

ulm university universität

Probabilistic prediction of solar power supply to distribution networks, using global radiation forecasts

Volker Schmidt Ulm University, Institute of Stochastics

2nd ISM-UUIm Joint Workshop, Oktober 10, 2019

Outline

1

General context

- Risk in feed-in of solar power
- Visualization of data
- Modeling idea

Bivariate copulas

- Archimedean copulas
- Fitting process
- Results

Vine copulas

- D-vine copulas
- Fitting process
- Results

Outline

General context

- Risk in feed-in of solar power
- Visualization of data
- Modeling idea

Bivariate copulas

- Archimedean copulas
- Fitting process
- Results

Vine copulas

- D-vine copulas
- Fitting process
- Results

Motivation

• Increase in solar plants \rightarrow voltage violations and overloading problems

Motivation

- Increase in solar plants \rightarrow voltage violations and overloading problems
- Solar plants are curtailed \rightarrow High costs and loss of energy

Motivation

- $\bullet\,$ Increase in solar plants $\rightarrow\,$ voltage violations and overloading problems
- $\bullet\,$ Solar plants are curtailed $\rightarrow\,$ High costs and loss of energy
- Data-based predictions might reduce unnecessary curtailment

Motivation

- $\bullet\,$ Increase in solar plants $\rightarrow\,$ voltage violations and overloading problems
- $\bullet\,$ Solar plants are curtailed $\rightarrow\,$ High costs and loss of energy
- Data-based predictions might reduce unnecessary curtailment

Data

Timeframe: May, June and July of the years 2015-2017 (11-12 UTC)

Motivation

- $\bullet\,$ Increase in solar plants $\rightarrow\,$ voltage violations and overloading problems
- $\bullet\,$ Solar plants are curtailed $\rightarrow\,$ High costs and loss of energy
- Data-based predictions might reduce unnecessary curtailment

Data

Timeframe: May, June and July of the years 2015-2017 (11-12 UTC)

Global radiation forecasts generated by Deutscher Wetterdienst (DWD)

Motivation

- $\bullet\,$ Increase in solar plants $\rightarrow\,$ voltage violations and overloading problems
- $\bullet\,$ Solar plants are curtailed $\rightarrow\,$ High costs and loss of energy
- Data-based predictions might reduce unnecessary curtailment

Data

Timeframe: May, June and July of the years 2015-2017 (11-12 UTC)

- Global radiation forecasts generated by Deutscher Wetterdienst (DWD)
- Solar power supply measured by a distribution network operator in Northern Bavaria (MDN)

Motivation

- $\bullet\,$ Increase in solar plants $\rightarrow\,$ voltage violations and overloading problems
- Solar plants are curtailed \rightarrow High costs and loss of energy
- Data-based predictions might reduce unnecessary curtailment

Data

Timeframe: May, June and July of the years 2015-2017 (11-12 UTC)

- Global radiation forecasts generated by Deutscher Wetterdienst (DWD)
- Solar power supply measured by a distribution network operator in Northern Bavaria (MDN)

Goal

Predict the risk of solar power supply exceeding critical thresholds

Outline

General context

- Risk in feed-in of solar power
- Visualization of data
- Modeling idea

Bivariate copulas

- Archimedean copulas
- Fitting process
- Results

Vine copulas

- D-vine copulas
- Fitting process
- Results

General context

Visualization of data

Global radiation forecast (in *J/cm*²) for July 07, 2017 11-12 UTC

Measured solar power supply (in *MW*) for July 07, 2017 11-12 UTC

General context

Visualization of data

Global radiation forecast (in *J/cm*²) for July 07, 2017 11-12 UTC

Measured solar power supply (in *MW*) for July 07, 2017 11-12 UTC

Interpolated global radiation forecast for July 07, 2017 11-12 UTC

General context

Visualization of data

Global radiation forecast (in *J/cm*²) for July 07, 2017 11-12 UTC

Normalized solar power supply for July 07, 2017 11-12 UTC

Normalized global radiation forecast for July 07, 2017 11-12 UTC

Outline

General context

- Risk in feed-in of solar power
- Visualization of data
- Modeling idea

Bivariate copulas

- Archimedean copulas
- Fitting process
- Results

Vine copulas

- D-vine copulas
- Fitting process
- Results

Copula models

Random variables

R: (Normalized) global radiation forecast

S: (Normalized) solar power supply

Copula models

Random variables

R: (Normalized) global radiation forecast *S*: (Normalized) solar power supply

Goals

For a predefined threshold v and feed-in points p_1, \ldots, p_n compute the conditional probabilities

- $P(S_1 \ge v | R_1 = r(p_1, t))$
- $P(S_1 + ... + S_n \ge v \mid R_1 = r(p_1, t), ..., R_n = r(p_n, t))$

given global radiation forecasts $r(p_1, t), \ldots, r(p_n, t)$ and forecast time t

Copula models

Random variables

R: (Normalized) global radiation forecast *S*: (Normalized) solar power supply

Goals

For a predefined threshold v and feed-in points p_1, \ldots, p_n compute the conditional probabilities

- $P(S_1 \ge v | R_1 = r(p_1, t))$
- $P(S_1 + ... + S_n \ge v \mid R_1 = r(p_1, t), ..., R_n = r(p_n, t))$

given global radiation forecasts $r(p_1, t), \ldots, r(p_n, t)$ and forecast time t

Modeling approach

- Fit univariate marginal distributions
- Fit bivariate and multivariate distributions using bivariate copulas and D-vine copulas

Bivariate copulas

Outline

- Risk in feed-in of solar power
- Visualization of data
- Modeling idea

Bivariate copulas

- Archimedean copulas
- Fitting process
- Results

Vine copulas

- D-vine copulas
- Fitting process
- Results

Copula theory

Bivariate copulas

A bivariate copula is the joint distribution function $C : [0, 1] \times [0, 1] \rightarrow [0, 1]$ of a 2-dimensional random vector (U, V) with components U and V uniformly distributed on [0, 1]

Copula theory

Bivariate copulas

A bivariate copula is the joint distribution function $C : [0, 1] \times [0, 1] \rightarrow [0, 1]$ of a 2-dimensional random vector (U, V) with components U and V uniformly distributed on [0, 1]

Theorem of Sklar

Let (R, S) be a 2-dimensional random vector with joint distribution function $F_{(R,S)} : \mathbb{R}^2 \to [0, 1]$ and marginal distribution functions F_R and F_S . Then, a bivariate copula function $C : [0, 1] \times [0, 1] \to [0, 1]$ exists such that

 $F_{(R,S)}(r,s) = C(F_R(r),F_S(s))$ for all $r,s \in \mathbb{R}$

Copula theory

Bivariate copulas

A bivariate copula is the joint distribution function $C : [0, 1] \times [0, 1] \rightarrow [0, 1]$ of a 2-dimensional random vector (U, V) with components U and V uniformly distributed on [0, 1]

Theorem of Sklar

Let (R, S) be a 2-dimensional random vector with joint distribution function $F_{(R,S)} : \mathbb{R}^2 \to [0, 1]$ and marginal distribution functions F_R and F_S . Then, a bivariate copula function $C : [0, 1] \times [0, 1] \to [0, 1]$ exists such that

 $F_{(R,S)}(r,s) = C(F_R(r),F_S(s))$ for all $r,s \in \mathbb{R}$

Differential form of Sklar's theorem

For the density functions $f_{(R,S)}$, f_R , f_S and c it holds that

 $f_{(R,S)}(r,s) = f_R(r) \cdot f_S(s) \cdot c(F_R(r),F_S(s))$ for all $r,s \in \mathbb{R}$

Outline

- Risk in feed-in of solar power
- Visualization of data
- Modeling idea

Bivariate copulas

- Archimedean copulas
- Fitting process
- Results

Vine copulas

- D-vine copulas
- Fitting process
- Results

Definition of Archimedean copulas

Archimedean generator

A function $g : [0, 1] \rightarrow [0, \infty]$ is called Archimedean generator if g is continuous, strictly decreasing and solves g(1) = 0.

Definition of Archimedean copulas

Archimedean generator

A function $g : [0, 1] \rightarrow [0, \infty]$ is called Archimedean generator if g is continuous, strictly decreasing and solves g(1) = 0.

Pseudo-inverse

The pseudo-inverse $g^{[-1]}$ of an Archimedean generator g is an extension of the inverse function $g^{(-1)}$ defined as

$$g^{[-1]}(t) = egin{cases} g^{(-1)}(t), & ext{if } 0 \leq t \leq g(0) \ 0, & ext{if } g(0) \leq t \leq \infty. \end{cases}$$

Definition of Archimedean copulas

Archimedean generator

A function $g : [0, 1] \rightarrow [0, \infty]$ is called Archimedean generator if g is continuous, strictly decreasing and solves g(1) = 0.

Pseudo-inverse

The pseudo-inverse $g^{[-1]}$ of an Archimedean generator g is an extension of the inverse function $g^{(-1)}$ defined as

$$g^{[-1]}(t) = egin{cases} g^{(-1)}(t), & ext{if } 0 \leq t \leq g(0) \ 0, & ext{if } g(0) \leq t \leq \infty. \end{cases}$$

Arichmedian copula

The Arichmedian copula generated by g is given by

 $C(u, v) = g^{[-1]}(g(u) + g(v))$ $u, v \in [0, 1].$

Bivariate copulas

Examples of Archimedean copulas

copula family	Archimedean generator	parameter
Joe	$g(t)=-\log(1-(1-t)^\theta)$	$ heta \in [1,\infty]$
Frank	$g(t) = (-\log(rac{\exp(- heta t-1)}{\exp(- heta)-1}))^{ heta}$	$ heta \in \mathbb{R} ackslash \{ m{0} \}$
Clayton	$g(t)=rac{1}{ heta}(t^{- heta}-1)$	$ heta \in [-1,\infty) ackslash \{0\}$
Gumbel	$g(t) = (-\log(t))^{ heta}$	$ heta\in [1,\infty)$

Visualization of the copula types

Clayton with parameter $\theta = 5$

Frank with parameter $\theta = 5$

Joe with parameter $\theta = 5$

Gumbel with parameter $\theta = 5$

Outline

- Risk in feed-in of solar power
- Visualization of data
- Modeling idea

Bivariate copulas

- Archimedean copulas
- Fitting process
- Results

Vine copulas

- D-vine copulas
- Fitting process
- Results

Fitting of univariate marginal distributions

• Fit mixed beta densities $f(x) = qf_1(x) + (1 - q)f_2(x)$ with mixture parameter $q \in [0, 1]$ and beta densities $f_i : (0, 1) \to [0, \infty)$ with $f_i(x) = \frac{\Gamma(a_i+b_i)}{\Gamma(a_i)\Gamma(b_i)}x^{a_i-1}(1-x)^{b_i-1}$ and two parameters $a_i, b_i > 0$

Fitting of univariate marginal distributions

- Fit mixed beta densities $f(x) = qf_1(x) + (1 q)f_2(x)$ with mixture parameter $q \in [0, 1]$ and beta densities $f_i : (0, 1) \to [0, \infty)$ with $f_i(x) = \frac{\Gamma(a_i+b_i)}{\Gamma(a_i)\Gamma(b_i)}x^{a_i-1}(1-x)^{b_i-1}$ and two parameters $a_i, b_i > 0$
- Apply EM algorithm to estimate the parameters of the mixed beta densities

Fitting of univariate marginal distributions

- Fit mixed beta densities $f(x) = qf_1(x) + (1 q)f_2(x)$ with mixture parameter $q \in [0, 1]$ and beta densities $f_i : (0, 1) \to [0, \infty)$ with $f_i(x) = \frac{\Gamma(a_i+b_i)}{\Gamma(a_i)\Gamma(b_i)}x^{a_i-1}(1-x)^{b_i-1}$ and two parameters $a_i, b_i > 0$
- Apply EM algorithm to estimate the parameters of the mixed beta densities

• Estimate the copula parameter θ for each copula type by maximizing the likelihood function with given F_R and F_S

- Estimate the copula parameter θ for each copula type by maximizing the likelihood function with given F_R and F_S
- Choose the copula *C* by maximizing the likelihood function over all copula types

- Estimate the copula parameter θ for each copula type by maximizing the likelihood function with given F_R and F_S
- Choose the copula *C* by maximizing the likelihood function over all copula types
- The Frank copula gives us the best fit

- Estimate the copula parameter θ for each copula type by maximizing the likelihood function with given F_R and F_S
- Choose the copula *C* by maximizing the likelihood function over all copula types
- The Frank copula gives us the best fit

Fitted bivariate joint density

Outline

- Risk in feed-in of solar power
- Visualization of data
- Modeling idea

Bivariate copulas

- Archimedean copulas
- Fitting process
- Results

Vine copulas

- D-vine copulas
- Fitting process
- Results

Bivariate copulas

Computation of conditional probabilities

Computation of conditional probabilities

• Based on Sklar's theorem compute the conditional density $f_S(s \mid R = r) = \frac{f_{(R,S)}(r,s)}{f_R(r)} = f_S(s) \cdot c(F_R(r), F_S(s))$

Computation of conditional probabilities

Computation of conditional probabilities

• Based on Sklar's theorem compute the conditional density $f_S(s \mid R = r) = \frac{f_{(R,S)}(r,s)}{f_R(r)} = f_S(s) \cdot c(F_R(r), F_S(s))$

• Compute the conditional probabilities $P(v, r) = P(S \ge v \mid R = r) = \int_{v}^{1} f_{S}(s \mid R = r) ds$

Bivariate copulas

Conditional probabilities for a critical event

Normalized global radiation forecast

Conditional probabilities for threshold v = 0.7

Conditional probabilities for threshold v = 0.8

Conditional probabilities for a critical event

Normalized global radiation forecast

Conditional probabilities for threshold v = 0.7

Normalized solar power supply

Conditional probabilities for threshold v = 0.8

Outline

General cor

- Risk in feed-in of solar power
- Visualization of data
- Modeling idea

Bivariate copulas

- Archimedean copulas
- Fitting process
- Results

Vine copulas

- D-vine copulas
- Fitting process
- Results

Multivariate copulas

An *n*-dim. copula is the joint distribution function $C : [0, 1]^n \rightarrow [0, 1]$ of an *n*-dim. random vector (U_1, \ldots, U_n) , whose components U_i are uniformly distributed on [0, 1]

Multivariate copulas

An *n*-dim. copula is the joint distribution function $C : [0, 1]^n \rightarrow [0, 1]$ of an *n*-dim. random vector (U_1, \ldots, U_n) , whose components U_i are uniformly distributed on [0, 1]

Vine copula

A vine copula is obtained by decomposing a multivariate density into conditional densities and applying Sklar's theorem sequentially to each conditional density

Multivariate copulas

An *n*-dim. copula is the joint distribution function $C : [0, 1]^n \rightarrow [0, 1]$ of an *n*-dim. random vector (U_1, \ldots, U_n) , whose components U_i are uniformly distributed on [0, 1]

Vine copula

A vine copula is obtained by decomposing a multivariate density into conditional densities and applying Sklar's theorem sequentially to each conditional density

Vine copulas as families of trees

We can interpret a vine copula as a family of trees, where

Multivariate copulas

An *n*-dim. copula is the joint distribution function $C : [0, 1]^n \rightarrow [0, 1]$ of an *n*-dim. random vector (U_1, \ldots, U_n) , whose components U_i are uniformly distributed on [0, 1]

Vine copula

A vine copula is obtained by decomposing a multivariate density into conditional densities and applying Sklar's theorem sequentially to each conditional density

Vine copulas as families of trees

We can interpret a vine copula as a family of trees, where

each edge is a conditional bivariate copula

Multivariate copulas

An *n*-dim. copula is the joint distribution function $C : [0, 1]^n \rightarrow [0, 1]$ of an *n*-dim. random vector (U_1, \ldots, U_n) , whose components U_i are uniformly distributed on [0, 1]

Vine copula

A vine copula is obtained by decomposing a multivariate density into conditional densities and applying Sklar's theorem sequentially to each conditional density

Vine copulas as families of trees

We can interpret a vine copula as a family of trees, where

- each edge is a conditional bivariate copula
- each node is a conditional cumulative distribution function

R-vine

A regular vine (short: R-vine) *V* on *n* elements is a family of trees $\{\mathcal{T}_1, \ldots, \mathcal{T}_{n-1}\}$ with edges $E(V) = E_1 \cup \ldots \cup E_{n-1}$, such that 1. $\mathcal{T}_1 = (N_1, E_1)$ is a connected tree with nodes $N_1 = \{1, \ldots, n\}$ and edges E_1 2. \mathcal{T}_k is a tree with nodes $N_k = E_{k-1}$ for all $k \in \{2, \ldots, n-1\}$ 3. $\#(e_1 \Delta e_2) = 2$ for all $\{e_1, e_2\} \in E_k$ with $k \in \{2, \ldots, n-1\}$

R-vine

A regular vine (short: R-vine) *V* on *n* elements is a family of trees $\{\mathcal{T}_1, \ldots, \mathcal{T}_{n-1}\}$ with edges $E(V) = E_1 \cup \ldots \cup E_{n-1}$, such that 1. $\mathcal{T}_1 = (N_1, E_1)$ is a connected tree with nodes $N_1 = \{1, \ldots, n\}$ and edges E_1 2. \mathcal{T}_k is a tree with nodes $N_k = E_{k-1}$ for all $k \in \{2, \ldots, n-1\}$ 3. $\#(e_1 \Delta e_2) = 2$ for all $\{e_1, e_2\} \in E_k$ with $k \in \{2, \ldots, n-1\}$

R-vine decomposition

The decomposition of a n-dim. density $f_{1,...,n}$ corresponding to an R-vine V with edges E(V) is given by

$$f_{1,...,n} = \prod_{e \in E(V)} c_{t_1,t_2|S(e)}(F_{t_1|S(e)},F_{t_2|S(e)}) \cdot \prod_{j=1}^{n} f_j,$$

where S(e) is the so-called conditioning set, $T(e) = \{t_1, t_2\}$ is the conditioned set of the edge *e* and *f_j* are the one-dim. marginal densities

Outline

General cor

- Risk in feed-in of solar power
- Visualization of data
- Modeling idea

Bivariate copulas

- Archimedean copulas
- Fitting process
- Results

Vine copulas

- D-vine copulas
- Fitting process
- Results

D-vine copulas

D-vines

• D-vines are a special type of R-vine

D-vine copulas

D-vines

- D-vines are a special type of R-vine
- Each node is connected to not more than 2 edges

D-vine copulas

D-vines

- D-vines are a special type of R-vine
- Each node is connected to not more than 2 edges

• For each edge in $E_k = \{e_1, \dots, e_{n-k}\}$ the conditioned set is $T(e_i) = \{i, i + k\}$ and the conditioning set is $S(e_i) = \{i + 1, \dots, i + k - 1\}$

D-vine copulas

D-vines

- D-vines are a special type of R-vine
- Each node is connected to not more than 2 edges

• For each edge in $E_k = \{e_1, \dots, e_{n-k}\}$ the conditioned set is $T(e_i) = \{i, i + k\}$ and the conditioning set is $S(e_i) = \{i + 1, \dots, i + k - 1\}$

For 3-dim. densities a D-vine corresponds to following decomposition:

$$\begin{aligned} f_{1,2,3}(x_1, x_2, x_3) = & f_{3|1,2}(x_3 \mid x_1, x_2) f_{2|1}(x_2 \mid x_1) f_1(x_1) \\ = & c_{1,3|2}(F_{1|2}(x_1 \mid x_2), F_{3|2}(x_3 \mid x_2)) f_{3|2}(x_3 \mid x_2) f_{2|1}(x_2 \mid x_1) f_1(x_1) \\ = & c_{1,3|2}(F_{1|2}(x_1 \mid x_2), F_{3|2}(x_3 \mid x_2)) c_{2,3}(F_2(x_2), F_3(x_3)) f_3(x_3) \\ & c_{1,2}(F_1(x_1), F_2(x_2)) f_2(x_2) f_1(x_1) \end{aligned}$$

D-vine copulas

D-vine structure for 5 random variables

The decomposition of an *n*-dim. density corresponding to D-vines is:

$$f_{1,\dots,n}(x_1,\dots,x_n) = \prod_{k=1}^{n-1} \prod_{i=1}^{n-k} c_{i,i+k|i+1,\dots,i+k-1}(F_{i|i+1,\dots,i+k-1}(x_i \mid x_{i+1},\dots,x_{i+k-1})),$$

$$F_{i+k|i+1,\dots,i+k-1}(x_{i+k} \mid x_{i+1},\dots,x_{i+k-1})) \cdot \prod_{j=1}^{n} f_j(x_j)$$

Outline

General co

- Risk in feed-in of solar power
- Visualization of data
- Modeling idea

Bivariate copulas

- Archimedean copulas
- Fitting process
- Results

Vine copulas

- D-vine copulas
- Fitting process
- Results

Fitting of vine copulas

Sequential estimation

The following steps are applied, starting with the first row: Step 0: Fit the marginal cdfs Step 1: Transform the data based on the computed cdfs Step 2: Fit bivariate copulas to the transformed data Step 3: Compute conditional cdfs using the bivariate copulas Step 4: Repeat Step 1-3 till the end

Fitting a D-vine with 4 random variables

Fitting of vine copulas

Sequential estimation

The following steps are applied, starting with the first row: Step 0: Fit the marginal cdfs Step 1: Transform the data based on the computed cdfs Step 2: Fit bivariate copulas to the transformed data Step 3: Compute conditional cdfs using the bivariate copulas Step 4: Repeat Step 1-3 till the end

Fitting of bivariate copulas

Apply ML estimation to fit one-parametric Archimedean copulas

Fitting a D-vine with 4 random variables

Outline

General co

- Risk in feed-in of solar power
- Visualization of data
- Modeling idea

Bivariate copulas

- Archimedean copulas
- Fitting process
- Results

Vine copulas

- D-vine copulas
- Fitting process
- Results

Compute conditional probabilities

Goal

c1

For a predefined threshold v and feed-in points p_1, \ldots, p_n compute the conditional probabilities $P(S_1 + \ldots + S_n \ge v \mid R_1 = r(p_1, t), \ldots, R_n = r(p_n, t))$ given global radiation forecasts $r(p_1, t), \ldots, r(p_n, t)$ and forecast time t

Application of D-vine copulas

Fit an n + 1-dim. D-vine copula to the random vector $(R_1, \ldots, R_n, S_1 + \ldots + S_n)$

Computation of conditional probabilities

Based on the fitted D-vine copula we compute

$$P(S_1 + ... + S_n \ge v | R_1 = r(p_1, t), ..., R_n = r(p_n, t)) =$$

$$\int_{V}^{T} c_{1,n+1|2,...,n}(F_{1|2,...,n}(r(p_{1},t) \mid r(p_{2},t),...,r(p_{n},t)),$$

$$F_{n+1|2,...,n}(s \mid r(p_{1},t),...,r(p_{n-1},t)))ds$$

Conditional probabilities calculated by multivariate D-vines

Normalized global radiation forecast

Conditional probabilities for threshold v = 0.7

Conditional probabilities for threshold v = 0.8

Conditional probabilities calculated by multivariate D-vines

Normalized global radiation forecast

Conditional probabilities for threshold v = 0.7

Normalized aggregated solar power supply

Conditional probabilities for threshold v = 0.8

Literature

- Karimi, M., Mokhlis, H., Naidu, K., Uddin, S. and Bakar, A.H.A., 2016. Photovoltaic penetration issues and impacts in distribution network - A review. Renewable and Sustainable Energy Reviews, 53, 594-605.
- Dempster, A. P., Laird, N. M., and Rubin, D. B., 1977. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1), 1-22.
 - Nelsen, R.B., 2006. An Introduction to Copulas. Springer.
- Joe, H., 2014. Dependence Modeling with Copulas. Chapman and Hall/CRC.
- von Loeper, F., Schaumann, P., de Langlard, M., Hess, R., Bäsmann, R. and Schmidt, V., 2019. Probabilistic prediction of solar power supply to distribution networks, using forecasts of global radiation. Preprint (submitted)