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- Fractional Brownian motion and fractional Ornstein-Uhlenbeck processes
- Estimation of drift parameters in the ergodic setting
- Estimation of drift parameters in the non-ergodic setting
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Motivation

Empirical evidence in data:

- often mean-reverting property or in other cases explosive behaviour
- specific correlation structure, e.g. long range dependence

- often saisonalities are present

Questions:

- How can we model this features?

- How can we infer involved quantities?
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Fractional Brownian Motion

A fractional Brownian motion (fBm) with Hurst parameter H € (0, 1),
B = {B}F,t > 0} is a zero mean Gaussian process with the covariance
function

1
E(BF B = 5(t2” +s2H |t — s, s, t>0.
Properties:
- Correlation

For H € (%, 1) the process possesses long memory and for H € (0, )

the behaviour is chaotic. ?
- For H = % B" coincides with the classical Brownian motion.

- Holder continuous paths of the order v < H.

- Gaussian increments

- Selfsimilarity: {a="B!!,t >0} and {Bf,t > 0} have the same
distribution.

- if H # 0.5 not a semimartingale.
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Implications of this properties

- fractional Brownian motion is non-Markovian: usual martingale
approaches do not work,

- increments are not independent, we cannot use classical limit theorems
for independent random variables,

- It6 integration does not work, we need a different type of integration, the
easiest is a pathswise Riemann-Stieltjes integral. Other possibility is a
divergence integral which allows for a generalization of the It6 formula.
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Ornstein-Uhlenbeck Process

A classical Ornstein-Uhlenbeck process is given by the stochastic
differential equation
dXt - 7>\Xtdt + th

where W denotes a Brownian motion. It possesses the solution
t
X: = Xoe M + / e M=) gwy,
0

and for A > 0 it is mean-reverting and ergodic, for A < 0 it is
non-ergodic.

Popular generalizations are to replace the Brownian motion by a Lévy
process or a fractional Brownian motion.
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Perodic fractional Ornstein-Uhlenbeck processes

We consider the stochastic process (X;) given by the stochastic differential
equation
dX: = (L(t) — aX;)dt + odB!,

with Xg = &g, where & is square integrable, independent of the fractional
Brownian motion (B!):cr.

We have a period drift function L(t) = >°F_; pi¢i(t), where

¢i(t);i =1,...,p are bounded and periodic with the same period v.
wi;i=1,..., p are unknown parameters as well as a.

But we know if it is positive or negative, furthermore o, H € (1/2,3/4)
and p are known.

We assume that the functions ¢;;i =1, ..., p are orthonormal in
L2([0,v],v~1¢) and that ¢;;i = 1,..., p are bounded by a constant C > 0.
We observe the process continuously up to time T = nv and let

n— oo.
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Related work

e Belfadli, Es-Sebaiy and Ouknine (2011): Parameter estimation for
fractional Ornstein Uhlenbeck processes: non-ergodic case

@ Dehling, Franke and Kott (2010): Estimation in periodic
Ornstein-Uhlenbeck processes

o Kleptsyna and Le Breton (2002): MLE for a fractional
Ornstein-Uhlenbeck process based on associated semimartingales

@ Hu and Nualart (2010): Least-squares estimator for a fractional
Ornstein-Uhlenbeck process.
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Some analytic background

For a fixed [0, T] the space H is defined as the closure of the set of real
valued step functions on [0, T] with respect to the scalar product

< 1po,q:1p0,5] >n= E(Bf'B).

The mapping 194 — B:"’ can be extended to an isometry between H and
the Gaussian space associated with B".

Noting that

t s
E(BFBY=H(2H - 1)/0 /0 lu — v[*H2dudv

we obtain the useful isometry properties

t Hy2) = — e Wo(V)|u — v 2 dudv
E((/0 6(s)dBH)2) = H(2H 1)/0/0¢< )6(v)|u — vIPH—2dud

E(/otgzb(s)stH/ot/Oscb(u)dBL’]’stH) =0.
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Divergence integral

For the ergodic case, we have to interpret the integrals fot usdBH as
divergence integral, i.e.

t
/usdB:I—5(u1[075])
0

t t t s
/ usdBH = / usOB + H(2H — 1)/ / D,us|s — r[*"=2drds
0 0 0 JO

If we used a straight forward Riemann Stieltjes integral, it has been

shown in Hu and Nualart (2010) that already the simple case of estimating

: . . A ™ XedX
« in a non-periodic setting by & = —% would not lead to a
0 t

or

consistent estimator. Namely in the framework of Riemann Stieltjes

integrals & simplifies to — which tends to zero as n — oo.

f“” X2dt’
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Some preliminary facts on the model: case o > 0
(Xt)t>0 given by

t t
Xy =e ot <§0 —|—/ e*L(s)ds + a/ e“sstH> ; t>0
0 0
is the unique almost surely continuous solution of equation
dX; = (L(t) — aX;)dt + odB!

with initial condition Xy = &y. In the following we need a stationary
solution.

(Xt)tzo given by

t t
Xy i=e </ e**L(s)ds + cr/ easstH>

is an almost surely continuous stationary solution of the equation above.
Note that for large t the difference between the two representations tends

to zero.
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Construction of a stationary and ergodic sequence

For the limit theorems implying consistency and asymptotic normality we
need a stationary and ergodic sequence.

Assume that L is periodic with period v = 1, then the sequence of

Cl0, 1]-valued random variables

Wi(s) == Xx_145,0<s<1,keN

is stationary and ergodic.
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Proof.

Since L is periodic, the function

h(t) == et /t e L(s)ds

is also periodic on R. We have for any t € [0, 1] that

t 0 !
Wi (t) = h(t)+oe /0 e dBl +o D eoltt1) /0 edBF \».
j=—o0
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Thus, we have the almost sure representation

0
Wi(-) = 77() + Fo(Yk) + Z ea(jfl)F(YHk,l)

j=—00

with the functionals

t
Fo: C[0,1] — C[0,1];w (t — Ue_o‘t/ easdw(s)> ,
0

1
FoC[0,1] = C[0,1];w s oot / €% duo(s)
0

and the CJ[0, 1]-valued random variable

Yy = [s+— B, ;= Bf1;0<s<1] . Since (V)) is defined via the
increments of fractional Brownian motion, they form a sequence of

Gaussian random variables which is stationary and ergodic. This
implies that the sequence of (Wk)ken is stationary and ergodic.
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Motivation of the estimator

We start with the more general problem of a p + 1-dimensional parameter
vector § = (61, ...,0p+1) in the stochastic differential equation

dX; = 0f (t, X;)dt + cdB!,

where f(t,x) = (f(t,x), ..., fp+1(t, x))* with suitable real valued functions
fi(t,x); 1 < i < p. A discretization of the above equation on the time
interval [0, T] yields for At := T/Nand i=1,...N

p+1
Xisnae — Xine = 3 it Xiae)0jAt + o (B( A BfAt>
Jj=1
Now we can use a least-squares approach and minimize
p+1 2
G: (01, 0pi1) = Z (+nar — Xine — > (iDL, Xine)0;At
j=1
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Least-squares estimator for general setting

As in Franke and Kott (2013) in a Lévy setting a least-squares estimator

may be deduces which motivates the continuous time estimator
01 = Q7' Pr with

ST A XA X)dt o [T A Xe) (8, Xe)dt
Qr = : ;

Jo fort(E X)A(EX)dE o [T fora (£, X0) (£, Xe)dt

T T t
Pt = </ fl(RXt)dXt’---v/ fp(t7Xf)de) :
0 0

and
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Least-squares estimator for fractional OU-process

In the special case of the fractional Ornstein Uhlenbeck process we have

0 = (1, s tp, @) and f(t,x) := (#1, ..., ¢p, —x)". This yields for T = nv
the estimator

0A,, = Q;an

P, = (/Onygél(t)dxt,...,/Onyqﬁ,,(t)dXt,—/OWXtht>t

L G, —an
Qn = < _a; b, ) )

with

and
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where

( o Ony¢1(t)¢p(t)dt)
: = nvi,,

I sp(Dr(e)de . [ dp(t)bp(t)dt

. nv nv
a; = (/0 ¢1(t)Xtdt,...,/0 gbp(t)Xtdt)

b, ::/ X2dt.
0

and
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Representation of the estimator

For v = 1 we have §, = 0 + aQ,,‘lR,, with

n n n t
Ro= ([ onrast [ ontorast~ [ xias?)

Q—l _ 1 lp + 'Yn/\n/\z ’Yn/\n '
" n %/\E Tn

and

with

1 n 1 n t
A, = (/\,,’1, ...,/\n’p)t = (—/ ¢1(t)Xtdt, . —/ ¢p(t)Xtdt>
nJjo nJo

-1
1 [m a
ni= = [ XPdt=D> N ]
! <n/0 t i=1 ’>
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Consistency of the estimator

First we can establish by the isometry property of fractional integrals and

properties of multiple Wiener integrals that for H € (1/2,3/4) the
sequence n~ "R, is bounded in 2.

Secondly we may show:

As n — oo we obtain that n@, ! converges almost surely to

Co— < lp + YANE AN )
. ,}/At v )

where

A= (A1, )t = </01¢1(t/3 /¢,, h(t)dt>

—1
v = (/ R (t)dt + o2~ 2HHI (2H) — Z/@) ,

and

0

with h(t) == e 3P i [F e*¢i(s)ds. Both together imply weak
consistency for H € (1/2, 3/4)
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Asymptotic normality

For H € (1/2,3/4) we obtain for least-squares estimator 0,

n=H(0, — 0) 2 N(0,02CEoC)

G =
ZO'_(—ét b )

with
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where
J& Jg e1(s)pr(t)dsdt ... [} f01¢1<s)¢p(r)dsdt

JE S p()or()dsde . [ [ bp(s)bp(t)dsdt

St ot Tl _ 2H—2 Tenle _ o 2H—2 )
3= (aH/O /0 ¢1(s)h(t)|t — s| dsdi.‘,...,a;.,‘/0 /0 Pp(s)h(t)|t — s| dsdt | ,

1 1
b= an / / h(s)h()|t — s|?H-2dsdt,
0 0

ay = H(Q2H -1),

h(t) := et Z,u,-/ e**p;(s)ds
i=1 -0
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Proof.

By the representation
b,—0=0Q, 'R,

and the almost sure convergence of n@, ! — C it is sufficient to prove
that as n — oo

n n n t
(n_H/ ¢1(t)d3ﬁ,...,n—’*/ qs,,(t)dBﬁ,—n—”/ xtdBtH)
0 0 0

25 N0, %o).

We may replace X; by X;, since n~ " Jo (Xe — X:)dB £ 0 as n — .
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Now using X; = Z; + h(t) we may deduce that Z, = oe~t [*__e**dBM
does not contribute to the covariance matrix.

Namely the contributions to the off-diagonal elements in 3 and the mixed
term of b are zero by the isometry formula for multiple Wiener integrals of
different order.

Furthermore, (n=" [ Z:dBM) — 0 as n — oo for 1/2 < H < 3/4.

Hence it is sufficient to show that for the 1-periodic functions ¢;
(1<i<p)and hasn— oo

—u [ H —u [ o - [T H
<n /Oqsl(t)dBt,...,n /Oqﬁp(t)dBt, n /oh(t)dBt)

2, N(0, o).

t
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Discussion

The rate of convergence n'~" is slower than in the Brownian case.

Furthermore, it is also slower than the rate n'/2 for the mean reverting
parameter in a fractional Ornstein Uhlenbeck setting with L = 0. This is
due to the special structure of our drift coefficient, which in our setting
also dominates the component of « leading to a slower rate even for o and
a different entry in the covariance matrix.

Note that if u; =0 for i =1,--- | p our asymptotic variance is
degenerate which corresponds to the case in Hu and Nualart (2010) with
the faster rate of convergence.

We also get a degenerate covariance matrix, if for some entry /

fol @(s)ds = 0 In Shevchenko (2019) it is shown that in this case we also
get the faster rate of convergence.
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Non-ergodic case

Now we consider the model
t t
X: = Xo +/ L(s) —|—aXsds+/ ocdBH
0 0

with o > 0 and Xy = xp. Hence
t t
Xi = e*xp + e"‘t/ e **L(s)ds + ae‘”/ e sdB!.
0 0

In the following we use the notation &; := et fot e dBH & = e 0tX,
as well as

oo = / e 4Bl
0
and - -
Eoo 1= X0 +/ e *L(s)ds + a/ e *dBl.
0 0
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Auxiliary results

Main building block of our results are the following a.s. limit results

e_atXt — éoo

t 52
ezo‘t/ X2ds — 2
0 2a
The construction of our estimator is the same as in the ergodic case.
In contrast to the ergodic case we may however interpret the involved

integrals as pathswise Rieman-Stieltjes integrals and consider
H € (0.5,1).
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Representation of the estimator

We have 0, = 0 + 0@, 'R, with

n n n t
Ro= ([ a8t [ ontorast~ [ xias?)

Q—l _ 1 lp + 'Yn/\n/\z ’Yn/\n '
" n %/\E Tn

and

with

1 n 1 n t
A, = (/\,,’1, ...,/\n’p)t = (—/ ¢1(t)Xtdt, . —/ ¢p(t)Xtdt>
nJjo nJo

-1
1 [m a
ni= = [ XPdt=D> N ]
! <n/0 t i=1 ’>
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Limit results for involved quanities

Lemma

Fori € {1,...,p} the following statements hold almost surely:

L[ gi(t)dBt — 0,
(2) _O‘"A,,,\/_ — 0,
(3) n’}/n 2an foo

2a’

(4) emond fo XtdBH —0.

J.H.C. Woerner (TU Dortmund)

29 / 36




Strong Consistency

Theorem

Jis strongly consistent, i.e.
(1) forie{1,...,p}

. L["
i == (| 6i(2)dBl
0

P n n
F0 > Naite [ 65(2)BE —uhi [ XedBE) 0.
= 0 0
(2) &—a=—02(3F_ A [y ¢i(t)dBE — [ X:dBf) — 0,
both almost surely.
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Auxiliary limit theorem

Lemma

Let F be any o(B")-measurable random variable such that
P(F < o) =1. Then, as n — o,

(" 16n(h1),- ., 0 H60(0p), F, e76,(e)) S (24, ..., Zp, F, Z),

where 8, is the integral over [0, n] with respect to BH, Z;, ..., Z, are
centred and jomtly normally distributed with the covariance matrix
fo bi x)dxf0 ¢j(x)dx)j j=1,..p and ((Z1,...,2Zp), F, Z) are

independent. Moreover, Var(Z )= H;(f,_,H).

Notation: d,(¢1) = fo ¢1(s)dBH
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Second order limit theorem

Theorem

—Hyn A A d
(nl H(:u’l — M1, -5 Up — Up)v ean(a - O()) - U(Zla 00 Zpa Zp+1)

with Z1,...,Z, as before and Z,.1 = 2aN/M with N ~ N(0, 1) and

M~ N (% (Xo + /000 e_asL(s)ds) ) 1)

independent of N. Moreover, (Z1,...,Zp) and Z,,1 also are independent.

v
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Discussion

In the first p components the additive term a% fon $i(t)dB! is the slowest
summand (note that it does not include the solution process X and is,
therefore, not influenced by its exponential growth), which yields the same
rates of convergence as in the ergodic case.

The estimator for «, however, does not contain such a term; it converges
with the same exponential rate as the estimator in Belfadli et.al (2011).
The limiting distribution is structured similarly with a Gaussian part and a
part related to a Cauchy distribution.
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Increased speed of convergence

Consider the special case of a basis element ¢, k € {1,..., p}, which

integrates to zero on [0, 1]. The results of our theorems continue to hold
but the limiting vector (Z1, ..

., Zp) will have a zero entry at Zj.
If ¢i for k € {1,.

.., p} is such that fol ok(t)dt =0, then

V(i — i) 5 oH2H — 1)Z,,

where Z, is a zero mean Gaussian random variable with variance

11
/ / or(t)pi(s)|t — s> 2 dtds
0

1 1
+Z <2H 2) 2/+2—2H)/0 /O 1 (t)bn(5)(t — )2 deds,

where ( denotes the Riemann zeta function.
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Conclusion

For the model

P
dXe = () pidi(t) £ aXe)dt + odBf?
i=1
we constructed a least-squares estimator, which is
@ consistent as T — o0

e asymptotically normal with rate T1=H in the ergodic case, in general,
and under special assumptions with rate T1/2, for H € (0.5,0.75).

@ in the non-ergodic case, for the parameter p the result is as in the
ergodic case, whereas for « the rate of convergence to a Cauchy type
distribution is exponential. The results hold for H € (0.5, 1).
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