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Risk in feed-in of solar power

Motivation
Increase in solar plants→ voltage violations and overloading problems

Solar plants are curtailed→ High costs and loss of energy
Data-based predictions might reduce unnecessary curtailment

Data
Timeframe: May, June and July of the years 2015-2017 (11-12 UTC)

Global radiation forecasts generated by Deutscher Wetterdienst (DWD)
Solar power supply measured by a distribution network operator in
Northern Bavaria (MDN)

Goal
Predict the risk of solar power supply exceeding critical thresholds
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Visualization of data

Global radiation forecast (in J/cm2)
for July 07, 2017 11-12 UTC

Measured solar power supply (in MW )
for July 07, 2017 11-12 UTC

Interpolated global radiation forecast
for July 07, 2017 11-12 UTC
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Copula models

Random variables
R: (Normalized) global radiation forecast
S: (Normalized) solar power supply

Goals
For a predefined threshold v and feed-in points p1, . . . ,pn compute the
conditional probabilities

P(S1 ≥ v | R1 = r(p1, t))

P(S1 + . . .+ Sn ≥ v | R1 = r(p1, t), . . . ,Rn = r(pn, t))

given global radiation forecasts r(p1, t), . . . , r(pn, t) and forecast time t

Modeling approach

Fit univariate marginal distributions
Fit bivariate and multivariate distributions using bivariate copulas and
D-vine copulas
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Copula theory

Bivariate copulas
A bivariate copula is the joint distribution function C : [0,1]× [0,1]→ [0,1] of
a 2-dimensional random vector (U,V ) with components U and V uniformly
distributed on [0,1]

Theorem of Sklar
Let (R,S) be a 2-dimensional random vector with joint distribution function
F(R,S) : R2 → [0,1] and marginal distribution functions FR and FS. Then, a
bivariate copula function C : [0,1]× [0,1]→ [0,1] exists such that

F(R,S)(r , s) = C(FR(r),FS(s)) for all r , s ∈ R

Differential form of Sklar’s theorem
For the density functions f(R,S), fR , fS and c it holds that

f(R,S)(r , s) = fR(r) · fS(s) · c(FR(r),FS(s)) for all r , s ∈ R
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Definition of Archimedean copulas

Archimedean generator
A function g : [0,1]→ [0,∞] is called Archimedean generator if g is
continuous, strictly decreasing and solves g(1) = 0.

Pseudo-inverse
The pseudo-inverse g[−1] of an Archimedean generator g is an extension of
the inverse function g(−1) defined as

g[−1](t) =

{
g(−1)(t), if 0 ≤ t ≤ g(0)

0, if g(0) ≤ t ≤ ∞.

Arichmedian copula
The Arichmedian copula generated by g is given by

C(u, v) = g[−1](g(u) + g(v)) u, v ∈ [0,1].
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Examples of Archimedean copulas

copula family Archimedean generator parameter
Joe g(t) = − log(1− (1− t)θ) θ ∈ [1,∞]

Frank g(t) = (− log( exp(−θt−1)
exp(−θ)−1 ))θ θ ∈ R\{0}

Clayton g(t) = 1
θ (t−θ − 1) θ ∈ [−1,∞)\{0}

Gumbel g(t) = (− log(t))θ θ ∈ [1,∞)
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Visualization of the copula types

Clayton with parameter θ = 5

Frank with parameter θ = 5

Joe with parameter θ = 5

Gumbel with parameter θ = 5
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Fitting of univariate marginal distributions

Fit mixed beta densities f (x) = qf1(x) + (1− q)f2(x) with mixture
parameter q ∈ [0,1] and beta densities fi : (0,1)→ [0,∞) with
fi (x) = Γ(ai +bi )

Γ(ai )Γ(bi )
xai−1(1− x)bi−1 and two parameters ai ,bi > 0

Apply EM algorithm to estimate the parameters of the mixed beta
densities

Global radiation forecast data Solar power supply data
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Fitting bivariate copulas

Estimate the copula parameter θ for each copula type by maximizing the
likelihood function with given FR and FS

Choose the copula C by maximizing the likelihood function over all
copula types
The Frank copula gives us the best fit

Fitted bivariate joint density
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Computation of conditional probabilities

Computation of conditional probabilities
Based on Sklar’s theorem compute the conditional density
fS(s | R = r) =

f(R,S)(r ,s)

fR(r) = fS(s) · c(FR(r),FS(s))

Compute the conditional probabilities
P(v , r) = P(S ≥ v | R = r) =

∫ 1
v fS(s | R = r)ds

Conditional densities given the global radiation
forecasts r for r = 0.1, 0.3, 0.5, 0.7 and 0.9
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Conditional probabilities for a critical event

Normalized global radiation forecast

Conditional probabilities for threshold v = 0.7

Normalized solar power supply

Conditional probabilities for threshold v = 0.8
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Vine copulas

Multivariate copulas
An n-dim. copula is the joint distribution function C : [0,1]n → [0,1] of an
n-dim. random vector (U1, . . . ,Un), whose components Ui are uniformly
distributed on [0,1]

Vine copula
A vine copula is obtained by decomposing a multivariate density into
conditional densities and applying Sklar’s theorem sequentially to each
conditional density

Vine copulas as families of trees
We can interpret a vine copula as a family of trees, where

each edge is a conditional bivariate copula
each node is a conditional cumulative distribution function
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R-vine
A regular vine (short: R-vine) V on n elements is a family of trees
{T1, . . . , Tn−1} with edges E(V ) = E1 ∪ . . . ∪ En−1, such that
1. T1 = (N1,E1) is a connected tree with nodes N1 = {1, . . . ,n} and edges E1
2. Tk is a tree with nods Nk = Ek−1 for all k ∈ {2, . . . ,n − 1}
3. #(e1∆e2) = 2 for all {e1,e2} ∈ Ek with k ∈ {2, . . . ,n − 1}

R-vine decomposition
The decomposition of a n-dim. density f1,...,n corresponding to an R-vine V
with edges E(V ) is given by

f1,...,n =
∏

e∈E(V )

ct1,t2|S(e)(Ft1|S(e),Ft2|S(e)) ·
n∏

j=1

fj ,

where S(e) is the so-called conditioning set, T (e) = {t1, t2} is the conditioned
set of the edge e and fj are the one-dim. marginal densities
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D-vine copulas

D-vines
D-vines are a special type of R-vine

Each node is connected to not more
than 2 edges
For each edge in Ek = {e1, . . . ,en−k}
the conditioned set is
T (ei ) = {i , i + k} and the conditioning
set is S(ei ) = {i + 1, . . . , i + k − 1}

For 3-dim. densities a D-vine corresponds
to following decomposition:

D-vine structure for 3 random variables

f1,2,3(x1, x2, x3) =f3|1,2(x3 | x1, x2)f2|1(x2 | x1)f1(x1)

=c1,3|2(F1|2(x1 | x2),F3|2(x3 | x2))f3|2(x3 | x2)f2|1(x2 | x1)f1(x1)

=c1,3|2(F1|2(x1 | x2),F3|2(x3 | x2))c2,3(F2(x2),F3(x3))f3(x3)

c1,2(F1(x1),F2(x2))f2(x2)f1(x1)
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D-vine copulas

D-vine structure for 5 random variables

The decomposition of an n-dim. density corresponding to D-vines is:

f1,...,n(x1, . . . , xn) =
n−1∏
k=1

n−k∏
i=1

ci,i+k|i+1,...,i+k−1(Fi|i+1,...,i+k−1(xi | xi+1, . . . , xi+k−1),

Fi+k|i+1,...,i+k−1(xi+k | xi+1, . . . , xi+k−1)) ·
n∏

j=1

fj (xj )
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Fitting of vine copulas

Sequential estimation
The following steps are applied,
starting with the first row:
Step 0: Fit the marginal cdfs
Step 1: Transform the data based on
the computed cdfs
Step 2: Fit bivariate copulas to the
transformed data
Step 3: Compute conditional cdfs
using the bivariate copulas
Step 4: Repeat Step 1-3 till the end

Fitting of bivariate copulas
Apply ML estimation to fit
one-parametric Archimedean copulas

Fitting a D-vine with 4 random variables
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Compute conditional probabilities

Goal
For a predefined threshold v and feed-in points p1, . . . ,pn compute the
conditional probabilities P(S1 + . . .+ Sn ≥ v | R1 = r(p1, t), . . . ,Rn = r(pn, t))
given global radiation forecasts r(p1, t), . . . , r(pn, t) and forecast time t

Application of D-vine copulas
Fit an n + 1-dim. D-vine copula to the random vector (R1, . . . ,Rn,S1 + . . .+ Sn)

Computation of conditional probabilities
Based on the fitted D-vine copula we compute

P(S1 + . . .+ Sn ≥ v | R1 = r(p1, t), . . . ,Rn = r(pn, t)) =∫ 1

v
c1,n+1|2,...,n(F1|2,...,n(r(p1, t) | r(p2, t), . . . , r(pn, t)),

Fn+1|2,...,n(s | r(p1, t), . . . , r(pn−1, t)))ds
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Conditional probabilities calculated by multivariate D-vines

Normalized global radiation forecast

Conditional probabilities for threshold v = 0.7

Normalized aggregated solar power supply

Conditional probabilities for threshold v = 0.8
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