}_{A_0}(s - t) \wedge (dA, ds).$$

Theorem (Curato, Stelzer and St.)

Let X be an (A, Λ) -influenced MMA field. Assume that $\int_{\|x\|>1} \|x\|^2 \nu(dx) < \infty$, $f \in L^2$ and $A_j \subset K \subset V_j$ for a closed proper cone.



Theorem (Curato, Stelzer and St.) Then, X is θ -lex-weakly dependent with coefficients

$$egin{aligned} & heta_X^{lex}(h) \leq 2 igg(\int_{\mathcal{S}} \int_{\mathcal{A}_0 \cap V_0^{\psi(h)}} \operatorname{tr}(f(\mathcal{A}, -s) \Sigma_\Lambda f(\mathcal{A}, -s)') ds \pi(d\mathcal{A}) \ &+ \Big\| \int_{\mathcal{S}} \int_{\mathcal{A}_0 \cap V_0^{\psi(h)}} f(\mathcal{A}, -s) \mu_\Lambda ds \pi(d\mathcal{A}) \Big\|^2 \Big)^{rac{1}{2}}, \end{aligned}$$

for all h > 0 and $\Sigma_{\Lambda} = \Sigma + \int_{\mathbb{R}^d} xx'\nu(dx)$, where $\psi(h) = c_{\kappa}h$ for a constant $c_{\kappa} > 0$.

Corollary (Asymptotic normality of the sample mean) Let $(X_u)_{u \in \mathbb{Z}^m}$ be a zero mean (A, Λ) -influenced MMA field with $f \in L^{2+\delta} \cap L^2$ for $\delta > 0$, $\int_{||x||>1} ||x||^{2+\delta} \nu(dx) < \infty$ and $A_0 \subset K$ for a closed proper cone $K \subset V_0$. Additionally assume $\theta_X^{lex}(h) = \mathcal{O}(h^{-\alpha})$, $\alpha > m(1 + \frac{1}{\delta})$.

Then
$$\Sigma = \sum_{k \in \mathbb{Z}^m} E[X_0 X'_k]$$
 is finite and
$$\frac{1}{|D_n|^{\frac{m}{2}}} \sum_{j \in D_n} X_j \xrightarrow[n \to \infty]{d} \mathcal{N}(0, \Sigma).$$

Limit distribution of the sample autocovariance

For a zero mean random field define

$$Y_{j,k} = X_j X_{j+k} - E[X_0 X_k], j \in \mathbb{Z}^m, k \in \mathbb{N}^m.$$

Consider the random quantity

$$\frac{1}{|D_n|^{\frac{m}{2}}}\sum_{j\in D_n}Y_{j,k}.$$

What can we say about its asymptotic distribution?

Proposition (θ -lex-coefficients have hereditary properties)

- $(X_t)_{t \in \mathbb{R}^m}$ stationary with $X \in L^p$ for p > 1.
- ▶ $h : \mathbb{R}^n \to \mathbb{R}^k$, s.t. h(0) = 0 and for $1 \le a < p$

 $\|h(x) - h(y)\| \le c \|x - y\|(1 + \|x\|^{a-1} + \|y\|^{a-1}),$

for $x, y \in \mathbb{R}^n$, c > 0.

If X is θ-lex-weakly dependent, then Y_t = h(X_t) is θ-lex-weakly dependent with

 $\theta_Y^{lex}(h) = \mathcal{C}\theta_X^{lex}(h)^{\frac{p-a}{p-1}},$

for all r > 0 and a constant C.

Proposition (θ -lex-coefficients have hereditary properties)

- $(X_t)_{t \in \mathbb{R}^m}$ stationary with $X \in L^p$ for p > 1.
- ▶ $h : \mathbb{R}^n \to \mathbb{R}^k$, s.t. h(0) = 0 and for $1 \le a < p$

 $\|h(x) - h(y)\| \le c \|x - y\|(1 + \|x\|^{a-1} + \|y\|^{a-1}),$

for $x, y \in \mathbb{R}^n$, c > 0.

► If X is θ -lex-weakly dependent, then $Y_t = h(X_t)$ is θ -lex-weakly dependent with

$$\theta_Y^{lex}(h) = \mathcal{C}\theta_X^{lex}(h)^{\frac{p-a}{p-1}},$$

for all r > 0 and a constant C.

Extend asymptotic results to higher sample moments.

Corollary (Asymptotic normality of the sample autocovariance function)

Let $(X_u)_{u\in\mathbb{Z}^m}$ be a zero mean (A, Λ) -influenced MMA field with $f \in L^{4+\delta} \cap L^2$ for $\delta > 0$, $\int_{\|x\|>1} \|x\|^{4+\delta} \nu(dx) < \infty$ and $A_0 \subset K$ for a closed proper cone $K \subset V_0$. Additionally assume $\theta_X^{lex}(h) = \mathcal{O}(h^{-\alpha}), \alpha > m\left(1 + \frac{1}{\delta}\right)\left(\frac{3+\delta}{2+\delta}\right)$.

Then, $\Sigma_k = \sum_{j \in \mathbb{Z}^m} Cov(Y_{0,k}, Y_{j,k})$ is finite and

$$\frac{1}{|D_n|^{\frac{m}{2}}}\sum_{j\in D_n}Y_{j,k}\xrightarrow[N\to\infty]{}N\left(0,\Sigma_k\right).$$

- Introduced in [Nguyen and Veraart, 2018].
- ► Let $A = (A_t(x))_{(t,x) \in \mathbb{R} \times \mathbb{R}^m}$ be an ambit set, i.e. $A_t(x) \subset \mathbb{R} \times \mathbb{R}^{m-1}$

$$egin{cases} A_t(x) = A_0(0) + (t,x), \ (\textit{Translation invariant})\ A_s(x) \subset A_t(x), s < t\ A_t(x) \cap ((t,\infty)) imes \mathbb{R}^{m-1} = \emptyset. \ (\textit{Non-anticipative}) \end{cases}$$

The (A, ∧)-influenced MMA field

$$Y_t(x) = \int_0^\infty \int_{A_t(x)} \exp(-\lambda(t-s)) \wedge (d\lambda, ds, d\xi)$$

is called MSTOU process.

- Introduced in [Nguyen and Veraart, 2018].
- ► Let $A = (A_t(x))_{(t,x) \in \mathbb{R} \times \mathbb{R}^m}$ be an ambit set, i.e. $A_t(x) \subset \mathbb{R} \times \mathbb{R}^{m-1}$

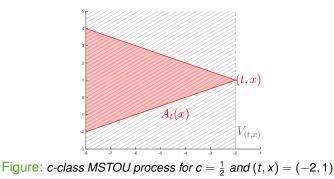
$$egin{cases} A_t(x) = A_0(0) + (t,x), \ (\textit{Translation invariant})\ A_s(x) \subset A_t(x), s < t\ A_t(x) \cap ((t,\infty)) imes \mathbb{R}^{m-1} = \emptyset. \ (\textit{Non-anticipative}) \end{cases}$$

► The (A, ∧)-influenced MMA field

$$Y_t(x) = \int_0^\infty \int_{A_t(x)} \exp(-\lambda(t-s)) \Lambda(d\lambda, ds, d\xi)$$

is called MSTOU process.

- ▶ In the following we consider a zero mean c-class MSTOU process, i.e. $A_t(x) = \{(s, \xi) : s \le t, ||x \xi|| \le c|t s|\}.$
- Assume $\int_{|x|>1} |x|^{2+\delta} \nu(dx) < \infty$, for some $\delta > 0$ and $\pi(d\lambda, ds, d\xi) = ds \ d\xi \ f(\lambda) d\lambda$.



• Then, $Y_t(x)$ is θ -lex-weakly dependent with coefficients

$$\begin{split} \theta_{Y}^{\text{lex}}(h) \leq & \left(V_{m-1}(c) \Sigma_{\Lambda} \int_{0}^{\infty} \frac{(m-1)! \sum_{k=0}^{m-1} \frac{1}{k!} (2\frac{\lambda\psi(h)}{c})^{k}}{(2\lambda)^{m}} e^{-2\frac{\lambda\psi(h)}{c}} f(\lambda) d\lambda \right) \\ & -\mathbb{1}_{\{c>1\}} (2\psi(h))^{m-1} \int_{0}^{\infty} \frac{e^{-2\frac{\lambda\psi(h)}{c}} - e^{-2\lambda\psi(h)}}{2\lambda} f(\lambda) d\lambda \right)^{\frac{1}{2}}, \end{split}$$

V_{m-1} is the volume of the m-1-dimensional ball with radius *c*.

- Consider a Gamma(α, β) distributed mean reversion parameter λ (α > m and β > 0 ensure existence).
- ► The sample mean of $Y_t(x)$ is asymptotically normal if $\alpha > m(3 + \frac{2}{\delta})$.

• Then, $Y_t(x)$ is θ -lex-weakly dependent with coefficients

$$\begin{split} \theta_{Y}^{\text{lex}}(h) \leq & \left(V_{m-1}(c) \Sigma_{\Lambda} \int_{0}^{\infty} \frac{(m-1)! \sum_{k=0}^{m-1} \frac{1}{k!} (2\frac{\lambda\psi(h)}{c})^{k}}{(2\lambda)^{m}} e^{-2\frac{\lambda\psi(h)}{c}} f(\lambda) d\lambda \right) \\ & -\mathbb{1}_{\{c>1\}} (2\psi(h))^{m-1} \int_{0}^{\infty} \frac{e^{-2\frac{\lambda\psi(h)}{c}} - e^{-2\lambda\psi(h)}}{2\lambda} f(\lambda) d\lambda \right)^{\frac{1}{2}}, \end{split}$$

 V_{m-1} is the volume of the m-1-dimensional ball with radius c.

- Consider a Gamma(α, β) distributed mean reversion parameter λ (α > m and β > 0 ensure existence).
- The sample mean of $Y_t(x)$ is asymptotically normal if $\alpha > m(3 + \frac{2}{\delta})$.

Thank you for your attention!