

Long range dependence for heavy tailed random functions

Joint work with R. Kulik (U Ottawa), V. Makogin, M. Oesting (U Siegen), A. Rapp

Evgeny Spodarev | Institute of Stochastics | 10.10.2019

Risk and Statistics, 2nd ISM-UUlm Workshop

Overview

Seite 2

- Introduction
- Various approaches to define the memory of random functions
- Short/long memory for random functions with infinite variance
 - Mixing random functions
 - (Subordinated Gaussian random functions)
 - Random volatility models
 - α-stable moving averages and linear time series
 - Max-stable stationary processes with Fréchet margins
- Long memory as a phase transition: limit theorems for functionals of random volatility fields
- Outlook
- References

Introduction: Random functions with long memory

Random function = Set of random variables indexed by $t \in T$.

Let $X = \{X_t, t \in T\}$ be a wide sense stationary random function defined on an abstract probability space (Ω, \mathcal{F}, P) , e.g.,

 $T \subset \mathbb{R}^d$, d > 1. The property of long range dependence (LRD) can be defined as

$$\int_{T} |C(t)| dt = +\infty$$

where $C(t) = \text{cov}(X_0, X_t), t \in T$ (McLeod, Hipel (1978); Parzen (1981)). Sometimes one requires that $C \in RV(-a)$, i.e., $\exists a \in (0, d)$ such that

$$C(t) = \frac{L(t)}{|t|^a}, \quad |t| \to +\infty,$$

where $L(\cdot)$ is a slowly varying function.

Various approaches to define LRD

- Unbounded spectral density at zero.
- Growth order of sums' variance going to infinity.
- Phase transition in certain parameters of the function (stability index, Hurst index, heaviness of the tails, etc.) regarding the different limiting behaviour of some statistics such as
 - Partial sums
 - Partial maxima.

These approaches are not equivalent, often statistically not tractable and tailored for a particular class of random functions (e.g., time series, square integrable, stable, etc.)

Various approaches to define LRD

LRD for heavy tailed random functions:

- Phase transitions in the limiting behaviour of partial sums and maxima of inf. divisible random processes and their ergodic properties (Samorodnitsky 2004, Samorodnitsky & Roy 2008, Roy 2010).
- \sim a-spectral covariance approach for linear random fields with innovations lying in the domain of attraction of α -stable law (Paulauskas (2016), Damarackas, Paulauskas (2017))

LRD: Infinite variance case

For a stationary random function X with $E X_t^2 = +\infty$ introduce

$$\operatorname{cov}_X(t,u,v) = \operatorname{cov}\left(\mathbb{1}(X_0>u),\mathbb{1}(X_t>v)\right), \quad t\in T,\, x,v\in\mathbb{R}.$$

It is always defined as the indicators involved are bounded functions.

A random function X is called SRD (LRD, resp.) if

$$\sigma_{\mu,X}^2 = \int\limits_{T}\int\limits_{\mathbb{R}^2} \left| \operatorname{cov}_X(t,u,v) \right| \mu(\mathit{d}u) \, \mu(\mathit{d}v) \, \mathit{d}t < +\infty \qquad (=+\infty)$$

for all finite measures (for a finite measure, resp.) μ on \mathbb{R} . For discrete parameter random fields (say, if $T \subseteq \mathbb{Z}^d$), the $\int_{\mathcal{T}} dt$ in the above line should be replaced by a $\sum_{t \in T: t \neq 0}$.

Motivation

Assume that X is wide sense stationary with covariance function $C(t) = \text{cov}(X_0, X_t), t \in T$, and moreover,

$$cov_X(t, u, v) \ge 0$$
 or ≤ 0 for all $t \in T$, $u, v \in \mathbb{R}$.

Examples of X with this property are all **PA** or **NA**- random functions. W. Hoeffding (1940) proved that

$$C(t) = \int_{\mathbb{R}^2} \operatorname{cov}_X(t, u, v) \, du \, dv. \tag{1}$$

Then, X is long range dependent if

$$\int\limits_T |C(t)|\,dt = \int\limits_T \int\limits_{\mathbb{R}^2} |\mathsf{cov}_X(t,u,v)|\,du\,dv\,dt = +\infty.$$

Motivation: memory and excursions

Level (excursion) sets and their volumes:

Let $a_n(u) = \nu_d(A_u(X, W_n))$ be the volume of the excursion set

$$A_u(X, W_n) = \{t \in T \cap W_n : X_t > u\}$$

of a random field X at level u in an observation window $W_n = n \cdot W$ where $W \subset \mathbb{R}^d$ is a convex body.

Motivation: excursions and SRD

Multivariate CLT for level sets' volumes (Bulinski, S.,

Timmermann, Karcher, 2012):

For a stationary centered weakly dependent random function X satisfying some additional conditions (square integrable, α - or max-stable, inf. divisible) we have for any levels $u, v \in \mathbb{R}$ that

$$\frac{\left(a_{n}(u),a_{n}(v)\right)^{\top}-\left(\mathsf{P}(X_{0}\geq u),\mathsf{P}(X_{0}\geq v)\right)^{\top}\cdot\nu_{d}(W_{n})}{\sqrt{\nu_{d}\left(W_{n}\right)}}\overset{d}{\to}\mathcal{N}\left(\boldsymbol{o},\Sigma\right)$$

as
$$n \to \infty$$
. Here $\Sigma = (\sigma_{ij})_{i,j=1}^2$ with $\sigma_{12} = \int_{\mathbb{R}^d} \text{cov}_X(t, u, v) dt$.

So, $a_n(u) = \nu_d(A_u(X, W_n))$ is the right statistic to study!

Motivation: limiting variance in FCLT

By FCLT (Meschenmoser, Shashkin, 2011) and the continuous mapping theorem, it holds for some stationary weakly dependent associated random functions X with $W_n = [0, n]^d$ that

$$\frac{\int_{\mathbb{R}} a_n(u) \mu(du) - n^d \int_{\mathbb{R}} \bar{F}_X(u) \mu(du)}{n^{d/2}} \stackrel{d}{\longrightarrow} \textit{N}(0, \sigma^2_{\mu, X})$$

as $n \to \infty$ for any finite measure μ with $\sigma_{\mu,X}^2$ as above. So X is SRD if the asymptotic covariance $\sigma_{u,X}^2$ in the CLT is finite for any finite measure μ prescribing the choice of levels u.

Motivation: American options

Let $X = \{X_t, t \in \mathbb{Z}\}$ be the stock for which an American option at price $u_0 > 0$, $t \in [0, n]$, $n \in \mathbb{N}$ is issued. The customer may buy a call at price u_0 whenever $X_t > u_0$ for some $t \in [0, n]$. For $\mu = \delta_{\{u_0\}}$ we get

$$\frac{\nu_1\left(\{t\in[0,n]:X_t>u_0\}\right)-n\bar{F}_X(u_0)}{\sqrt{n}}\stackrel{d}{\longrightarrow} N(0,\sigma^2_{\delta_{\{u_0\}},X}).$$

Then

- ▶ X l.r.d. (i.e., $\sigma^2_{\delta_{\{y_0\}},X} = +\infty$) \Longrightarrow the amount of time within [0, n] at which the option may be exercised is not asymptotically normal for large time horizons n.
- ➤ X s.r.d. ⇒ asymptotic normality of this time span for any price u_0 provided that X satisfies some additional conditions.

Motivation: Checking LRD

For a stationary centered Gaussian random function X with Var $X_0 = 1$ and correlation function $\rho(t)$ we have (Bulinski, S., Timmermann, 2012)

$$\operatorname{cov}_X(t, u, v) = \frac{1}{2\pi} \int_0^{\rho(t)} \frac{1}{\sqrt{1 - r^2}} \exp\left\{ -\frac{u^2 - 2ruv + v^2}{2(1 - r^2)} \right\} dr.$$

Motivation: statistical inference of LRD

The new definition is statistically feasible. Notice that for $\mu = \delta_{\{u_0\}}$

$$\sigma_{\mu,X}^2 = \int_T |F_{X_0,X_t}(u_0,u_0) - F_X(u_0)F_X(u_0)| dt,$$

where the bivariate d.f. $F_{X_0,X_t}(u,v) = P(X_0 \le u, X_t \le v)$ and marginal d.f. $F_X(u) = P(X_0 \le u)$ can be estimated from the data by their empirical counterparts.

Long range dependence for heavy tailed random functions

Lemma (Kulik, S. 2019)

A stationary real-valued random function X is SRD if

$$\int\limits_{T} \int\limits_{[0,1]^2} |C_{0,t}(x,y) - xy| \, P_0(dx) \, P_0(dy) \, dt < +\infty$$

for any probability measure P_0 on [0,1] where $C_{0,t}$ is a copula of the bivariate distribution of (X_0, X_t) , $t \in T$. X is LRD if there exists a probability measure P_0 on [0, 1] such that the above integral is infinite.

Motivation: Checking LRD

Denote by $P_{\mu}(\cdot) = \mu(\cdot)/\mu(\mathbb{R})$ the probability measure associated with the finite measure μ on \mathbb{R} . If $X \in \mathbf{PA}$ then applying Fubini-Tonelli theorem leads to

$$\sigma_{\mu,X}^2 = \mu^2(\mathbb{R}) \int_T \operatorname{cov}\left(F_{\mu}(X_0), F_{\mu}(X_t)\right) dt,$$

where $F_{\mu}(x) = P_{\mu}((-\infty, x))$ is the (left–side continuous) distribution function of probability measure P_{μ} .

Mixing

Let (Ω, \mathcal{A}, P) be a probability space and $(\mathcal{U}, \mathcal{V})$ be two sub- σ -algebras of A. α -mixing coefficient:

$$\alpha(\mathcal{U},\mathcal{V}) = \sup\left\{|P(U \cap V) - P(U)P(V)|: \ U \in \mathcal{U}, \ V \in \mathcal{V}\right\}.$$

Let $X = \{X_t, t \in T\}$ be a random function, and T be a normed space with distance d. Let $X_C = \{X_t, t \in C\}, C \subset T$, and \mathcal{X}_C be the σ -algebra generated by X_C . If |C| is the cardinality of a finite set C, for any $z \in \{\alpha, \beta, \phi, \psi, \rho\}$ put

$$\mathbf{z}_{X}(\mathbf{k}, \mathbf{u}, \mathbf{v}) = \sup\{\mathbf{z}(\mathcal{X}_{A}, \mathcal{X}_{B}): \quad d(\mathbf{A}, \mathbf{B}) \geq \mathbf{k}, \ |\mathbf{A}| \leq \mathbf{u}, |\mathbf{B}| \leq \mathbf{v}\},$$

where $u, v \in \mathbb{N}$ and d(A, B) is the distance between subsets A and B.

SRD and mixing

Theorem (Kulik, S. 2019)

Let $X = \{X_t, t \in T\}$ be a stationary random function with z-mixing rate satisfying $\int_{\mathcal{T}} z_X(\|t\|, 1, 1) dt < +\infty$ where $z \in \{\alpha, \beta, \phi, \psi, \rho\}$. Then X is SRD with

$$\int_{\mathcal{T}}\int_{\mathbb{R}^2}\left|\operatorname{cov}_X(t,u,v)\right|\mu(du)\,\mu(dv)\,dt\leq 8\int_{\mathcal{T}}z_X(\|t\|,1,1)\,dt\cdot\mu^2(\mathbb{R})$$

for any finite measure μ .

Let the random function $X = \{X_t, t \in T\}$ be given by

$$X_t = F(Y_t)Z_t$$

where $Y = \{Y_t, t \in T\}$ and $Z = \{Z_t, t \in T\}$ are independent stationary random functions, Z has property

$$cov_Z(t, u, v) \ge 0$$
 or ≤ 0 for all $t \in T$, $u, v \in \mathbb{R}$,

 $F: \mathbb{R} \to \mathbb{R}_{\pm}$ and $P(F(Y_t) = 0) = 0$ for all $t \in T$. $F(Y_t)$ is called a random volatility (being a deterministic function of a random (often LRD) function $Y = \{Y_t, t \in T\}$) scaling a heavy tailed random function $Z = \{Z_t, t \in T\}$.

Theorem (Kulik, S. 2019)

Let the random volatility model X be given by $X_t = AZ_t$, $t \in T$, $|T| = +\infty$ where A > 0 a.s., A and Z are independent and $Z \in \mathbf{PA}$ is stationary. Then X is LRD if there exists $u_0 \in \mathbb{R}$: $\bar{F}_Z(u_0/A) \neq const \ a.s.$

Example

The above theorem evidently holds true if e.g.

- $ightharpoonup Z_0 \sim \text{Exp}(\lambda), A \sim \text{Fréchet}(1) \text{ for any } \lambda > 0.$
- \blacktriangleright X is a subgaussian random function where $A = \sqrt{B}$. $B \sim S_{\alpha/2}\left(\left(\cosrac{\pilpha}{4}
 ight)^{2/lpha},1,0
 ight),\,lpha\in(0,2),$ and Z is a centered stationary Gaussian random function with covariance function $C(t) \ge 0$ for all $t \in T$ and a non-degenerate tail \bar{F}_{7} .

Corollary

For the random function $X = \{X_t, t \in T\}$ given by $X_t = Y_t Z_t$, $t \in T$, assume that random functions $Y = \{Y_t, t \in T\}$ and $Z = \{Z_t, t \in T\}$ are stationary and independent. Assume that Z_0 has a regularly varying tail, that is, $P(Z_0 > x) \sim L(x)/x^{\alpha}$ as $x \to +\infty$ for some $\alpha > 0$ where the function L is slowly varying at $+\infty$. For $Y_0 > 0$ a.s. assume that $EY_0^{\delta} < \infty$ and $\mathsf{E}\left(Y_0^{\delta}Y_t^{\delta}\right)<\infty$ for some $\delta>\alpha$ and all $t\in T$. Let $Y,Z\in$ **PA**(**NA**). Then X is LRD if $Y^{\alpha} = \{Y^{\alpha}_t, t \in T\}$ is LRD.

Example

Assume that $X_t = e^{Y_t^2/4} Z_t$, $t \in \mathbb{Z}$, where

- \triangleright Z_t is a sequence of i.i.d. random variables with finite moment of order $2 + \delta$ for some $\delta > 0$,
- \triangleright Y_t is a centered stationary Gaussian **PA** long memory sequence with unit variance and covariance function ρ ,
- \triangleright sequences Z_t and Y_t are independent.

It holds $\mathsf{E} X_0^2 = +\infty$. Choose $\mu = \delta_{\{u_0\}}$ for some $u_0 \in \mathbb{R}$. Then

$$\sum_{t=1}^{\infty} \operatorname{cov}_{X}(t, u_{0}, u_{0}) = \sum_{k=1}^{\infty} \frac{\langle \bar{F}_{Z}(u_{0}/G), H_{k} \rangle_{\varphi}^{2}}{k!} \sum_{t=1}^{\infty} \rho^{k}(t),$$

where $G(x) = e^{x^2/4}$. X is LRD if $\sum_{t=1}^{\infty} \rho^2(t) = +\infty$. In particular, if $\rho(t) \sim |t|^{-\eta}$ as $|t| \to \infty$, then LRD occurs if $\eta \in (0, 1/2].$

Let X be a real-valued random function on \mathbb{Z}^d , d > 1 and let $W \subset \mathbb{Z}^d$ be a finite subset. Let

$$A_{u}\left(X,W\right):=\left\{ t\in W:X\left(t\right)\geq u\right\}$$

be the excursion set of X in W over the level $\mu \in \mathbb{R}$

Asymptotic (non)Gaussian behavior of $|A_{ij}(X, W)|$ as W expands to \mathbb{Z}^d ?

Prove a more general limit theorem for sums $\sum_{t \in W} g(X_t)$ of functionals q of X!

Let X be a random volatility function of the form

$$X_t = G(Y_t)Z_t, \quad t \in \mathbb{Z}^d,$$

where

- ▶ $\{G(Y_t), t \in \mathbb{R}^d\}$ is a subordinated measurable Gaussian random function.
- ▶ $\{Z_t, t \in \mathbb{Z}^d\}$ is a white noise,
- ▶ the random functions *Y* and *Z* are independent.

Let $W_n = [-n, n]^d$, and g be a real valued function such that $E[g(X_0)] = 0$, $E[g^2(X_0)] > 0$. Introduce the function

$$\xi(y) = \mathsf{E}[g(G(y)Z_0)] \ .$$

It follows that $\xi(y) < \infty$ for ν_1 -a. e. $y \in \mathbb{R}$, $E[\xi(Y_0)] = 0$.

Furthermore, set

$$m(y, Z_t) = g(G(y)Z_t) - \xi(y) , \quad \chi(y) = E[m^2(y, Z_0)] .$$

Assume that

- ▶ rank $(\xi) = q$, $E[|q(X_0)|^2] < \infty$, $E[\chi^3(Y_0)] < \infty$.
- Y is a homogeneous isotropic centered Gaussian random function with the covariance function $\rho(t) = E[Y_0 Y_t] = |t|^{-\eta} L(|t|), \, \eta \in (0, d/q) \text{ and } L \text{ is slowly}$ varying at infinity.
- \triangleright Y has a spectral density $f(\lambda)$ which is continuous for all $\lambda \neq 0$ and decreasing in a neighborhood of 0.

Theorem (Kulik, S. 2019)

1. If $\xi(y) \equiv 0$ then

$$n^{-d/2} \sum_{t \in [-n,n]^d \cap \mathbb{Z}^d} g(X_t) \stackrel{d}{\longrightarrow} \mathcal{N}(0,\sigma^2) \;, \quad n \to +\infty,$$

where
$$\sigma^2 = E[g^2(X_0)]2^d > 0$$
.

2. If $\xi(y) \not\equiv 0$ then

$$n^{q\eta/2-d}L^{-q/2}(n)\sum_{t\in [-n,n]^d\cap \mathbb{Z}^d}g(X_t)\stackrel{d}{\longrightarrow} \mathbf{R}\;,\quad n o +\infty,$$

where the random variable R is a q-Rosenblatt-type random variable.

q–Rosenblatt-type random variable:

$$egin{aligned} R &= (\gamma(d,\eta))^{q/2} \int_{\mathbb{R}^{dq}}' \int_{[-1,1]^d} e^{i\langle \lambda_1 + \ldots + \lambda_q, u
angle} du rac{B(d\lambda_1) \ldots B(d\lambda_q)}{(|\lambda_1| \cdot \ldots \cdot |\lambda_q|)^{(d-\eta)/2}}, \ \gamma(d,\eta) &= rac{\Gamma\left((d-\eta)/2
ight)}{2\eta \pi^{d/2} \Gamma(\eta/2)}, \end{aligned}$$

and $\int_{\mathbb{D}^d} da$ is the multiple Wiener–Ito integral with respect to a complex Gaussian white noise measure B (with structural measure being the spectral measure of Y).

Example

Assume that

$$g(y) = 1{y > u} - P(G(Y_0)Z_0 > u)$$

where *G* is nonnegative or nonpositive ν_1 –a.e. Then

$$\xi(y) = \mathsf{E}[\mathbb{1}\{G(y)Z_0 > u\}] - P(G(Y_0)Z_0 > u).$$

- ▶ If u = 0 then $\xi(y) \equiv 0$, so the Gaussian case applies.
- ▶ If $u \neq 0$ then $\xi(y) \not\equiv 0$, so the non-Gaussian case applies. Let $uG(y) \geq 0$ for all y.
 - q = 1: $G : \mathbb{R} \to \mathbb{R}_{\pm}$ is monotone right-continuous non–constant fct. with $\nu_1 (\{x \in \mathbb{R} : G(x) = 0\}) = 0$. q = 2: $G(y) = G_1(|y|)$ with G_1 as above.

Example

Let the random volatility function $X_t = G(|Y_t|)Z_t$, $t \in \mathbb{Z}^d$ be s.t.

- Y is a centered Gaussian random function with unit variance and corr. function $\rho(t) \geq 0$ as above, $\rho(t) \sim |t|^{-\eta}$ as $|t| \to +\infty$
- ▶ $G(x) \ge 0$ is continuous as above with $E|G(|Y_0|)|^{1+\theta} < \infty$ for some $\theta \in (0, 1)$.
- ▶ $\{Z_t\}$ is a heavy–tailed white noise, $EZ_0^2 = +\infty$.

For G(y) = G(|y|) and $\mu = \delta_{\{u_0\}}$, $u_0 > 0$ we have

$$\sum_{t\in\mathbb{Z}^d,\,t\neq 0}\operatorname{cov}_X(t,u_0,u_0)=\sum_{k=1}^\infty\frac{\langle \bar{F}_Z(u_0/\widetilde{G}),H_k\rangle_\varphi^2}{k!}\sum_{t\in\mathbb{Z}^d,\,t\neq 0}\,\rho^k(t),$$

- ▶ Since rank $(\widetilde{G}) = 2$, X is LRD if $\sum_{t \in \mathbb{Z}^d, t \neq 0} \rho^2(t) = +\infty$, that is, if $\eta \in (0, d/2)$.
- For niveau $u \neq 0$, the asymptotic behavior of $|A_{ij}(X, [-n, n]^d)|$ is of 2-Rosenblatt-type (rank $(\xi) = q = 2$) if $\eta \in (0, d/2)$.

Summary:

The correct statistics associated with the new definition of l.r.d. is the volume of excursion sets!!!!

Linear α -stable time series

▶ Let $\{Z_t, t \in \mathbb{Z}\}$ be a sequence of i.i.d. S α S random variables with characteristic function

$$\psi_{Z}(s) = \exp\{-\tau^{\alpha}|s|^{\alpha}\}\$$

for $\tau > 0$, $\alpha \in (1,2)$, $s \in \mathbb{R}$.

▶ Let $\{a_i, j \in \mathbb{Z}\}$ be a nonnegative number sequence s. t.

$$\sum_{j=-\infty}^{+\infty}a_j<\infty$$

Linear SαS time series:

$$Y(t) = \sum_{j=1}^{+\infty} a_j Z_{t-j}, \quad t \in \mathbb{Z}.$$

Seite 33

SRD/LRD for linear α -stable time series

Let
$$\{Y(t) = \sum_{j=-\infty}^{+\infty} a_j Z_{t-j}, \quad t \in \mathbb{Z}\}$$
 be as above.

Theorem (Makogin, Oesting, Rapp, S. (2019))

- Y is SRD if $\sum_{j=-\infty}^{\infty} a_j^{\alpha/2} < \infty$.
- Y is LRD if $\sum_{j=-\infty}^{\infty} \sum_{t=-\infty}^{\infty} (a_j^{\alpha} \wedge a_t^{\alpha}) = \infty$.
- ▶ If a_j is monotonically decreasing on \mathbb{Z}_+ and $a_j = a_{-j}$ for all $j \in \mathbb{Z}$ then Y is LRD whenever $\sum_{t=0}^{\infty} t \ a_t^{\alpha} = \infty$.

Max-stable stationary processes

A stochastic process $X = \{X(t), t \in T\}$ is called max-stable if, for all $n \in \mathbb{N}$, there exist functions $a_n: T \to (0, \infty)$ and $b_n: T \to \mathbb{R}$ such that

$$\left\{\max_{i=1,\dots n}\frac{X_i(t)-b_n(t)}{a_n(t)},\ t\in T\right\}\stackrel{d}{=}\left\{X(t),\ t\in T\right\},$$

where the processes X_i , $i \in \mathbb{N}$, are independent copies of X

- Marginal distributions of a max-stable process: degenerate, Fréchet, Gumbel or Weibull law.
- ightharpoonup lpha-Fréchet marginal distribution: $P(X(t) \le x) = \exp(-x^{-\alpha})$ for all x > 0 and some $\alpha > 0$ and all $t \in T$. Here, covariances do not exist if $\alpha \leq 2$.

Max-stable stationary processes

▶ Pairwise extremal coefficient: $\{\theta_t, t \in T\}$ defined via

$$P(X(0) \le x, \ X(t) \le x) = P(X(0) \le x)^{\theta_t}$$
 for all $x > 0$,

- ▶ It holds $\theta_t = 2 \lim_{x \to \infty} P(X(t) > x \mid X(0) > x)$.
- \bullet $\theta_t \in [1, 2]$, where
 - $\theta_t = 2 \Longrightarrow X(0)$ and X(t) asymptotically independent,
 - $\theta_t = 1 \Longrightarrow X(0)$ and X(t) asymptotically fully dependent.

SRD/LRD for max-stable stationary processes

Theorem (Makogin, Oesting, Rapp, S. (2019))

Let $X = \{X(t), t \in T\}$ be a stationary max-stable process with α -Fréchet marginal distribution and pairwise extremal coefficient $\{\theta_t, t \in T\}$. X is LRD iff

$$\int_{\mathcal{T}} (2-\theta_t) dt = \infty.$$

Outlook

- Checking the new LRD definition for other classes of processes with infinite variance, e.g., for infinitely divisible moving averages
- Connection of LRD with LT for the volume of excursions of other stationary random functions

Literature: Historical and general expositions

- J. Beran, Y. Feng, S. Ghosh, R. Kulik, Long Memory Processes: Probabilistic Properties and Statistical Methods. Springer, 2012.
- ► H. E. Hurst, Long term storage capacity of reservoirs. Trans. Amer. Soc. Civil Engrs., 116, pp. 770-779, 1951.
- ▶ B.B. Mandelbrot, *Une classe de processus stochastiques homothétiques à soi*; application à la loi climatologique de H.E. Hurst. Comptes Rendus Acad. Sci. Paris, 260, pp. 3274-3277, 1965.
- D.B. Percival, The statistics of long memory processes. PhD Thesis, University of Washington, U.S.A, 1983.
- C.C. Heyde, Y. Yang, On defining long range dependence. Journal of Applied Probability, 34 (4), pp. 939 - 944, 1997.
- ▶ W. Hoeffding, Scale-invariant correlation theory. In N. I. Fisher and P. K. Sen (Eds.), The Collected Works of Wassily Hoeffding, New York: Springer-Verlag, pp. 57-107, 1940.
- F. Lavancier, Long memory random fields. In: Dependence in Probability and Statistics, Lecture Notes in Statist. 187, Springer, pp. 195–220, 2006.
- G. Samorodnitsky, Stochastic processes and long range dependence. Springer, Cham, 2016.

Literature: Limit theorems

- R. L. Dobrushin and P. Major, Non-central limit theorems for nonlinear functionals of Gaussian fields. Z. Wahrsch. Verw. Gebiete 50 (1979), no. 1, 27-52.
- J. Damarackas and V. Paulauskas, Spectral covariance and limit theorems for random fields with infinite variance. J. Multivariate Anal. 153 (2017), 156-175.
- L. Giraitis, H. L. Koul, and D. Surgailis, Large sample inference for long memory processes. Imperial College Press, London, 2012.
- S. N. Lahiri and Peter M. Robinson, Central limit theorems for long range dependent spatial linear processes. Bernoulli 22 (2016), no. 1, 345-375.
- N. Leonenko and A. Olenko, Sojourn measures of Student and Fisher- Snedecor random fields. Bernoulli 20 (2014), no. 3, 1454-1483.
- V. Paulauskas, Some remarks on definitions of memory for stationary random processes and fields. Lith. Math. J. 56 (2016), no. 2, 229-250.
- ▶ V. Pilipauskaite and D. Surgailis, Scaling transition for nonlinear random fields with long-range dependence. Stochastic Process. Appl. 127 (2017), no. 8, 2751-2779.
- R. Kulik, E. Spodarev, Long range dependence of heavy tailed random functions. Preprint, arXiv:1706.00742v3, 2019.
- ▶ V. Makogin, M. Oesting, A. Rapp, E. Spodarev, Long range dependence for stable random processes. Preprint, arXiv:1908.11187, 2019.

Appendix: Subordinated Gaussian random function

Let $Y = \{Y_t, t \in T\}$ be a stationary centered Gaussian real-valued random function with $Var(Y_t) = 1$ and $\rho(t) = Cov(Y_0, Y_t), t \in T$. The subordinated Gaussian random function X is defined by

$$X_t = g(Y_t), t \in T$$

where $g: \mathbb{R} \to \mathit{Im}(g) \subseteq \mathbb{R}$ is a measurable function.

Expansions in Hermite polynomials

Let $\varphi(x)$ be the density and $\Phi(x)$ the c.d.f. of the standard normal law. Hermite polynomials H_n

- ▶ are defined by $H_n(x) = (-1)^n \frac{\varphi^{(n)}(x)}{\omega(x)}, n = 0, 1, 2, \dots$
- ▶ are polynomials of degree n: $H_0(x) = 1$,

$$H_1(x) = x$$
, $H_2(x) = x^2 - 1$, $H_3(x) = x^3 - 3x$,...

form an orthogonal basis of the Hilbert space of square integrable with $e^{-\frac{x^2}{2}}$ functions with inner product

$$\langle f,g\rangle_{\varphi}=\int_{-\infty}^{+\infty}f(x)g(x)\varphi(x)\,dx.$$

Hence, any function from this space has a series expansion w.r.t. Hermite polynomials.

Appendix: Expansions in Hermite polynomials

Lemma (Rozanov (1967))

Let Z_1 , Z_2 be standard normal random variables with $\rho = cov(Z_1, Z_2)$, and let G be a function satisfying $E[G(Z_1)] = 0$ and $E[G^2(Z_1)] < +\infty$. Then

$$Cov(G(Z_1), G(Z_2)) = \sum_{k=1}^{\infty} \frac{\langle G, H_k \rangle_{\varphi}}{k!} \rho^k.$$

Assume $Y = \{Y_t, t \in T\}$ to be a stationary centered Gaussian real-valued random function with $Var(Y_t) = 1$ and $\rho(t) = Cov(Y_0, Y_t)$. Classical definition of LRD of X = g(Y)with $C(t) = Cov(X_0, X_t) > 0$, $t \in T$ yields

$$\int_{T} |C(t)| dt = \int_{T} \sum_{k=1}^{\infty} \frac{\langle G, H_k \rangle_{\varphi}}{k!} \rho(t)^k dt = \sum_{k=1}^{\infty} \frac{\langle G, H_k \rangle_{\varphi}}{k!} \int_{T} \rho(t)^k dt = +\infty.$$

Appendix: Subordinated Gaussian random functions

Let $T \subseteq \mathbb{R}^d$, and ν_d be the Lebesgue measure on \mathbb{R}^d .

Theorem (Kulik, S., 2019)

Let X be a subordinated Gaussian random function defined by $X_t = g(Y_t), t \in T$, where g is a right-continuous strictly monotone (increasing or decreasing) function. Assume $\nu_d(\{t \in T : \rho(t) = 1\}) = 0$. Let

$$b_k(\mu) = \left(\int_{Im(g)} H_k(g^-(u)) \varphi(g^-(u)) \, \mu(du)\right)^2$$

where g⁻ is the generalized inverse of g if g is increasing or of -q if q is decreasing. Then X is SRD if for any finite measure μ

$$\sum_{k=1}^{\infty} \frac{b_{k-1}(\mu)}{k!} \int_{T} |\rho(t)| \rho(t)^{k-1} dt < +\infty.$$

Appendix: Subordinated Gaussian random functions, Remarks

▶ If $X_t = g(|Y_t|)$, $t \in T$, then the above SRD condition modifies to

$$\sum_{k=1}^{\infty} \frac{b_{2k-1}(\mu)}{(2k)!} \int_{T} \rho(t)^{2k} dt < +\infty.$$
 (2)

▶ LRD conditions can be formulated: e.g., X is LRD if $b_k(\delta_{u_0}) < +\infty$ for some $u_0 \in \mathbb{R}$ and all k, and the above series diverges to $+\infty$.

Appendix: Subordinated Gaussian random functions, Example

- ightharpoonup Let $q(x) = e^{x^2/(2\alpha)}$, $T = \mathbb{R}^d$, $\alpha > 0$. For $\alpha \in (1,2]$, $E X_0 < \infty$, but $E X_0^2 = +\infty$.
- ▶ One can show that $\frac{b_{2k-1}(\mu)}{(2k)!} = O\left(\frac{1}{\sqrt{k}}\right), \quad k \to +\infty.$
- ▶ For $\rho(t) \sim |t|^{-\eta}$ as $|t| \to +\infty$, $\eta > 0$, $X = e^{Y^2/(2\alpha)}$ is
 - ▶ LRD if $\eta \in (0, d/2]$, since then $\int_{\mathbb{R}^d} \rho^2(t) dt = +\infty$,
 - ▶ SRD if $\eta > d/2$, since

$$\int_{\mathbb{R}^d} \rho^{2k}(t) dt = O(k^{-1}) \quad \text{as } k \to +\infty,$$

and the series (2) behaves as

$$\sum_{k=1}^{\infty} \frac{1}{k^{3/2}} < +\infty.$$

▶ Hence, for $\eta \in (d/2, d)$ Y is LRD but $X = e^{Y^2/(2\alpha)}$ is SRD!