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Introduction: Random functions with long memory

Random function = Set of random variables indexed by t € T.

Let X = {X;,t € T} be a wide sense stationary random function
defined on an abstract probability space (2, F, P), e.g.,

T C RY d > 1. The property of long range dependence (LRD)
can be defined as

/ C(1)] dt = +o0
;

where C(t) = cov(Xp, Xt), t € T (McLeod, Hipel (1978); Parzen
(1981)). Sometimes one requires that C < RV(—a), i.e.,
Jda € (0, d) such that

L(t
c(t) = |f|) ] = +oo,

where L(-) is a slowly varying function.
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Various approaches to define LRD

» Unbounded spectral density at zero.

» Growth order of sums’ variance going to infinity.

» Phase transition in certain parameters of the function
(stability index, Hurst index, heaviness of the tails, etc.)
regarding the different limiting behaviour of some statistics
such as

» Partial sums
» Partial maxima.

These approaches are not equivalent, often statistically not
tractable and tailored for a particular class of random functions
(e.g., time series, square integrable, stable, etc.)
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Various approaches to define LRD

LRD for heavy tailed random functions:

» Phase transitions in the limiting behaviour of partial sums
and maxima of inf. divisible random processes and their
ergodic properties (Samorodnitsky 2004, Samorodnitsky &
Roy 2008, Roy 2010).

» a-spectiral covariance approach for linear random fields
with innovations lying in the domain of attraction of
a—stable law (Paulauskas (2016), Damarackas,
Paulauskas (2017))
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LRD: Infinite variance case
For a stationary random function X with E X? = +o0 introduce
covx(t,u,v) =cov(L(Xo > u),1(Xt > v)), teT,x,veR

It is always defined as the indicators involved are bounded

functions.
A random function X is called SRD (LRD, resp.) if

o2y = / / (covx(t, U, V)| j(d) j(dv) dt < 400 (= +00)
T R2
for all finite measures (for a finite measure, resp.) 1 on R. For

discrete parameter random fields (say, if T C Z9), the J7 dtin
the above line should be replaced by a > ;. 7.4
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Motivation

Assume that X is wide sense stationary with covariance
function C(t) = cov(Xp, X;), t € T, and moreover,

covx(t,u,v) >0or <OQOforallte T, uveR.

Examples of X with this property are all PA or NA- random
functions. W. Hoeffding (1940) proved that

clt) = /‘covx(t, u, v) du dv. (1)

02

Then, X is long range dependent if

/|C(t)|dt://|covx(t, U, v)| dudv dt = +oo.
J

T R2
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Motivation: memory and excursions

Level (excursion) sets and their volumes:
Let an(u) = vgq (Au (X, Wh)) be the volume of the excursion set
Au(X, Wn) == {tE TN Wn . Xt > U}

of a random field X at level u in an observation window
W, = n- W where W c R% is a convex body.
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Motivation: excursions and SRD

Multivariate CLT for level sets’ volumes (Bulinski, S.,
Timmermann, Karcher, 2012):

For a stationary centered weakly dependent random function X
satisfying some additional conditions (square integrable, a- or
max-stable, inf. divisible) we have for any levels u, v € R that

(@n(1), an(v)) " = (P(Xo = u), P(Xo > V)" - vg(Wh)
vg (Wh)

i>J\/(o,Z)

asn— oo. Here ¥ = (aij),?j:1 with o2 = [a cOvx(t, u, v) dt.

So, ay(u) = vy (A, (X, W,)) is the right statistic to study!
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Motivation: limiting variance in FCLT

By FCLT (Meschenmoser, Shashkin, 2011) and the continuous
mapping theorem, it holds for some stationary weakly
dependent associated random functions X with W, = [0, n]¢
that

Ji an(u)n(du) — i J, Fx(u)u(olu)

d

as n — oo for any finite measure p with 2 nX as above.

So X is SRD if the asymptotic covariance au x inthe CLT is
finite for any finite measure p prescribing the choice of levels u.



Seite 11 Long range dependence for heavy tailed random functions | Evgeny Spodarev | 10.10.2019

Motivation: American options

Let X = {X;, t € Z} be the stock for which an American option
at price up > 0, t € [0, n], n € Nis issued. The customer may
buy a call at price up whenever X; > up for some t € [0, n].
For = 64, We get

v ({te[0,n: Xi; o) = MEt) ¢, wig,02, ).

Then

> Xlrd. (le. of = +00) = the amount of time within
Up s

[0, n] at which the option may be exercised is not
asymptotically normal for large time horizons n.

» X s.r.d. = asymptotic normality of this time span for any
price up provided that X satisfies some additional
conditions.
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Motivation: Checking LRD

For a stationary centered Gaussian random function X with
Var Xp = 1 and correlation function p(t) we have (Bulinski, S.,
Timmermann, 2012)

, 1o u? —2ruv + v2 4
covx(,u,v)—g0 ﬁexp - 2112 r.
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Motivation: statistical inference of LRD

The new definition is statistically feasible. Notice that for
1= 0gup)

72 x = [ IFra(to. to) = F(uo)Fluo)] ot
T

where the bivariate d.f. Fx, x,(u,v) =P(Xo < u, X; < v) and
marginal d.f. Fx(u) = P(Xy < u) can be estimated from the
data by their empirical counterparts.
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Motivation: LRD is margin—free

Lemma (Kulik, S. 2019)
A stationary real-valued random function X is SRD if

/ / |Cou(x, ¥) — xy| Po(dx) Po(dy) dt < +o
T [0,1]2

for any probability measure Py on [0, 1] where Cq ; is a copula
of the bivariate distribution of (X, X;), t € T. X is LRD if there
exists a probability measure Py on [0, 1] such that the above
integral is infinite.
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Motivation: Checking LRD

Denote by P,(-) = u(-)/1(R) the probability measure
associated with the finite measure p on R. If X € PA then
applying Fubini—Tonelli theorem leads to

7t x = 1E(R) [ cov (F (). FulX)

where F,(x) = P,((—o0, x)) is the (left-side continuous)
distribution function of probability measure P,,.
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Mixing

Let (2, A, P) be a probability space and (U4, V) be two
sub-c—algebras of A. a—mixing coefficient:

aU,V) =sup {|[P(UN V) — P(U)P(V)|: Ueld, VeV}.

Let X = {X;,t € T} be a random function, and T be a normed
space with distance d. Let Xo = {X;,t € C}, C C T, and A; be
the o—algebra generated by Xc. If |C| is the cardinality of a
finite set C, for any z € {«, 5, ¢, v, p} put

Zy(k. u,v) = sup{z(X4, Xg): d(AB)>k, |A<u|B <v}

where u, v € N and d(A, B) is the distance between subsets A
and B.
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SRD and mixing

Theorem (Kulik, S. 2019)

Let X = {X;,t € T} be a stationary random function with
z—mixing rate satisfying [ zx(||t|,1,1) dt < 400 where
ze{a,B,0,¢%,p}. Then Xis SRD with

/ / lcovx(t, u, v)| p(du) u(av) dt < 8 / 2x([t]1.1.1) ot-12(R)
T JR2 T

for any finite measure .
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Random volatility functions

Let the random function X = {X;,t € T} be given by
Xi = F(Y1)Z

where Y ={Y;,t€ T} and Z = {Z;, t € T} are independent
stationary random functions, Z has property

covz(t,u,v) >0o0r <Oforallte T, u,veR,

F:R—Ryand P(F(Y;)=0)=0forallteT.

F(Y}) is called a random volatility (being a deterministic
function of a random (often LRD) function Y = {Y;,t € T})
scaling a heavy tailed random function Z = {Z;,t € T}.
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Random volatility functions

Theorem (Kulik, S. 2019)

Let the random volatility model X be given by X; = AZ;, t € T,
|T| = 400 where A > 0 a.s., A and Z are independent and

Z € PA is stationary. Then X is LRD if there exists uy € R:
Fz(uo/A) # const a.s.
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Random volatility functions

Example
The above theorem evidently holds true if e.qg.
» Zy ~ Exp(\), A ~ Fréchet(1) for any A > 0.
» X is a subgaussian random function where A = v/B,
B~ S, ((cos%)z/a,to), ac(0,2),and Zis a
centered stationary Gaussian random function with

covariance function C(t) > Oforallt € T and a
non—degenerate tail F.



Seite 21 Long range dependence for heavy tailed random functions | Evgeny Spodarev | 10.10.2019

Random volatility functions

Corollary

For the random function X = {X;,t € T} given by X; = YiZ,

t € T, assume that random functions Y = {Y;,t € T} and

Z = {4, t € T} are stationary and independent. Assume that
2y has a regularly varying tail, that is, P(Zy > x) ~ L(x)/x* as
X — 400 for some o > 0 where the function L is slowly varying
at +oc. For Yo > 0 a.s. assume that EY{ < oo and

E(YJY?) <ooforsomes>aandallte T.LetY,Z e
PANA). Then X is LRD if Y* = {Y{, t e T} is LRD.
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Random volatility functions
Example
Assume that X; = €¥7/4Z,, t € Z, where

» Z;is a sequence of i.i.d. random variables with finite
moment of order 2 + ¢ for some § > 0,

» Y; is a centered stationary Gaussian PA long memory
sequence with unit variance and covariance function p,

» sequences Z; and Y; are independent .
It holds EXZ = +oc. Choose . = g, for some ug € R. Then

iCOVx(f, Uo, Uo) = i < io:
t=1 —1

k=1
where G(x) = /4. X is LRD if 322°, p2(t) = +oc. In
particular, if p(t) ~ |t|~" as |t| — oo, then LRD occurs if
n € (0,1/2].

Fz(Uo/G ), Hi)2
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LT for the volume of excursion sets

Let X be a real-valued random function on Z?, d > 1 and let
W c 79 be a finite subset. Let

Ay(X, W) ={te W:X(t) > u}
be the excursion set of X in W over the level u € R.

Asymptotic (non)Gaussian behavior of |A, (X, W) |as W
expands to Z9?

Prove a more general limit theorem for sums .., 9(X;) of
functionals g of X!
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LT for the volume of excursion sets

Let X be a random volatility function of the form
Xi=G(\Y)Z, teZf,

where

» {G(Y}),t € R% is a subordinated measurable Gaussian
random function,

> {Z,t € 79} is a white noise,
» the random functions Y and Z are independent.

Let W, = [—n, n]?, and g be a real valued function such that
E[g(X0)] =0, E[g?(Xo)] > 0. Introduce the function

§(y) = Elg(G(y)4)] -

It follows that {(y) < oo for v1—a. e. y € R, E[{(Yp)] = 0.
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LT for the volume of excursion sets

Furthermore, set

m(y.Z:) = g(G)Z) — £(y) . x(y) = E[mP(y. %)] .

Assume that

> rank (€) = g, E[|g(X0)[?] < o0, E[x*(Y0)] < 00 .

» Y is a homogeneous isotropic centered Gaussian random
function with the covariance function
p(t) = E[YoYi]l = [t|7L(|t]). n € (0, d/q) and L is slowly
varying at infinity,

» Y has a spectral density f(\) which is continuous for all
A # 0 and decreasing in a neighborhood of 0.
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LT for the volume of excursion sets
Theorem (Kulik, S. 2019)
1. If&(y) = 0 then
92 ST ) L N(0,6%), n— oo,
te[—n,n9nzd
where o = E[g?(X)]29 > 0.
2. If&(y) # 0 then
nd/2=d=a2(n) N g(Xy) 4R, n— +oo,
te[—n,nl9nza

where the random variable R is a q-Rosenblatt-type
random variable.
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LT for the volume of excursion sets

g—Rosenblatt-type random variable:

R=(a2 [ [ dortimagy X
R J[-1,1]d (JA1]

d\1)...B(d)\g)
C |)\q|)(d—n)/2’

r((d—mn)/2)
y(d,n) = 2’777"/2—I'1(777/2)’

and fﬁ’w is the multiple Wiener—lto integral with respect to a
complex Gaussian white noise measure B (with structural
measure being the spectral measure of Y).
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LT for the volume of excursion sets

Example
Assume that

9(y) =1{y > u} - P(G(Yo)Z > u)
where G is nonnegative or nonpositive vy1—a.e. Then
§(y) = E[l{G(y)4 > u}] = P(G(Y0)Zo > u).

» If u=0then {(y) =0, so the Gaussian case applies.

» If u# 0then {(y) # 0, so the non-Gaussian case applies.
Let uG(y) > 0 for all y.
g =1: G: R — R4 is monotone right-continuous
non—constant fct. with 4 ({x € R: G(x) = 0}) = 0.
q = 2: G(y) = Gi(ly]) with Gy as above.
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LT for the volume of excursion sets

Example
Let the random volatility function X; = G(|Y;|)Z, t € Z9 be s.1.
» Y is a centered Gaussian random function with unit
variance and corr. function p(t) > 0 as above, p(t) ~ |t|~"
as |t| — +o0
» G(x) > 0 is continuous as above with E |G(|Yo|)|"? < oo
for some 6 € (0,1).
» {Z} is a heavy—tailed white noise, EZZ = +oc.



Seite 30 Long range dependence for heavy tailed random functions | Evgeny Spodarev | 10.10.2019

LT for the volume of excursion sets

For é(y) = G(|y]) and p = dy4,3, Uo > 0 we have

. (Fz(up/G), Hk)?
> covx(t, up, to) =Y i) DA U]
tezd, t£0 k=1 teZ9, t£0

» Since rank (G) =2, Xis LRDif S p?(t) = +oo, that
tezd | t£0
is, if n € (0. d/2).
» For niveau u # 0, the asymptotic behavior of
|Au(X, [—n, n]9)| is of 2-Rosenblatt-type (rank (£) = g = 2)
if n € (0,d/2).
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LT for the volume of excursion sets

Summary:
The correct statistics associated with the new definition of l.r.d.
is the volume of excursion sets!!!!
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Linear a—stable time series

» Let {Z:,t € Z} be a sequence of i.i.d. SaS random
variables with characteristic function

Vz(s) = exp{—7[s|"}

forr>0,a€(1,2),seR.
> Let {a;,j € Z} be a nonnegative number sequence s. t.

+o0
> a<oo

j=—o0

» Linear SaS time series:

+o0o
Y(t) = Z ath_j, teZ.

Jr—
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SRD/LRD for linear a—stable time series

+oo
Let {Y(t)= > a4_;, tcZ}beasabove.

j==o0

Theorem (Makogin, Oesting, Rapp, S. (2019))
> Yis SADIfY°_ &% < oo

-0 /
> YisLRDIfY. 2 3 (& Aap) = oo

» If a; is monotonically decreasing on Z,. and a; = a_; for all
j € Z then'Y is LRD whenever } 2 tay = occ.
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Max—stable stationary processes

» A stochastic process X = {X(t), t € T} is called
max-stable if, for all n € N, there exist functions
an: T — (0,00)and b, : T — R such that

{Q??.’.%W’ te T} 9 x(t), te T,

where the processes X;, i € N, are independent copies of
X.

» Marginal distributions of a max-stable process:
degenerate, Fréchet, Gumbel or Weibull law.

» «-Fréchet marginal distribution: P(X(t) < x) = exp(—x~%)
forall x > 0and some o >0andall t € T. Here,
covariances do not exist if o < 2.
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Max—stable stationary processes

» Pairwise extremal coefficient: {6, t € T} defined via
P(X(0) < x, X(t) < x) =P(X(0) < x)’ forall x >0,

» It holds 6; = 2 — limy_,o, P(X(t) > x | X(0) > x).
» 0; € [1,2], where

» 0 =2 = X(0) and X(t) asymptotically independent,
» 0; =1 = X(0) and X(t) asymptotically fully dependent.
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SRD/LRD for max—stable stationary processes

Theorem (Makogin, Oesting, Rapp, S. (2019))

Let X = {X(t), t € T} be a stationary max-stable process with
a-Fréchet marginal distribution and pairwise extremal
coefficient {0, t € T}. X is LRD iff

/T(Z—Gt)dt:oo.
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Outlook
» Checking the new LRD definition for other classes of
processes with infinite variance, e.g., for infinitely divisible
moving averages
» Connection of LRD with LT for the volume of excursions of
other stationary random functions
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Appendix: Subordinated Gaussian random function

Let Y = {Y:,t € T} be a stationary centered Gaussian
real-valued random function with Var(Y;) =1 and

p(t) = Cov(Yp, Yt), t € T. The subordinated Gaussian random
function X is defined by

Xf — g(Yt) te T,

where g : R — Im(g) C R is a measurable function.



Seite 41 Long range dependence for heavy tailed random functions | Evgeny Spodarev | 10.10.2019

Expansions in Hermite polynomials

Let p(x) be the density and ®(x) the c.d.f. of the standard
normal law. Hermite polynomials H,

(1) n=01.2,...

» are polynomials of degree n: Hy(x) =1,

» are defined by H,(x)

Hi(x)=x, Ha(x)=x%2—-1, Ha(x)=x>-3x,...

» form an orthogonal basis of the Hilbert space of square
X2 . . .
integrable with e~z functions with inner product

400
(£,9) = / f(x)g(x)p(x) dx.

Hence, any function from this space has a series
expansion w.r.t. Hermite polynomials.
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Appendix: Expansions in Hermite polynomials

Lemma (Rozanov (1967))

Let Zy, Z> be standard normal random variables with

p = cov(Zy, 2Zp),and let G be a function satisfying E[G(Z1)] =0
and E[G?(Z;)] < +oc. Then

o0

Cov(G(Zy), G(Z)) Z GHk Pl
k=1

Assume Y = {Y;, t € T} to be a stationary centered Gaussian
real-valued random function with Var(Y;) = 1 and

p(t) = Cov(Yp, Y:). Classical definition of LRD of X = g(Y)
with C(t) = Cov(Xp, Xt) > 0, t € T yields

/|C(t)|dt /Z GF_’“ (1) dit = Z<GHk /(r dt = +oo.

k=1
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Appendix: Subordinated Gaussian random functions
Let T C RY, and v4 be the Lebesgue measure on RY.

Theorem (Kulik, S., 2019)

Let X be a subordinated Gaussian random function defined by
Xt =9(Yt), t € T, where g is a right-continuous strictly
monotone (increasing or decreasing) function. Assume

vg({t e T:p(t)=1})=0. Let

b = ([ Hhlg™ ()elg™ (u) (c))”

Im(g)

where g~ is the generalized inverse of g if g is increasing or of
—g if g is decreasing. Then X is SRD if for any finite measure .

bk1 /] (1 dt < +oc.
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Appendix: Subordinated Gaussian random functions, Remarks

» If Xt = g(]Yi]), t € T, then the above SRD condition
modifies to

Z b22k)| /Tp(t)2k dt < 4o0. 2)

» LRD conditions can be formulated: e.g., X is LRD if
bi(dy,) < +oo for some up € R and all k, and the above
series diverges to +oc.
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Appendix: Subordinated Gaussian random functions, Example

» Let g(x) = /29 T=R? a > 0.
Fora € (1,2], EXp < oo, but E X2 = +oc.

bok—1(p) _ 1
> One can show that =55~ = O <\/_R> , Kk — +4o0.

» For p(t) ~ [t|~" as |t| = 400, n > 0, X = e"*/(2) js
» LRD if n € (0,d/2], since then [, p?(t) dt = +oo,
» SRD ifn > d/2, since
2k _ —1
/ p(t)dt=0(k™") as k — +o0,
Rd

and the series (2) behaves as
1
Z K32 < +00.
k=1

» Hence, for n € (d/2,d) Y is LRD but X = e""/(2%) is SRDI



