Perturbation of the expected Minkowski functional and its applications

Satoshi Kuriki (ISM)

T. Matsubara (High Energy Accelerator Res. Org.)

Wed 9 October 2019

2nd ISM-UUIm WS at Villa Eberhardt, UIm

I. Smooth isotropic random field and Minkowski functional

II. Expectation of the Minkowski functional under skewness

III. Numerical studies

I. Smooth isotropic random field and Minkowski functional

II. Expectation of the Minkowski functional under skewness

III. Numerical studies

Smooth isotropic random field

▶ Isotropic random field X(t), $t \in E \subset \mathbb{R}^n$: for any $P \in O(n)$ and $b \in \mathbb{R}^n$,

$$\left\{X(t)\right\}_{t\in E'\subset\mathbb{R}^n} \stackrel{d}{=} \left\{X(Pt+b)\right\}_{t\in E'\subset\mathbb{R}^n}$$

where E' is any finite set of E.

• We assume that $t \mapsto X(t)$ is smooth.

Excursion set

• The sup-level set of a function X(t) on E:

$$E_v = \{t \in E \mid X(t) \ge v\} = X^{-1}([v, \infty))$$

is referred to as the excursion set.

▶ By changing the level (threshold) v, we have a filtration.

Original RF

Excursion set

Minkowski functional (MF)

• Let $M \subset \mathbb{R}^n$ be a closed set. Tube about M with radius ρ :

$$\operatorname{Tube}(M,\rho) = \left\{ x \in \mathbb{R}^n \mid \operatorname{dist}(x,M) \le \rho \right\}$$

Steiner's formula (Schneider, 2013): For small ρ > 0,

$$\operatorname{Vol}_n(\operatorname{Tube}(M,\rho)) = \sum_{j=0}^n \rho^j \binom{n}{j} \mathcal{M}_j(M)$$

where $\mathcal{M}_j(M)$ is the *j*-th Minkowski functional of M• The Euler characteristic (EC) of M is

 $\chi(M) = \mathcal{M}_n(M) / \omega_n$ (Gauss-Bonnet theorem)

MF of the excursion set E_v as a test statistic

- From now on, we consider the Minkowski functional $\mathcal{M}_j(E_v)$ of the excursion set E_v .
 - $\mathcal{M}_j(E_v)$ can be used as a statistic for testing Gaussianity.

Applications in cosmology: Cosmic Random field

Cosmic microwave background (CMB) (mode: 160.2GHz)

http://planck.cf.ac.uk/

Cosmic inflation theory:

(normalized) density: $X(t) = \varphi(t) + a_2 \varphi^2(t) + a_3 \varphi^3(t) + \cdots, t \in \mathbb{R}^3$

 $\varphi(t):$ isotropic Gaussian field, $\varphi^2(t)=\int \varphi(s)\varphi(t)K(s-t)\mathrm{d}s,$ etc.

Isotropic "Gaussian" random field ?

• For $k \ge 2$,

$$\operatorname{cum}(X(t_1),\ldots,X(t_k)) = O(\sigma^{k-2}) \quad (\sigma \ll 1)$$

(Decay order is the same as the CLT)

- ► Many versions of the inflation models exist. Some of them claim Gaussianity (i.e., a_i ≈ 0), and some of them claim non-Gaussianity.
- In astronomy, 𝔼[𝓜_j(𝔅_v)] is evaluated under each model, and is compared with the CMB observation.

Expected Euler characteristic method

The expected EC of the excursion set is used for the approximation of the upper tail probability of the maximum of the random field:

$$\Pr\left(\sup_{t\in E} X(t) \ge v\right) \approx \mathbb{E}\left[\chi(E_v)\right] = \mathbb{E}\left[\mathcal{M}_n(E_v)\right]/\omega_n$$

(Adler & Taylor, 2007; Takemura & Kuriki, 2002)

This gives a p-value of the VBM data (installed in SPM):

http://www.math.mcgill.ca/keith/

• The purpose of this talk: To provide the formula for $\mathbb{E}[\mathcal{M}_j(E_v)]$ when $X(\cdot)$ is not Gaussian.

I. Smooth isotropic random field and Minkowski functional

II. Expectation of the Minkowski functional under skewness

III. Numerical studies

2- and 3-point correlation

The correlation functions of an isotopic random field depend only on the pairwise distances:

$$\mathbb{E}[X(s)] = 0$$

$$\mathbb{E}[X(s)X(t)] = \rho\left(\frac{1}{2}||s-t||^2\right), \quad \rho(0) = 1$$

$$\mathbb{E}[X(s)X(t)X(u)] = \kappa\left(\frac{1}{2}||s-t||^2, \frac{1}{2}||s-u||^2, \frac{1}{2}||t-u||^2\right)$$

 $\kappa(x, y, z)$ is symmetric wrt x, y, z.

• We assume $\kappa \approx 0$ but $\kappa \neq 0$ (skewness $\neq 0$)

Moving average field of a Levy measure

• Suppose that X(t) is generated as the Levy measure as

$$X(t) = \int_{\mathbb{R}^n} g\left(\frac{1}{2}\|t-s\|^2\right) Y(ds),$$

where Y(ds) is a Levy measure on \mathbb{R}^n with the moment structures:

$$\mathbb{E}[Y(ds)] = 0$$

$$\operatorname{cum}(Y(ds), Y(ds')) = \delta(s - s')ds$$

$$\operatorname{cum}(Y(ds), Y(ds'), Y(ds'')) = \kappa_0 \cdot \delta(s - s')\delta(s - s'')ds$$

- When κ₀ ≠ 0 but |κ₀| ≪ 1, X(t) is a non-Gaussian isometric field with weak skewness.
- $\operatorname{cum}(X(s), X(t), X(u))$ is shown to be a symmetric function in ||s t||, ||s u||, ||t u|| (not trivial).

Theorem

Suppose that X(t) is a zero mean, variance one smooth isotropic random field on $E \subset \mathbb{R}^n$ with covariance function ρ and 3-point correlation function κ . Then

$$\mathbb{E}[\mathcal{M}_{j}(E_{v})] = |E| \gamma^{j/2} 2^{-j/2} \frac{\Gamma(\frac{n-j}{2}+1)}{\Gamma(\frac{n}{2}+1)} \times \phi(v) \Big[h_{j-1}(v) \\ + 2^{-1} \gamma^{-2} \kappa_{11} j(j-1) h_{j-2}(v) - 2^{-1} \gamma^{-1} \kappa_{1} j h_{j}(v) \\ + 6^{-1} \kappa_{0} h_{j+2}(v) + o(\kappa) \Big], \quad j = 1, \dots, n,$$

where $\phi(x)$: pdf of N(0,1), $h_n(x)$: Hermite poly., $\gamma = -\rho'(0)$, $\kappa_0 = \kappa(0,0,0)$, $\kappa_1 = \frac{\mathrm{d}\kappa(x,0,0)}{\mathrm{d}x}|_{x=0}$, $\kappa_{11} = \frac{\mathrm{d}^2\kappa(x,y,0)}{\mathrm{d}x\mathrm{d}y}|_{x=y=0}$.

• The Gaussian case ($\kappa \equiv 0$) is well known (Tomita, 1986).

• The case of n = 2, 3 was proved by Matsubara (2003).

Derivatives of ρ and κ in the moving average field

For the moving average field

$$X(t) = \int_{\mathbb{R}^n} g\left(\frac{1}{2}\|t-s\|^2\right) Y(ds),$$

the derivatives of 2- and 3-correlation functions appearing in the perturbation formula:

$$\begin{split} \gamma &= -\rho'(0) = \frac{\Omega_n}{n} \int_0^\infty g'(r^2/2)^2 r^{n-3} dr \\ \kappa_0 &= \partial \kappa(x, y, x) \big|_0 = c \,\Omega_n \int_0^\infty g(r^2/2)^3 r^{n-1} dr \\ \kappa_1 &= \frac{\partial \kappa(x, y, x)}{\partial x} \Big|_0 = -c \frac{\Omega_n}{n} \int_0^\infty g(r^2/2) g'(r^2/2)^2 r^{n-3} dr \\ \kappa_{11} &= \frac{\partial^2 \kappa(x, y, x)}{\partial x \partial y} \Big|_0 = c \frac{\Omega_n}{n(n+2)} \int_0^\infty g'(r^2/2)^2 g''(r^2/2) r^{n-5} dr \end{split}$$

Step 0. Represent the Minkowski functional $\mathcal{M}_j(E_v)$ in terms of

$$(X(t), \nabla X(t), \nabla^2 X(t)) \in \mathbb{R}^{1+n+n(n+1)/2}$$

Step 1. Obtain the joint cumulant of $(X(t), \nabla X(t), \nabla^2 X(t))$

- Step 2. Obtain the moment generating function of $(X(t), \nabla X(t), \nabla^2 X(t))$
- Step 3. Obtain the joint pdf of $(X(t), \nabla X(t), \nabla^2 X(t))$
- Step 4. Taking expectation of $\mathcal{M}_j(E_v)$

Proof: Step 0. Minkowski Functional

 By taking tube coordinates, the Minkowski Functional is shown to be

$$\mathcal{M}_{j}(E_{v}) = \int_{E} \frac{1}{n} \det(-P^{\top}RP + \rho'(0)vI_{j-1}) \|V\|^{-j+2} \times p_{X(t)}(v) \, \mathrm{d}t$$

where $p_{X(t)}$ is the pdf of X(t), $V = \nabla X(t)$,

$$R = R(t) = \nabla^2 X(t) - \rho'(0)X(t)I_n$$

and P = P(t) is $n \times (j-1)$ such that $P^{\top}P = I_{j-1}$ and $P^{\top}\nabla X(t) = 0$

• That is, $\mathcal{M}_j(E_v)$ is represented in terms of

 $(X(t), \nabla X(t), \nabla^2 X(t)) \in \mathbb{R}^{1+n+n(n+1)/2}$

Proof: Step 1. Joint cumulant

• Let $X_i = \partial X(t) / \partial t_i$, $X_{ij} = \partial^2 X(t) / \partial t_i \partial t_j$.

For example,

$$\mathbb{E}[X_i X_j] = \frac{\partial}{\partial s_i} \frac{\partial}{\partial t_j} \mathbb{E}[X(s)X(t)]|_{s=t}$$
$$= \frac{\partial}{\partial s_i} \frac{\partial}{\partial t_j} \rho\Big(\frac{1}{2} ||s-t||^2\Big)|_{s=t} = -\rho'(0)\delta_{ij}$$

Similarly,

$$\mathbb{E}[XX] = 1 \qquad \mathbb{E}[X_iX_j] = -\rho'(0)\delta_{ij} \qquad \mathbb{E}[XX_{ij}] = \rho'(0)\delta_{ij}$$
$$\mathbb{E}[X_{ij}X_{kl}] = \rho''(0)(\delta_{ij}\delta_{kl} + \delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk})$$
$$\mathbb{E}[XXX] = \kappa_0 \qquad \mathbb{E}[XX_iX_j] = -\kappa_1\delta_{ij} \qquad \mathbb{E}[XXX_{ij}] = 2\kappa_1\delta_{ij}$$
$$\mathbb{E}[XX_{ij}X_{kl}] = (3\kappa_{11} + \kappa_2)\delta_{ij}\delta_{kl} + \kappa_2(\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk})$$
$$\mathbb{E}[X_iX_jX_{kl}] = -2\kappa_{11}\delta_{ij}\delta_{kl} + \kappa_{11}(\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk})$$
$$\mathbb{E}[X_{ij}X_{kl}X_{mn}] = (2\kappa_{111} + 6\kappa_{21})\delta_{ij}\delta_{kl}\delta_{mn} + 2\kappa_{21}(\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk})\delta_{mn}[3]$$
$$+ (-\kappa_{111})\delta_{il}\delta_{jn}\delta_{km}[8]$$

Proof: Step 2. Moment generating function

• Moment generating function of X = X(t), $V = \nabla X(t)$, $R = \nabla^2 X(t) - \rho'(0)X(t)I_n$:

$$\mathbb{E}\left[\exp\{tX + \langle T, V \rangle + \operatorname{tr}(\Theta R)\}\right]$$

= $\exp\left\{\frac{t^2}{2} + \frac{-\rho'(0)}{2} ||T||^2 + \frac{\alpha}{2} \operatorname{tr}(\Theta^2) + \frac{\beta}{2} \operatorname{tr}(\Theta)^2\right\}$
 $\times \left\{1 + Q(t, T, \Theta) + \cdots\right\}$

where $\alpha = 2\rho''(0)$, $\beta = \rho''(0) - \rho'(0)^2$

• $Q(t,T,\Theta)$ is a linear combination of

 t^3 , t, $||T||^2$, $t^2 \operatorname{tr}(\Theta)$, $t \operatorname{tr}(\Theta)^2$, $t \operatorname{tr}(\Theta^2)$, $||T||^2 \operatorname{tr}(\Theta)$, $T^\top \Theta T$, $\operatorname{tr}(\Theta)^3$, $\operatorname{tr}(\Theta) \operatorname{tr}(\Theta^2)$, $\operatorname{tr}(\Theta^3)$

of the order $O(\max(|\kappa_0|, |\kappa_1|, |\kappa_{11}|))$

Proof: Step 3. Joint pdf

By inverting the moment generating function, we have the pdf of X = X(t), V = ∇X(t), R = ∇²X(t) − ρ'(t)X(t)I_n:

$$p(X, V, R) = \phi(X)p_{0V}(V)p_{0R}(R)\{1 + q(X, V, R) + \cdots\}$$

 $\phi(X)$: pdf of N(0,1), $p_{0V}(V)$: pdf of $N_n(0,-\rho'(0)I_n)$

$$p_R(R) \propto \exp\left\{-\frac{1}{2\alpha} \operatorname{tr}(R^2) + \frac{\beta}{2\alpha(\alpha + n\beta)} \operatorname{tr}(R)^2\right\}$$

where $\alpha = 2\rho''(0), \ \beta = \rho''(0) - \rho'(0)^2$ • q(X, V, R) is a linear combination of $h_1(X), \ h_3(X), \ tr(R), \ h_2(X)tr(R), \ h_1(X) ||V||^2,$ $||V||^2 tr(R), \ V^\top RV, \ h_1(X)tr(R)^2, \ h_1(X)tr(R^2),$ $tr(R)^3, \ tr(R)tr(R^2), \ tr(R^3)$

of the order $O(\max(|\kappa_0|, |\kappa_1|, |\kappa_{11}|))$

Proof: Step 4. Expectation

We take expectation of

$$\mathcal{M}_{j}(E_{v}) = \int_{E} \frac{1}{n} \det(-P^{\top}RP + \rho'(0)vI_{j-1}) \|V\|^{-j+2} \times p_{X}(v) \,\mathrm{d}t$$

with respect to p(X, V, R) in the previous step.

The most difficult part is to handle the random matrix R. The following formulas are crucial.

Lemma

Let $A = (a_{ij})$ be the $n \times n$ GOE random matrix, that is, $a_{ii} \sim N(0, 1)$ and $a_{ij} = a_{ji} \sim N(0, 1/2)$ (i < j) independently. Let \mathcal{H}_n be physicist's Hermite poly. $\mathcal{H}_n(x) = 2^n x^n + \cdots$. Then

$$\mathbb{E}[\det(xI_n + A)] = 2^{-n} \mathcal{H}_n(x)$$
$$\mathbb{E}[\det(xI_n + A)\operatorname{tr}(A)] = n2^{-(n-1)} \mathcal{H}_{n-1}(x)$$

$$\begin{split} \mathbb{E}[\det(xI_n+A)\operatorname{tr}(A)^2] =& n2^{-n}\mathcal{H}_n(x) \\&+ (n-1)n2^{-(n-2)}\mathcal{H}_{n-2}(x) \\ \mathbb{E}[\det(xI_n+A)\operatorname{tr}(A)^3] =& 3n^22^{-(n-1)}\mathcal{H}_{n-1}(x) \\&+ (n-2)(n-1)n2^{-(n-3)}\mathcal{H}_{n-3}(x) \\ \mathbb{E}[\det(xI_n+A)\operatorname{tr}(A^2)] =& \frac{1}{2}n(n+1)2^{-n}\mathcal{H}_n(x) \\&- \frac{1}{2}(n-1)n2^{-(n-2)}\mathcal{H}_{n-2}(x) \\ \mathbb{E}[\det(xI_n+A)\operatorname{tr}(A^3)] =& \frac{3}{2}n(n+1)2^{-(n-1)}\mathcal{H}_{n-1}(x) \\&+ \frac{1}{4}(n-2)(n-1)n2^{-(n-3)}\mathcal{H}_{n-3}(x) \\ \mathbb{E}[\det(xI_n+A)\operatorname{tr}(A^2)\operatorname{tr}(A)] =& \frac{1}{2}(n^2+n+4)n2^{-(n-1)}\mathcal{H}_{n-1}(x) \\&- \frac{1}{2}(n-2)(n-1)n2^{-(n-3)}\mathcal{H}_{n-3}(x) \end{split}$$

I. Smooth isotropic random field and Minkowski functional

II. Expectation of the Minkowski functional under skewness

III. Numerical studies

Matsubara's (2003) analysis

► E[M_j(E_v)] (j = 1, 2, 3) of 3D cosmic field under power law model (n = -2, 1, 0) and CDM-like model:

Simulation

Z(·): 2D Gaussian random field on E = [0,1]² with covariance function E[Z(s)Z(t)] = exp(-g||s - t||²), g = 50.
 Let X(t) = {Z(t) − δ(Z(t)² − 1)}/c_δ, δ = 0.05

Remark: How to calculate the EC of 2D image

- 0. The excursion set image is represented as 0/1 at each pixel.
- 1. We convert the image into a simplicial complex by connecting adjacent vertices and by filling triangles. Then,

 $\chi = \#$ vertices - #edges + #triangles

2. By increasing the threshold, one new vertex is generated. Incidentally, new edges and triangles are produced.

 $\Delta \chi = 1 - \#$ new edges + #new triangles

Summary

- We introduced "isotropic random field", its "excursion set", and its "Minkowski functional (MF)" including "Euler characteristic (EC)".
- We provided a perturbation formula of the expected MF under skewness.
- ► We conducted simulation studies. The expected Euler characteristic method to approximate the upper tail probability of the maximum max_{t∈E} X(t) works well under weak skewness.
- Currently we are trying to derive the next order terms (i.e., under kurtosis).

Discussion: Remaining problems

- ► As a test statistic, we need to evaluate the variance of *M_j(E_v)*. The variance formula is not local, i.e., not expressed by the derivatives of correlation functions evaluated at a point only.
- Astronomy people believes that the Minkowski functional is fit to their purpose, i.e., the analysis of CMB and the large-scale structure of the universe. But is it enough?
- Other candidates would be: Tensorial Minkowski functionals? Betti number, and its extension (persistent homology)? The Betti number is not local and more difficult.
- The validity of the EC method (i.e., evaluation of the approximation error) should be examined.
 (Typically, the approximation error depends on the tail behavior.)

References

- 1. Adler, R. J. and Taylor, J. E. (2007). *Random Fields and Geometry*, Springer.
- Matsubara, T. (2003). Statistics of smoothed cosmic fields in perturbation theory. I. Formulation and useful formulae in second-order perturbation theory, *The Astrophysical Journal*, **584**, 1–33.
- 3. Schneider, R. (1993). *Convex bodies: The Brunn-Minkowski theory*, Cambridge.
- Takemura, A. and Kuriki, S. (2002). On the equivalence of the tube and Euler characteristic methods for the distribution of the maximum of Gaussian fields over piecewise smooth domains. *Ann. Appl. Probab.*, **12** (2), 768–796.
- Tomita, H. (1986). Curvature invariants of random interface generated by Gaussian fields, *Progress of Theoretical Physics*, **76** (4), 952–955