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Smooth isotropic random field

▶ Isotropic random field X(t), t ∈ E ⊂ Rn:

for any P ∈ O(n) and b ∈ Rn,{
X(t)

}
t∈E′⊂Rn

d
=
{
X(Pt+ b)

}
t∈E′⊂Rn ,

where E′ is any finite set of E.
▶ We assume that t 7→ X(t) is smooth.
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Excursion set

▶ The sup-level set of a function X(t) on E:

Ev = {t ∈ E | X(t) ≥ v} = X−1([v,∞))

is referred to as the excursion set.
▶ By changing the level (threshold) v, we have a filtration.
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Minkowski functional (MF)

▶ Let M ⊂ Rn be a closed set. Tube about M with radius ρ:

Tube(M,ρ) =
{
x ∈ Rn | dist(x,M) ≤ ρ

}

▶ Steiner’s formula (Schneider, 2013): For small ρ > 0,

Voln(Tube(M,ρ)) =

n∑
j=0

ρj
(
n

j

)
Mj(M)

where Mj(M) is the j-th Minkowski functional of M
▶ The Euler characteristic (EC) of M is

χ(M) = Mn(M)/ωn (Gauss-Bonnet theorem)
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MF of the excursion set Ev as a test statistic

▶ From now on, we consider the Minkowski functional Mj(Ev)

of the excursion set Ev.

Mj(Ev) can be used as a statistic for testing Gaussianity.

v

Gaussian

v

non-Gaussian

— χ(Ev)

— E[χ(Ev)] under the assumption of Gaussianity
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Applications in cosmology: Cosmic Random field

▶ Cosmic microwave background (CMB) (mode: 160.2GHz)

http://planck.cf.ac.uk/

▶ Cosmic inflation theory:

(normalized) density: X(t) = φ(t)+a2φ
2(t)+a3φ

3(t)+· · · , t ∈ R3

φ(t): isotropic Gaussian field, φ2(t) =
∫
φ(s)φ(t)K(s− t)ds,

etc.
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Isotropic “Gaussian” random field ?

▶ For k ≥ 2,

cum(X(t1), . . . , X(tk)) = O(σk−2) (σ ≪ 1)

(Decay order is the same as the CLT)

▶ Many versions of the inflation models exist. Some of them

claim Gaussianity (i.e., ai ≈ 0), and some of them claim

non-Gaussianity.

▶ In astronomy, E[Mj(Ev)] is evaluated under each model, and

is compared with the CMB observation.
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Expected Euler characteristic method

▶ The expected EC of the excursion set is used for the

approximation of the upper tail probability of the maximum of

the random field:

Pr

(
sup
t∈E

X(t) ≥ v

)
≈ E

[
χ(Ev)

]
= E

[
Mn(Ev)

]
/ωn

(Adler & Taylor, 2007; Takemura & Kuriki, 2002)
▶ This gives a p-value of the VBM data (installed in SPM):

http://www.math.mcgill.ca/keith/

▶ The purpose of this talk: To provide the formula for

E[Mj(Ev)] when X(·) is not Gaussian.
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2- and 3-point correlation

▶ The correlation functions of an isotopic random field depend

only on the pairwise distances:

E[X(s)] = 0

E[X(s)X(t)] = ρ
(1
2
∥s− t∥2

)
, ρ(0) = 1

E[X(s)X(t)X(u)] = κ
(1
2
∥s− t∥2, 1

2
∥s− u∥2, 1

2
∥t− u∥2

)
κ(x, y, z) is symmetric wrt x, y, z.

▶ We assume κ ≈ 0 but κ ̸= 0 (skewness̸= 0)
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Moving average field of a Levy measure

▶ Suppose that X(t) is generated as the Levy measure as

X(t) =

∫
Rn

g
(1
2
∥t− s∥2

)
Y (ds),

where Y (ds) is a Levy measure on Rn with the moment

structures:

E[Y (ds)] = 0

cum(Y (ds), Y (ds′)) = δ(s− s′)ds

cum(Y (ds), Y (ds′), Y (ds′′)) = κ0 · δ(s− s′)δ(s− s′′)ds

▶ When κ0 ̸= 0 but |κ0| ≪ 1, X(t) is a non-Gaussian isometric

field with weak skewness.
▶ cum(X(s), X(t), X(u)) is shown to be a symmetric function

in ∥s− t∥, ∥s− u∥, ∥t− u∥ (not trivial).
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Expected Minkowski functional under skewness

Theorem
Suppose that X(t) is a zero mean, variance one smooth isotropic

random field on E ⊂ Rn with covariance function ρ and 3-point

correlation function κ. Then

E[Mj(Ev)] =|E| γj/22−j/2Γ(
n−j
2 + 1)

Γ(n2 + 1)
× ϕ(v)

[
hj−1(v)

+ 2−1γ−2κ11j(j − 1)hj−2(v)− 2−1γ−1κ1jhj(v)

+ 6−1κ0hj+2(v) + o(κ)
]
, j = 1, . . . , n,

where ϕ(x): pdf of N(0, 1), hn(x): Hermite poly., γ = −ρ′(0),

κ0 = κ(0, 0, 0), κ1 =
dκ(x,0,0)

dx |x=0, κ11 =
d2κ(x,y,0)

dxdy |x=y=0.

▶ The Gaussian case (κ ≡ 0) is well known (Tomita, 1986).

▶ The case of n = 2, 3 was proved by Matsubara (2003).
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Derivatives of ρ and κ in the moving average field

▶ For the moving average field

X(t) =

∫
Rn

g
(1
2
∥t− s∥2

)
Y (ds),

the derivatives of 2- and 3-correlation functions appearing in

the perturbation formula:

γ = −ρ′(0) =
Ωn

n

∫ ∞

0
g′(r2/2)2rn−3dr

κ0 = ∂κ(x, y, x)
∣∣
0
= cΩn

∫ ∞

0
g(r2/2)3rn−1dr

κ1 =
∂κ(x, y, x)

∂x

∣∣∣
0
= −c

Ωn

n

∫ ∞

0
g(r2/2)g′(r2/2)2rn−3dr

κ11 =
∂2κ(x, y, x)

∂x∂y

∣∣∣
0
= c

Ωn

n(n+ 2)

∫ ∞

0
g′(r2/2)2g′′(r2/2)rn−5dr
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Outline of the Proof of the Theorem

Step 0. Represent the Minkowski functional Mj(Ev) in terms of

(X(t),∇X(t),∇2X(t)) ∈ R1+n+n(n+1)/2

Step 1. Obtain the joint cumulant of (X(t),∇X(t),∇2X(t))

Step 2. Obtain the moment generating function of

(X(t),∇X(t),∇2X(t))

Step 3. Obtain the joint pdf of (X(t),∇X(t),∇2X(t))

Step 4. Taking expectation of Mj(Ev)
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Proof: Step 0. Minkowski Functional

▶ By taking tube coordinates, the Minkowski Functional is

shown to be

Mj(Ev) =

∫
E

1

n
det(−P⊤RP+ρ′(0)vIj−1)∥V ∥−j+2×pX(t)(v) dt

where pX(t) is the pdf of X(t), V = ∇X(t),

R = R(t) = ∇2X(t)− ρ′(0)X(t)In

and P = P (t) is n× (j − 1) such that P⊤P = Ij−1 and

P⊤∇X(t) = 0

▶ That is, Mj(Ev) is represented in terms of

(X(t),∇X(t),∇2X(t)) ∈ R1+n+n(n+1)/2
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Proof: Step 1. Joint cumulant

▶ Let Xi = ∂X(t)/∂ti, Xij = ∂2X(t)/∂ti∂tj .
▶ For example,

E[XiXj ] =
∂

∂si

∂

∂tj
E[X(s)X(t)]|s=t

=
∂

∂si

∂

∂tj
ρ
(1
2
∥s− t∥2

)
|s=t = −ρ′(0)δij

▶ Similarly,

E[XX] = 1 E[XiXj ] = −ρ′(0)δij E[XXij ] = ρ′(0)δij

E[XijXkl] = ρ′′(0)(δijδkl + δikδjl + δilδjk)

E[XXX] = κ0 E[XXiXj ] = −κ1δij E[XXXij ] = 2κ1δij

E[XXijXkl] = (3κ11 + κ2)δijδkl + κ2(δikδjl + δilδjk)

E[XiXjXkl] = −2κ11δijδkl + κ11(δikδjl + δilδjk)

E[XijXklXmn] = (2κ111 + 6κ21)δijδklδmn + 2κ21(δikδjl + δilδjk)δmn[3]

+ (−κ111)δilδjnδkm[8]
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Proof: Step 2. Moment generating function

▶ Moment generating function of X = X(t), V = ∇X(t),

R = ∇2X(t)− ρ′(0)X(t)In:

E
[
exp{tX + ⟨T, V ⟩+ tr(ΘR)}

]
= exp

{
t2

2
+

−ρ′(0)

2
∥T∥2 + α

2
tr(Θ2) +

β

2
tr(Θ)2

}
×
{
1 +Q(t, T,Θ) + · · ·

}
where α = 2ρ′′(0), β = ρ′′(0)− ρ′(0)2

▶ Q(t, T,Θ) is a linear combination of

t3, t, ∥T∥2, t2tr(Θ), ttr(Θ)2, ttr(Θ2), ∥T∥2tr(Θ),

T⊤ΘT , tr(Θ)3, tr(Θ)tr(Θ2), tr(Θ3)

of the order O(max(|κ0|, |κ1|, |κ11|))
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Proof: Step 3. Joint pdf

▶ By inverting the moment generating function, we have the pdf

of X = X(t), V = ∇X(t), R = ∇2X(t)− ρ′(t)X(t)In:

p(X,V,R) = ϕ(X)p0V (V )p0R(R)
{
1 + q(X,V,R) + · · ·

}
ϕ(X): pdf of N(0, 1), p0V (V ): pdf of Nn(0,−ρ′(0)In)

pR(R) ∝ exp
{
− 1

2α
tr(R2) +

β

2α(α+ nβ)
tr(R)2

}
where α = 2ρ′′(0), β = ρ′′(0)− ρ′(0)2

▶ q(X,V,R) is a linear combination of

h1(X), h3(X), tr(R), h2(X)tr(R), h1(X)∥V ∥2,
∥V ∥2tr(R), V ⊤RV , h1(X)tr(R)2, h1(X)tr(R2),

tr(R)3, tr(R)tr(R2), tr(R3)

of the order O(max(|κ0|, |κ1|, |κ11|))
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Proof: Step 4. Expectation

▶ We take expectation of

Mj(Ev) =

∫
E

1

n
det(−P⊤RP+ρ′(0)vIj−1)∥V ∥−j+2×pX(v) dt

with respect to p(X,V,R) in the previous step.
▶ The most difficult part is to handle the random matrix R.

The following formulas are crucial.

Lemma
Let A = (aij) be the n× n GOE random matrix, that is,

aii ∼ N(0, 1) and aij = aji ∼ N(0, 1/2) (i < j) independently.

Let Hn be physicist’s Hermite poly. Hn(x) = 2nxn + · · · . Then

E[det(xIn +A)] =2−nHn(x)

E[det(xIn +A)tr(A)] =n2−(n−1)Hn−1(x)
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E[det(xIn +A)tr(A)2] =n2−nHn(x)

+ (n− 1)n2−(n−2)Hn−2(x)

E[det(xIn +A)tr(A)3] =3n22−(n−1)Hn−1(x)

+ (n− 2)(n− 1)n2−(n−3)Hn−3(x)

E[det(xIn +A)tr(A2)] =
1

2
n(n+ 1)2−nHn(x)

− 1

2
(n− 1)n2−(n−2)Hn−2(x)

E[det(xIn +A)tr(A3)] =
3

2
n(n+ 1)2−(n−1)Hn−1(x)

+
1

4
(n− 2)(n− 1)n2−(n−3)Hn−3(x)

E[det(xIn +A)tr(A2)tr(A)] =
1

2
(n2 + n+ 4)n2−(n−1)Hn−1(x)

− 1

2
(n− 2)(n− 1)n2−(n−3)Hn−3(x)
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Matsubara’s (2003) analysis

▶ E[Mj(Ev)] (j = 1, 2, 3) of 3D cosmic field under power law

model (n = −2, 1, 0) and CDM-like model:

by simulator (solid) and expectation (dashed)
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Simulation

▶ Z(·) : 2D Gaussian random field on E = [0, 1]2 with

covariance function E[Z(s)Z(t)] = exp(−g∥s− t∥2), g = 50.
▶ Let X(t) = {Z(t)− δ(Z(t)2 − 1)}/cδ, δ = 0.05
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Remark: How to calculate the EC of 2D image

0. The excursion set image is represented as 0/1 at each pixel.

1. We convert the image into a simplicial complex by connecting

adjacent vertices and by filling triangles. Then,

χ = #vertices−#edges+#triangles

2. By increasing the threshold, one new vertex is generated.

Incidentally, new edges and triangles are produced.

∆χ = 1−#new edges+#new triangles

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ threshold v ↓

χ =6− 5 + 1 ∆χ =1− 3 + 1 = −1 ∆χ =1− 2 + 0 = −1 ∆χ =1− 6 + 6 = 1

=2 χ = 1 χ = 0 χ = 1 26 / 29



Summary

▶ We introduced “isotropic random field”, its “excursion set”,

and its “Minkowski functional (MF)” including “Euler

characteristic (EC)”.

▶ We provided a perturbation formula of the expected MF under

skewness.

▶ We conducted simulation studies. The expected Euler

characteristic method to approximate the upper tail

probability of the maximum maxt∈E X(t) works well under

weak skewness.

▶ Currently we are trying to derive the next order terms (i.e.,

under kurtosis).
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Discussion: Remaining problems

▶ As a test statistic, we need to evaluate the variance of

Mj(Ev). The variance formula is not local, i.e., not expressed

by the derivatives of correlation functions evaluated at a point

only.

▶ Astronomy people believes that the Minkowski functional is fit

to their purpose, i.e., the analysis of CMB and the large-scale

structure of the universe. But is it enough?

▶ Other candidates would be: Tensorial Minkowski functionals?

Betti number, and its extension (persistent homology)?

The Betti number is not local and more difficult.

▶ The validity of the EC method (i.e., evaluation of the

approximation error) should be examined.

(Typically, the approximation error depends on the tail

behavior.)
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