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Setting

Data-generating model : dXt = A(Xt)dt+ C(Xt−)dZt,

Statistical model : dXt = a(Xt, α)dt+ c(Xt−, γ)dZt

• Our estimation target: θ := (γ, α) ∈ Θγ × Θα := Θ, and the
parameter space Θ is a bounded convex space.

• The parameter spaces Θγ and Θα are subsets of Rpγ and Rpα ,
respectively.

• The drift coefficients A and a, and the scale coefficients C and c
are Lipschitz continuous, and smooth enough, and they and their
derivatives are of at most polynomial growth. We further suppose
that 1/c and 1/C are bounded away from 0.
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Setting (cont’d)
• The driving noise Z is a standard Wiener process (hereafter it is

sometimes written as w), or a pure-jump Lévy process with
E[Zt] = 0, E[Z2

t ] = t, E[|Zt|q] < ∞, and E[|Xt|q] < ∞ for
any q > 0. Furthermore, we assume that the Blumenthal-Getoor
index (BG-index) of Z is smaller than 2, that is, for the Lévy
measure ν0 of Z,

β := inf
γ

{
γ ≥ 0 :

∫
|z|≤1

|z|γν0(dz) < ∞
}
< 2.

• There exists a probability measure π0 such that for every q > 0, we
can find constants a > 0 and Cq > 0 for which

sup
t∈R+

exp(at)||Pt(x, ·) − π0(·)||hq ≤ Cqhq(x),

for any x ∈ R where hq(x) := 1 + |x|q.
• Then we have the ergodic theorem: as T → ∞, for any polynomial

growth function f , 1
T

∫ T

0 f(Xt)dt
p−→
∫
f(x)π0(dx).
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Setting (cont’d)
• Observation: From the solution process X, we suppose that we

observe discrete but high-frequency samples (Xtj )n
j=0 under the

so-called “rapidly increasing design":
tj := tnj = jhn, Tn := nhn → ∞, nh2

n → 0.
• Model misspecification: Our statistical model is possibly

misspecified, i.e., for all θ ∈ Θ, A(x) ̸= a(x, α) and
C(x) ̸= c(x, γ) on the set S, and π0(S) > 0.

• In general, we cannot avoid the model misspecification. The theory
of misspecified models is considered in many papers. For example,
Berk (1966), Huber (1967), and White (1984), to mention few.
Especially, for stochastic differential equation models, see McKeague
(1984), Uchida and Yoshida (2011), Kutoyants (2017), Uehara
(2019), and so on.

• In this talk, we consider the four cases: the correctly specified
diffusion case, the misspecified diffusion case, the correctly specified
pure-jump Lévy driven case, and the misspecified pure-jump Lévy
driven case.
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Gaussian quasi-likelihood estimation
• ∆jX := Xtj −Xtj−1 , ∆jZ := Ztj − Ztj−1 ,
fs(θ) := f(Xs−, θ), fj(θ) := f(Xtj , θ), ϕ(x;µ,Σ): the
density function of the normal distribution whose mean and variance
are µ and Σ, respectively.

• We define the Gaussian quasi-likelihood estimator θ̂n := (γ̂n, α̂n)
by

γ̂n = argmax
γ∈Θ̄γ

n∑
j=1

logϕ(∆jX; 0, hnc
2
j−1(γ)),

α̂n = argmax
α∈Θ̄α

n∑
j=1

logϕ(∆jX;hnaj−1(α), hnc
2
j−1(γ̂n)).

• The asymptotic behavior of θ̂n is studied in all cases, for instance,
see Kessler (1997), Uchida and Yoshida (2011), Masuda (2013), and
Uehara (2019).
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Optimal value

• We define the optimal value θ⋆ := (γ⋆, α⋆) by

γ⋆ := argmax
γ∈Θ̄γ

∫
R

−
(

log c2(x, γ) +
C2(x)
c2(x, γ)

)
π0(dx)(=: G1(γ)),

α⋆ := argmax
α∈Θ̄α

∫
R

−
(A(x) − a(x, α))2

c2(x, γ⋆)
π0(dx)(=: G2(α)).

• In the correctly specified case, the optimal value θ⋆ corresponds to
the true value.

• We assume the model separability

G1(γ) − G1(γ⋆) ≤ −χγ |γ − γ⋆|2,

G2(α) − G2(α⋆) ≤ −χα|α− α⋆|2.
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Misspecification bias
We illustrate how the misspecification effect appears (since the drift part
is almost the same, we look at the scale part).

• In the misspecified diffusion case,

scaled (quasi-)score function =
1

√
Tn

∫ Tn

0
b(Xs, θ

⋆)ds+ op(1)

• In the misspecified pure-jump Lévy driven case,

scaled (quasi-)score function =
1

√
Tn

∫ Tn

0

∫
R
m̄(Xs−, θ

⋆)Ñ(ds, dz)

CLT term

+
1

√
Tn

∫ Tn

0
b(Xs, θ

⋆)ds+ op(1).

• ν0 and Ñ(ds, dz) = N(ds, dz) − dsν0(dz) are the
corresponding compensated Poisson random measure, and Lévy
measure, respectively.
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Misspecification bias

• b is the misspecification bias, and
∫
b(x, θ⋆)π0(dx) = 0.

Especially, b ≡ 0 in the correctly specified case.
• Although the limit theory for integrals of functional of Markov

process is developed in some literature (e.g. Bhattacharya (1982),
Komorowski and Walczuk (2012)), its sufficient conditions are
difficult to check or the joint asymptotic distribution with the main
term is not trivial.

• How to correct the misspecification bias?
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Diffusion case (Uchida and Yoshida (2011))

• Let A be the infinitesimal generator of X.
• Itô’s formula: for a smooth enough f ,
f(Xt) = f(X0) +

∫ t

0 Af(Xs)ds+
∫
∂xf(Xs)C(Xs)dws.

• If there exists a function f solving Af = b, we can transform the
bias term:∫ Tn

0
b(Xs, θ

⋆)ds = f(XTn)−f(X0)−
∫ Tn

0
∂xf(Xs)C(Xs)dws.

• Since the equation Af = b (so-called Poisson equation) is the
second order differential equation, the existence of the solution and
its regularity is ensured (cf. Pardoux and Veretennikov (2001)).
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Pure-jump Lévy driven case (Uehara (2019))
• We cannot apply the same approach as the diffusion case since the

equation Af = b has the integral operator with respect to the Lévy
measure.

• Instead of A, we consider the extended infinitesimal generator Ã of
X, and the corresponding extended Poisson equations (cf. Kulik
and Veretennikov (2011)).

Definition (Kulik and Veretennikov (2011))
We say that a measurable function g : R → R belongs to the domain of
the extended generator Ã of a càdlàg homogeneous Feller Markov
process Y taking values in R if there exists a measurable function
b : R → R such that the process

g(Yt) −
∫ t

0
b(Ys)ds, t ∈ R+,

is well defined and is a local martingale with respect to the natural
filtration of Y and every measure Px(·) := P (·|Y0 = x), x ∈ R. For
such a pair (g, b), we write g ∈ Dom(Ã) and Ãg EP E= b.
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Pure-jump Lévy driven case (cont’d)

Uehara (2019), Proposition 3.5
The potential function

g(x) :=
∫ ∞

0
Ex[b(Xt, θ

⋆)]dt

is the unique solution of Ãg = b, and it satisfies that for all p ∈ (1,∞)
and q = p

p−1 ,

sup
x,y∈R,x ̸=y

|g(x) − g(y)|
|x− y|1/p(1 + |x|q + |y|q)

< ∞.

• Combined with the martingale representation theorem, we have a
similar transformation to the diffusion case.
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Asymptotic distribution

• Let An := diag{anIpγ ,
√
TnIpα} where an =

√
n in the

correctly specified diffusion case, and otherwise, an =
√
Tn.

Theorem
• Tail probability estimates: for any L > 0 and r > 0, there exists a

positive constant CL such that

sup
n∈N

P
(∣∣∣An(θ̂n − θ⋆)

∣∣∣ > r
)

≤
CL

rL
. (1)

• Asymptotic normality:

An(θ̂n − θ⋆) L−→ N(0,I−1Σ(I−1)⊤).
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The form of I

• The matrix I =
(

Iγ O
Iαγ Iα

)
is common and defined as

Iγ = 4
∫
R

(∂γc(x, γ⋆))⊗2

c4(x, γ⋆)
C2(x)π0(dx)

− 2
∫
R

∂γ(c(x, γ⋆)∂γc(x, γ⋆))
c4(x, γ⋆)

(C2(x) − c2(x, γ⋆))π0(dx),

Iα = 2
∫
R

(∂αa(x, α⋆))⊗2

c2(x, γ⋆)
π0(dx)

− 2
∫
R

∂⊗2
α a(x, α⋆)
c2(x, γ⋆)

(A(x) − a(x, α⋆))π0(dx),

Iαγ = 2
∫
R
∂αa(x, α⋆)∂⊤

γ c
−2(x, γ⋆)(a(x, α⋆) −A(x))π0(dx).

• It is easy to construct a consistency estimator În of I.
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The form of Σ (correctly specified diffusion case)

Σ = 2I = 2 diag{Iγ ,Iα}

=

8
∫
R

(∂γ c(x,γ⋆))⊗2

c2(x,γ⋆) π0(dx) O

O 4
∫
R

(∂αa(x,α⋆))⊗2

c2(x,γ⋆) π0(dx)

 .
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The form of Σ (misspecified diffusion case)

Σγ = 4
∫

(∂xf1(x)C(x))⊗2π0(dx),

Σαγ = 4
∫ (

∂αa(x, α⋆)
c2(x, γ⋆)

− ∂xf2(x)
)
C2(x)(∂xf1(x))⊤π0(dx),

Σα = 4
∫ [(

∂αa(x, α⋆)
c2(x, γ⋆)

− ∂xf2(x)
)
C(x)

]⊗2

π0(dx),

where the functions f1 and f2 are the solution of the following Poisson
equations:

Af (j1)
1 (x) =

∂γ(j1)c(x, γ⋆)
c3(x, γ⋆)

(c2(x, γ⋆) − C2(x)),

Af (j2)
2 (x) =

∂α(j2)a(x, α⋆)
c2(x, γ⋆)

(A(x) − a(x, α⋆)),

for j1 ∈ {1, . . . , pγ} and j2 ∈ {1, . . . , pα}.
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The form of Σ (pure-jump Lévy driven case)

Σγ = 4
∫
R

∫
R

(
∂γc(x, γ⋆)
c3(x, γ⋆)

C2(x)z2 + g1(x+ C(x)z) − g1(x)
)⊗2

π0(dx)ν0(dz),

Σαγ = −4
∫
R

∫
R

(
∂γc(x, γ⋆)
c3(x, γ⋆)

C2(x)z2 + g1(x+ C(x)z) − g1(x)
)

(
∂αa(x, α⋆)
c2(x, γ⋆)

C(x)z + g2(x+ C(x)z) − g2(x)
)⊤

π0(dx)ν0(dz),

Σα = 4
∫
R

∫
R

(
∂αa(x, α⋆)
c2(x, γ⋆)

C(x)z + g2(x+ C(x)z) − g2(x)
)⊗2

π0(dx)ν0(dz),

where the functions g1 and g2 are the solution of the following extended
Poisson equations:

Ãg(j1)
1 (x) EP E= −

∂γ(j1)c(x, γ⋆)
c3(x, γ⋆)

(c2(x, γ⋆) − C2(x)),

Ãg(j2)
2 (x) EP E= −

∂α(j2)a(x, α⋆)
c2(x, γ⋆)

(A(x) − a(x, α⋆)),

for j1 ∈ {1, . . . , pγ} and j2 ∈ {1, . . . , pα} (In the correctly specified
case, g1 and g2 are identically 0).
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Numerical experiment
We suppose that the data-generating model is the following Lévy driven
Ornstein-Uhlenbeck model:

dXt = −
1
2
Xtdt+ dZt, X0 = 0,

and that the parametric model is described as:

dXt = α(1 −Xt)dt+
γ√

1 +X2
t

dZt, α, γ > 0.

We conduct numerical experiments in the four situations:

1. L(Zt) = NIG(10, 0, 10t, 0),

2. L(Zt) = bGamma(t,
√

2, t,
√

2),

3. L(Zt) = NIG(25/3, 20/3, 9/5t,−12/5t),

4. L(Zt) = N(0, t).

We generated 10000 paths of each SDE based on Euler-Maruyama
scheme and constructed the estimators.
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Density plot at t = 1
Figure: (i) NIG(10, 0, 10, 0) (black dotted line), (ii)
bGamma(1,

√
2, 1,

√
2) (green line), (iii) NIG(25/3, 20/3, 9/5,−12/5)

(blue line), and N(0, 1) (red line).
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Estimators

Solving the corresponding estimating equations, the GQMLE are
calculated as:

α̂n = −
∑n

j=1(Xj−1 − 1)(Xj −Xj−1)(X2
j−1 + 1)

hn

∑n
j=1(Xj − 1)2(X2

j−1 + 1)
,

γ̂n =

√√√√ 1
Tn

n∑
j=1

(Xj −Xj−1)2(X2
j−1 + 1).
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Optimal values

Since

G1(γ) = −2 log γ −
2
γ2 +

∫
R

log(1 + x2)π0(dx),

G2(α) = −
1
γ⋆

[
1
4

∫
R
x3π0(dx) + α

(
1 −

∫
R
x3π0(dx) +

∫
R
x4π0(dx)

)

+ α2
(

3 − 2
∫
R
x3π0(dx) +

∫
R
x4π0(dx)

)]
,

the optimal values γ⋆ and α⋆ are calculated as

γ⋆ =
√

2,

α⋆ =
1 −

∫
R x

3π0(dx) +
∫
R x

4π0(dx)
2(3 − 2

∫
R x

3π0(dx) +
∫
R x

4π0(dx))
.
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Results

Table: The performance of our estimators; the mean is given with the standard
deviation in parenthesis. The target optimal values are given in the first line of
each items.

Tn n hn (i) (0.33,1.41) (ii) (0.37, 1.41) (iii) (0.37, 1.41) diffusion (0.33, 1.41)
α̂n γ̂n α̂n γ̂n α̂n γ̂n α̂n γ̂n

50 1000 0.05 0.38 1.41 0.40 1.39 0.40 1.39 0.38 1.41
(0.12) (0.11) (0.16) (0.29) (0.15) (0.19) (0.13) (0.10)

100 5000 0.02 0.37 1.41 0.39 1.39 0.38 1.39 0.36 1.41
(0.09) (0.08) (0.11) (0.23) (0.11) (0.15) (0.09) (0.08)

100 10000 0.01 0.36 1.41 0.37 1.39 0.38 1.40 0.36 1.41
(0.08) (0.07) (0.09) (0.22) (0.10) (0.15) (0.08) (0.07)
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Summary of Gaussian quasi-likelihood estimator

• Even though the model is misspecified, the Gaussian quasi-likelihood
estimator has the consistency and asymptotic normality.

• However, it is hard to construct a consistent estimator of its
asymptotic variance due to the solution of the (extended) Poisson
equations which is essential to correct the misspecification bias.

• To conduct fundamental statistical methods, we need to
approximate AnI1/2

n (θ̂n − θ⋆).
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Estimating equations

• To approximate the distribution of AnI1/2
n (θ̂n − θ⋆), we consider

a bootstrap method.
• Regard the Gaussian quasi-likelihood estimator as a root of the

estimating equations:
n∑

j=1

∂γcj−1(γ)
c3

j−1(γ)

{
hnc

2
j−1(γ) − (∆jX)2

}
= 0,

n∑
j=1

∂αaj−1(α)
c2

j−1(γ̂n)
(∆jX − hnaj−1(α)) = 0.
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Weighted bootstrap method for estimating equations
(Chatterjee and Bose (2005))

• We now consider the situation where samples {Yj}n
j=1 are in hand.

• We define Z-estimator β̂n as a root of the estimating equation:
n∑

j=1

ψ(Yj, β) = 0,

where ψ is an appropriate function, β⋆ is the optimal value, and
(ψ(Yj, β

⋆))n
j=1 is a martingale difference.

• The consistency and asymptotic normality of β̂n can be shown
under sufficient regularity conditions.
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Weighted bootstrap estimator

• We define the weighted bootstrap estimatorβ̂B
n by a root of

n∑
j=1

wjψ(Yj, β) = 0,

where the bootstrap weights (wj)n
j=1 is i.i.d. random variables

being independent of (Yj)n
j=1 and satisfies

E[w1] = 1, V ar[w1] = 1, E[w4
1] < ∞.

• We write PB as the bootstrap probability measure conditioned by
the observed data.
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F (x) := P


 n∑

j=1

∂βψ(Yj, β̂n)

1/2

(β̂n − β⋆) ≤ x

,

F B(x) := PB


 n∑

j=1

∂βψ(Yj, β̂n)

1/2

(β̂B
n − β̂n) ≤ x

.

Under sufficient regularity conditions, we have

Chatterjee and Bose (2005), Theorem 3.2
 n∑

j=1

∂βψ(Yj, β̂n)

1/2

(β̂B
n − β̂n) = −a−1

n

n∑
j=1

(wj − 1)ψ(Yj, β̂n) + rn,B, (2)

where an is the convergence rate of β̂n, and rn,B is a random variable
such that for any ϵ > 0, PB(|rnB| > ϵ) = op(1). Furthermore, it
follows that

sup
x∈R

∣∣F (x) − F B(x)
∣∣ p−→ 0.
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Bootstrap estimator

• With the bootstrap weights {wj}n
j=1, consider the bootstrap

estimator θ̃B
n := (γ̃B

n, α̃
B
n) defined by a root of

n∑
j=1

wj

∂γcj−1(γ)
c3

j−1(γ)

[
hnc

2
j−1(γ) − (∆jX)2

]
= 0,

n∑
j=1

wj

∂αaj−1(α)
c2

j−1(γ̂n)
(∆jX − hnaj−1(α)) = 0.

•
{

∂γ cj−1(γ⋆)
c3

j−1(γ⋆)

[
hnc

2
j−1(γ⋆) − (∆jX)2

]}n

j=1
and{

∂αaj−1(α⋆)
c2

j−1(γ̂n) (∆jX − hnaj−1(α⋆))
}n

j=1
are asymptotically

martingale diffenrece.
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Inconsistency
• We consider the misspecified pure-jump Lévy driven case.
• Φ(x, µ,Σ): the cumulative distribution function of the normal

distribution whose mean and variance are µ and Σ, respectively.

sup
x∈R

|P B(
√
TnÎ1/2

n (θ̃B
n − θ̂n) ≤ x) − Φ(x, 0,Σspec)| p−→ 0,

where Σspec :=
(

Σ′
γ Σ′

αγ

Σ′⊤
αγ Σ′

α

)
̸= Σmiss is defined by

Σ′
γ =

∫
R

∫
R

(
∂γc(x, γ⋆)
c3(x, γ⋆)

C2(x)z2
)⊗2

π0(dx)ν0(dz),

Σ′
αγ = −

∫
R

∫
R

(
∂γc(x, γ⋆)
c3(x, γ⋆)

C2(x)z2
)(

∂αa(x, α⋆)
c2(x, γ⋆)

C(x)z
)⊤

π0(dx)ν0(dz),

Σ′
α =

∫
R

∫
R

(
∂αa(x, α⋆)
c2(x, γ⋆)

C(x)z
)⊗2

π0(dx)ν0(dz).

• Index(j)-wise weighted bootstrap method does not reflect the effect
of the model misspecification.
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Weighted bootstrap method for block sum

Data-generating model : dXt = A(Xt)dt+ C(Xt−)dZt,

Statistical model : dXt = a(Xt, α)dt+ c(Xt−, γ)dZt

• We now consider weighted bootstrap method for block sum to
reflect the model misspecification.

• We divide {1, . . . , n} into kn-blocks (Bi)kn

i=1 defined by:

Bi := {j ∈ {1, . . . , n} : (i− 1)cn + 1 ≤ j ≤ icn} ,

where cn = n
kn

, and here cn is supposed to be a positive integer for
simplicity.
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Block weighted bootstrap estimator

• Let the bootstrap weights (wj)j=1 be i.i.d. random variables being
independent of X = (Xt)t≥t and satisfies

E[w1] = 1, V ar[w1] = 1, E[w4
1] < ∞.

• With the bootstrap weights {wi}kn

i=1, we define weighted block
bootstrap estimator θ̂B

n := (γ̂B
n, α̂

B
n) as a root of

kn∑
i=1

wi

∑
j∈Bki

∂γcj−1(γ)
c3

j−1(γ)

[
hnc

2
j−1(γ) − (∆jX)2

]
= 0,

kn∑
i=1

wi

∑
j∈Bki

∂αaj−1(α)
c2

j−1(γ̂n)
(∆jX − hnaj−1(α)) = 0.
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Asymptotic result (pure-jump Lévy driven case)
• ξ(s, z) = (ξ1(s, z), ξ2(s, z)), where

ξ1(s, z) =
∂γcs−(γ⋆)
c3

s−(γ⋆)
C2

s−z
2 + g1(Xs− + Cs−z) − g1(Xs−),

ξ2(s, z) =
∂αas−(α⋆)
c2

s−(γ⋆)
Cs−z + g2(Xs− + Cs−z) − g2(Xs−).

Theorem
1. Stochastic expansion:

AnÎ1/2
n (θ̂B

n − θ̂n)

= A−1
n

kn∑
i=1

(wi − 1)
∫ icnhn

(i−1)cnhn

∫
R

2ξ(s, z)Ñ(ds, dz) + rnB.

2. Approximation:

sup
x∈R

∣∣P B (AnÎ1/2
n

(
θ̂B

n − θ̂n

)
≤ x

)
− P

(
AnÎ1/2

n

(
θ̂n − θ⋆

)
≤ x

)∣∣ p−→ 0.
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Asymptotic result (misspecified diffusion case)

• ξ(s) = (ξ1(s), ξ2(s)), where

ξ1(s) = ∂xf1(Xs)Cs, ξ2(s) =
∂αas(α⋆) − ∂xf2(Xs)

c2
s(γ⋆)

Cs.

Theorem
1. Stochastic expansion:

AnÎ1/2
n (θ̂B

n − θ̂n)

= A−1
n

kn∑
i=1

(wi − 1)
∫ icnhn

(i−1)cnhn

2ξ(s)dws + rnB.

2. Approximation:

sup
x∈R

∣∣P B (AnÎ1/2
n

(
θ̂B

n − θ̂n

)
≤ x

)
− P

(
AnÎ1/2

n

(
θ̂n − θ⋆

)
≤ x

)∣∣ p−→ 0.
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Asymptotic result (correctly specified diffusion case)
• Recall that An becomes diag{

√
nIpγ ,

√
TnIpα} only in this case.

• Let Bn be diag{
√
nhnIpγ ,

√
TnIpα}.

• ξ(s) = (ξ1(s), ξ2(s)), where

ξ1(s) = 2
∂γcs(γ⋆)
Cs

ws, ξ2(s) =
∂αas(α⋆)

Cs

.

Theorem
1. Stochastic expansion:

AnÎ1/2
n (θ̂B

n − θ̂n) = B−1
n

kn∑
i=1

(wi − 1)
∫ icnhn

(i−1)cnhn

2ξ(s)dws + rnB.

2. Approximation:

sup
x∈R

∣∣P B (AnÎ1/2
n

(
θ̂B

n − θ̂n

)
≤ x

)
− P

(
AnÎ1/2

n

(
θ̂n − θ⋆

)
≤ x

)∣∣ p−→ 0.

• However, this bootstrap method is not a unified one since we cannot
identify An in practice.
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Balancing term

b̃2,n :=
1
n

n∑
j=1

[
(∆jX)4

3h2
n

−
2(∆jX)2c2

j−1(γ̂n)
hn

+ c4
j−1(γ̂n)

]

• To solve the problem, we introduce the balancing term
bn := b1,n + b2,n defined by

b1,n :=
∑n

j=1(∆jX)4∑n
j=1(∆jX)2 ,

b2,n := exp
[
−
(∣∣b̃2,n

∣∣+
∣∣b̃2,n

∣∣−1)]
.
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The role of b1,n

• In the diffusion case,

b1,n

3hn

p−→
∫
C4(x)π0(dx)∫
C2(x)π0(dx)

.

• In the pure-jump Lévy driven case,

b1,n
p−→
∫
C4(x)π0(dx)

∫
z4ν0(dz)∫

C2(x)π0(dx)
.

⇒The term b1.n distinguishes whether the driving noise is a standard
Wiener process or pure-jump Lévy process.
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The role of b2,n

• In the pure-jump Lévy driven case, b̃2,n → ∞.
• In the diffusion case,

b̃2,n
p−→
∫

(C2(x) − c2(x, γ⋆))2π0(dx) =: b2.

Hence, in the correctly specified case, b2 = 0, and in the
misspecified case, b2 ̸= 0.

• When x → 0 and x → ∞, the function
h(x) := exp[−(|x| + |x|−1)] to 0.

⇒b2,n distinguishes whether the misspecified diffusion case or not.
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Asymptotic behavior of bn

Proposition
1. In the correctly specified diffusion case,

bn

3hn

p−→
∫
c4(x, γ⋆)π0(dx)∫
c2(x, γ⋆)π0(dx)

.

2. In the misspecified diffusion case,

bn
p−→ exp

[
−
(
b2 + b−1

2

)]
̸= 0.

3. In the pure-jump Lévy driven case,

bn
p−→
∫
c4(x, γ⋆)π0(dx)

∫
z4ν0(dz)∫

c2(x, γ⋆)π0(dx)
.

⇒Only in the correctly specified case, the convergence rate of bn is hn.
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Modified bootstrap method

Let Ân := diag
{√

Tn

bn
Ipγ ,

√
TnIpα

}
, and B̂n := diag

{√
TnbnIpγ ,

√
TnIpα

}.
• We consider the approximation of ÂnÎ1/2

n (θ̂n − θ⋆) instead of
AnÎ1/2

n (θ̂n − θ⋆).

Theorem
For δ ∈ ( 1

2 , 1), suppose that kn = O(T δ
n).

ÂnÎ1/2
n (θ̂B

n − θ̂n)

= B̂−1
n

kn∑
i=1

(wi − 1)
∑

j∈Bki

∂γ cj−1(γ̂n)
c3

j−1(γ̂n)

{
hnc

2
j−1(γ̂n) − (∆jX)2

}
∂αaj−1(α̂n)

c2
j−1(γ̂n) (∆jX − hnaj−1(α̂n))

 + rnB.
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Approximation of the distribution

Theorem
In all cases, we have

sup
x∈R

∣∣∣P B
(
ÂnÎ1/2

n

(
θ̂B

n − θ̂n

)
≤ x

)
− P

(
ÂnÎ1/2

n

(
θ̂n − θ⋆

)
≤ x

)∣∣∣ p−→ 0.

• Thanks to this theorem, we can construct confidence intervals and
hypothesis testing based on the bootstrap quantile cB

n,q, and it has
theoretical validity.
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Remark
• To calculate cB

n,q, we need to generate L weighted bootstrap

estimators
{
θ̂B

n,l

}L

l=1
for large L ∈ N.

• The stochastic expansion suggests that in order to obtain cB
n,q, it

suffices to generate the bootstrapped quasi-score function

B̂−1
n

kn∑
i=1

(wi,l−1)
∑

j∈Bki

∂γ cj−1(γ̂n)
c3

j−1(γ̂n)

{
hnc

2
j−1(γ̂n) − (∆jX)2

}
∂αaj−1(α̂n)

c2
j−1(γ̂n) (∆jX − hnaj−1(α̂n))

 ,
instead of ÂnΓ̂n

(
θ̂B

n,l − θ̂n

)
. Importantly, its generation only

require the optimization to get θ̂n while calculating√
TnΓ̂n

(
θ̂B

n,l − θ̂n

)
entails some optimization method such as

quasi-Newton method for each l, thus resulting much smaller
computational effort.
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Summary

Data-generating model : dXt = A(Xt)dt+ C(Xt−)dZt,

Statistical model : dXt = a(Xt, α)dt+ c(Xt−, γ)dZt

• We present a constructible random vector which approximates the
distribution of the Gaussian quasi-likelihood estimator by the
weighted block bootstrap method.

• By introducing a balancing term, our method can be applied to all
cases without the specification of the case.

• Problem: How to choose the block size?
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