Adaptive Wavelet Methods using
Semiorthogonal Spline Wavelets: Sparse
Evaluation of Nonlinear Functions

Kai Bittner and Karsten Urban

Preprint Series: 2004-02

Fakultat fiir Mathematik und Wirtschaftswissenschaften
UNIVERSITAT ULM




Adaptive Wavelet Methods using Semiorthogonal
Spline Wavelets: Sparse Evaluation of Nonlinear
Functions®

Kai Bittner and Karsten Urban

Universitat Ulm
Abteilung Numerik, 89069 Ulm, Germany
{kai.bittner karsten.urban} @mathematik.uni-ulm.de

Abstract

FEnormous progress has been made in the construction and analysis of adaptive
wavelet methods in the recent years. Cohen, Dahmen, and DeVore showed that such
methods converge for a wide class of operator equations, both linear and nonlinear.
Moreover, they showed that the rate of convergence is asymptotically optimal and
that the methods are asymptotically optimally efficient.

The quantitative behaviour of such methods of course depends on the choice
of the wavelet bases used, in particular on the condition number of these bases.
It has been observed that compactly supported biorthogonal spline wavelets (for
which these adaptive methods are designed for) give rise to condition numbers that
cause serious problems in practical applications. An alternative would be the use of
semiorthogonal wavelets which are known to have good condition numbers. How-
ever, the above mentioned methods do require compactly supported dual wavelets,
which in general is not the case for semiorthogonal spline wavelets.

In this paper, we focus on a core ingredient of adaptive wavelet methods for non-
linear problems, namely the adaptive evaluation of nonlinear functions. We present
an efficient adaptive method for approximately evaluating nonlinear functions of
wavelet expansions using semiorthogonal spline wavelets. This is achieved by mod-
ifying and extending a method for compactly supported biorthogonal wavelets by
Dahmen, Schneider and Xu.

Using the semiorthogonality, we only need compact support of the primal basis
functions. Starting with an adaptive quasi-interpolant in terms of the primal scaling
functions, we perform then a fast change of basis into a linear combination of dual
scaling functions. Finally, a fast decomposition algorithm is performed, which uses
only the finitely supported primal refinement coefficients, to obtain the desired
representation in terms of the dual wavelets.

In particular, this paper shows that semiorthogonal spline wavelets can be used in
the above mentioned framework of adaptive wavelet schemes for operator equations.

*The work of this paper was partly supported by the EC within the IHP-network Nonlinear approxi-
mation and adaptivity: Breaking complexity in numerical modeling and data representation, RTN2-2001-
00574.



1 Introduction

Enormous progress has been made in the construction and analysis of adaptive wavelet
methods for the numerical solution of a wide class of linear and nonlinear operator equa-
tions. These operators include partial differential operators (also systems such as in the
Stokes equation) and integral operators. It has been shown in [9, 13, 15] that appropri-
ate adaptive wavelet methods converge and in [9, 10, 14] that the rate of convergence is
optimal as compared with the best N-term approximation.

Even though the numerical experiments in [1, 18] showed impressive results and con-
firmed the optimality in qualitative terms, the quantitative behavior of the algorithm did
offer some problems. Let us illustrate this by a simple example. The adaptive method in
[9, 10] was proven to yield a fixed error reduction per iteration step, i.e.

[ul*) —ul| < 8l —ul, 0<s<1, (1.1)

where u is the desired solution. Obviously, (1.1) implies convergence of the sequence
{u};en towards u. The constant & also enters the analysis of the rate of convergence,
not qualitatively for ¢ — oo but it appears in the size of involved constants.

It has been observed in numerical experiments that this error reduction factor may be
poor, e.g. 0 ~ 0.98, which would make the whole method practically useless. One core
ingredient which influences the size of ¢ is the condition number of the used wavelet basis
U = {9y : A € V}. These bases form Riesz basis for the respective energy space X (e.g.
H}(Q) for second order elliptic pde’s).

A family ¥ = {¢, : A € V} is a called Riesz basis for a Hilbert space X if it is
complete in X and if the inequalities

> diby

AeV

< C‘I/“dHZQ(V)? d= (d)\))\EVa (12)

X

cyld|eyv) <

are satisfied, with constants 0 < cg < Cy < 0o. The constants ¢y, and Cy are called lower
and upper Riesz bound, respectively. The fraction

G

- (1.3)

P -
of the smallest upper and the largest lower Riesz bound is called the condition of the Riesz
basis. This number gives a quantitative description of the stability of ¥ with respect to
X. The optimal case obviously occurs when W is an orthonormal basis, i.e. pg = 1.

For numerical purposes we require in addition that the basis function v, are compactly
supported. With respect to these requirements Daubechies’ orthonormal compactly sup-
port wavelets [19] on Ls(R) would be the optimal choice. However, the use of these
functions has some obstructions. Firstly, orthonormality might be a too severe restric-
tion, e.g. when Q C R™ is complicated or when subspaces of HJ(£2) have to be considered
such as H(div; Q) or H(curl; Q) (where no compactly supported orthonormal wavelet ba-
sis exists). Moreover, these functions are not given by a closed formula but only in terms
of a refinement equation. This makes issues like quadrature or point evaluation (though
possible exactly) possibly costly in an adaptive framework.
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Hence, in particular for the second issue, piecewise polynomial functions would be
convenient. However, the above mentioned non-optimal reduction factors é have been
observed numerically for biorthogonal B-spline wavelets from [12, 16]. Several attempts
have been made in order to use a preconditioning of these bases, e.g. [2], which was quite
successful in 1D but not optimal in higher dimensions.

As an alternative, we consider semiorthogonal spline wavelets here. These wavelets
are spline functions, which are levelwise orthogonal and stable on each level. Therefore,
VU has the Riesz bounds ¢y = min;cy; and Cy = max; Cy;, where ¥; consists of all
wavelets of the same level (or scale) j. Since stability is much easier to control on a single
level, the commonly used examples of semiorthogonal wavelets posses good quantitative
stability properties. The main reason why they have not been used so far in adaptive
Wavelet-Galerkin methods lies in the fact that the dual system W is global, i.e., the dual
wavelets 1 are globally supported. This means that the decomposition scheme relies on
an infinite mask. It comes out somewhat surprising that this does not pose an obstacle
as we show in this paper.

This paper is organized as follows. In Section 2 we review preliminaries on semiorthog-
onal wavelets and adaptive Wavelet-Galerkin methods. For nonlinear problems, a core
ingredient of such methods is the evaluation of nonlinear functions of a wavelet expan-
sion. An efficient approximation method for this task is introduced in [17] for the case
of biorthogonal compactly supported wavelets. The basic ideas of this approach are also
reviewed in Section 2.

The remainder of this paper is devoted to the modification of the DSX-method in
[17] for semiorthogonal wavelets. In Section 3, we introduce uniform quasi-interpolation
schemes, with emphasis on splines. These schemes are used in Section 4 to construct
an adaptive quasi-interpolant. The computational realization of this quasi-interpolant is
studied in Section 5, where also the complete algorithm is described.

In particular, we show that semiorthogonal spline wavelets can be used efficiently in
the recently developed framework of adaptive wavelet method. In a forthcoming paper,
we will report on numerical experiments.

2 Preliminaries

In this section, we recall some preliminary facts that will be needed throughout the paper.

2.1 Semiorthogonal Wavelets

Most examples of semiorthogonal wavelets (also known as pre-wavelets) on Ly(R) are
induced by a multiresolution analysis (MRA) which is generated by a refinable function
¢. We do not want to restrict ourselves to this particular 1-D cardinal case only and
consider MRA in L,(£2), where Q@ C R™. Let S = {S;},;>0 denote a MRA, i.e. a sequence
of nested spaces S; C S;41 with trivial intersection such that the union of all these spaces
is dense in Ly(2). However, for notational convenience we restrict ourselves first to the
simple case 2 = [0 := [0, 1]" (and tensor products of Wavelets for Ly([0, 1])).

It should be noted that this is not a limitation of generality of the presented method.
In fact, all constructions of wavelets on general domains we are aware of include a de-



composition of the domain 2 and parametric mappings of the induced subdomains to
[]. Thus, it is not just convenient to work on [, but follows also the spirit of wavelet
constructions on general domains.

In what follows, the abbreviation A < B will indicate the existence of an absolute
constant ¢ > 0 such that A < ¢B, and by A ~ B we always mean that A < B < A.
Furthermore, scaling functions and wavelets will be labeled by pairs A = (j, k) and triplets
A = (J, k,e) of indices, respectively, where |\| = j € Ny denotes the scale or level of a
function. The index k € Z™ usually refers to the location in space and e € {0, 1}" to the
type of wavelet. For any index set A we collect in

Aj={ e A: [N =7}

all indices on a fixed level 7 € N.
Throughout the remainder of this paper, we pose the following assumptions.

Assumption 2.1 Let & := {¢) : A € A} with a suitable index set A C Nog x Z", be a
family of Lo(2)-functions satisfying the following properties:

1. The functions are locally supported, i.e.,
O (j,k) = SUpp (b(j,k) C 27j [k7 k+ d]nv (21)

for some d € N, which in particular implies |oy| < 27" where |U| denotes the
Lebesgue measure of U C R™.

2. The system ®; := {pr : X € A;} is a Riesz basis of S; with Riesz bounds co and
Cg independent of j, i.e.,

> eaoa

)\EA]'

< Csllcjllesay, €= (ea)rea,-
Lo

col|cjllena,) <

3. The system ®; is locally linear independent, i.e., if for any open set U C €2

Z Cx QS)\‘ = 07
)\GAJ‘ v
then ¢y =0 for all A € A; with |oy NU| # 0.
4. The system is refinable, i.e., there exist coefficients ay, € R such that

o= > arudp (2.2)

HEA| N +1

5. The system ®; is exact of order m € N, i.e., polynomials up to order m (degree
m — 1) can be represented exactly by ®;, i.e. Il,,,_y C S;. In particular, we assume
that 27"/2®; forms a partition of unity, i.e.,

272N " gy =1 (2.3)

AEA;



The local linear independence implies that if o410 & o(;x) then agr),+1,0 = 0, i.e., for
any A only (d + 1)" summands in the refinement equation (2.2) can be non-zero.

Since ®; is a Riesz basis of S there exists a dual basis {gz;,\, A€ A} C S, which is
uniquely determined by the conditions

Giwy €55 and  (dx, )Ly = Oryy A € A, (2.4)

In general, the dual scaling functions é » do not have local support, but are supported in
the entire domain 2.
The wavelet space W; is the orthogonal complement of S; in Sj11, i.e.,

Sj-‘rl = Sj D VVJ and S]LVVJ

Obviously, the spaces W, are mutually orthogonal. By choosing orthonormal bases for
the W; one can construct an orthonormal wavelet basis for L?(2). However, the elements
of such a basis will have global support for most choices of the MRA S. This problem
can often be circumvented by demanding only Riesz bases for the wavelet spaces W;. In
the sequel, we will assume that we have wavelets ¢, available which satisfy the following
assumptions

Assumption 2.2 Let ¥ := {¢, : A € V} with a suitable index set V C (—1UNy) x Z™ x
{0, 1} (#V,; = #A,01 — #A; ~ 2"7) satisfy the following properties:

1. W,l = So, ‘P,l = {’l/})\ D AE Vfl} = q)o.

2. The system V; == {¢ : X € V;}, j € —=1UNy is a Riesz basis of W; with Riesz
bounds cg and Cy independent of 7, i.e.,

Z AP

)\Evj'

< Cylleillew), ¢ = (cv)vea,;-
Lo

cullejlley v, <

3. The functions are locally supported, i.e.,
Wi ke) 7= SUPP P(jike) C 277 (K + w) (2.5)
for some w € R™, which in particular implies |wy| < 277,

Since W; C S;41 we know that there exist coefficients b, , so that

Py = Y bt (2.6)

PEA || +1: ouCwy

From the local support of ¥, we deduce that the number of terms in the above sum is
bounded by a constant independent of A\. Again, there is a dual basis {%, Ae A} C W,
which is uniquely determined by v, € W; and (1, 1Z,L)L2 = 0xu A it € A Usually, also
1/;)\ does not have local support.

Since |J; S is dense in L*(Q2) we know that ¥ is complete. Using the orthogonality
between the levels it is easy to show that U is a Riesz basis of L?(2) with Riesz bounds
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cy and Cy. Usually it is easy to determine Riesz bounds for a single level, but without
semiorthogonality it is often impossible to determine exact Riesz bounds for W. The dual
basis of ¥ is obviously given by ¥ = {1@,\ Ae V]

Frequently used examples of semiorthogonal wavelets are the spline wavelets for Ls(RR)
of Chui and Wang [5, 7, 8] and their modification to Lo([0, 1]) by Chui and Quak [6]. The
construction of semiorthogonal spline wavelets is motivated by the fact that there are no
compactly supported orthogonal spline wavelets (except for spline order 1) and for the
biorthogonal spline wavelets from [11, 16] the dual basis functions are not splines. Further
studies of semiorthogonal wavelets can be found in [3, 4, 20, 21, 23, 24, 22]

In Table 1, condition numbers for semiorthogonal spline wavelets and scaling functions
are listed. For the interval, we determined these numbers only up to level 10, but the
behavior of the values for increasing j gives strong evidence that these values are already
close to the condition numbers pg’l and pg’l]. Furthermore, we want to mention that we
have Ly-normalized these wavelets and scaling functions (in contrast to [6]).

P P pu | oy
3 595 |3 5.9100%
75 3.52072 | 7.57288 | 3.52068

18.5294 | 5.9035 | 19.2725 | 6.03137
45.7258 | 10.4028 | 49.8107 | 11.6751
112.826 | 18.6978 | 130.416 | 21.1974
278.387 | 33.8866 | 345.046 | —
686.891 | 61.6394 | 920.713 | —

OO\ICTJOTH;OJL\DS

Table 1: Condition numbers for scaling functions and wavelets of Chui and Wang (p5 and
ps) for Ly(R), and of Chui and Quak (pg));l] and pgg;l]) for Ly([0,1]) and j < 10.

2.2 Adaptive Wavelet-Galerkin Methods

We briefly review the main facts of adaptive Wavelet-Galerkin methods that we will need
in the sequel. For simplicity, we focus on a particular example, namely the operator
equation

—Au+ f(u)=g onQ

with a given (nonlinear) function f : R — R. Its variational formulation amounts finding
u € HY(Q) such that

a(u,v) + (f(u),v)r, = (g,v)1, forallv € Hy(Q),

where the bilinear form is given by a(u,v) := (Vu, Vv)r,. Finally, in operator form, the
problem reads

Au+ F(u) =G,
where the operators A, F : H}(2) — H~(Q) are defined by

<AU,U> = a(u,v), <F(u)vv> = (f(u)7U>L2’ v e H&(Q)v



where (-, -) denotes the standard duality pairing.

Using an adaptive wavelet method based upon a wavelet basis U of Hj(f2) then re-
quires the computation (or at least, the approximation) of terms like (Aua,,)r, or
(F(ua), %)L, for a given (finite) linear approximation ux = Yo dr¥x.

It is known, that a sufficiently good finite approximation of Au, can be computed
with cost O(#A), if the entries a(vy,1,) of the stiffness matrix can be computed at unit
cost. This is the case if the wavelets ¢, are spline functions of compact support (cf. [9]).
Since the dual wavelets are not needed here, the global support of these functions is no
obstruction at this point.

For the nonlinear function f(u) the problem is solved if we have a suitable finite
approximation in terms of the dual system, i.e.,

flup) = Z dy Y.

From the Riesz stability we know that the coefficients dy, A € V, are a good approximation
of (f(ua),¥A)r,, A € V. Thus, we seek an approximation of f(us) w.r.t. the dual system.

2.3 The DSX-Algorithm

Now we briefly describe the main ingredients of the algorithm introduced by Dahmen,
Schneider and Xu in [17] for evaluating nonlinear functions of wavelet expansions which
we will briefly refer to as DSX-Algorithm. This algorithm consists of four main steps
which we will detail in the sequel. We always start with a known approximation uj of a
function u € Ly(€2), i.e.,

uj = Z e Y, lu —uillr, <e.
Aehwe

The goal is to determine an approximation g of f(u) of similar accuracy, i.e.,

9="ddr  llg- Wl S, (2.7)

AeA
where the index set A is as small as possible. The core algorithm reads as follows.
Algorithm 2.3 Input: uj, A"“*
1. Prediction: Given A“<, predict the set A of significant indices in (2.7);

2. Reconstruction: Determine a local scaling function representation of uf, which per-
mits a fast computation of function values.

3. Quasi-Interpolation: Compute a quasi-interpolant g = Py f(upuwe) in local scaling
function representation, using function values of f(upue);

4. Decomposition: Compute the wavelet coefficients dy, A € A of g.

Let us now briefly give some background information on these steps.



2.3.1 Prediction

The prediction is based upon a local error function F which is defined on subsets of €.
Let E be such an error function satisfying

E(O) < E") for O ClV E(d) — 0 as diam(d) — 0 (2.8)
for ', 0" C Q). We are particularly interested in the dyadic cubes
Ogw =277 (k+ D).

The goal is to find for a given € > 0 a disjoint partition {{Jy : A € A, C A} of the unit
cube [J in the sense that

O=JOy and |OiNO]=0 A peA, N#p (2.9)
AEAL

so that A
ey(AL) == ( 3 E(DA)”> P < (2.10)
AEA.

We will call an index set A, € A, which defines a partition by (2.9), a partition set.
The analysis in [17] is mainly concerned with two particular cases, namely

E(0h) = B, g) =, inf g = Pllz, o). (2.11)
and
E* (O g) =2 g sy, T (E+ DT (2.12)

where for any A the cube [} satisfies
diam 0% < 27PN 0O, c O3 (2.13)

In [17], it is shown that for sufficiently smooth functions g a partition can be found so
that (2.10) is satisfied for E from (2.11) or (2.12). In particular, if g is contained in the
Besov space B (L.(0)), 7 > (2 + %)_1, s < m, then for each N € N there is a partition
set A with #A = N such that for E

ep(A) S CN7nlg

B3(L7(D))

with C independent of g and N (cf. [17, Lemmata 3.6 and 3.13]). Having determined
the partition set A the next ingredient is to find a suitable mapping Py : L, — S =
span{¢, : A € A} with the same order of approximation.

Definition 2.4 For any partition set A, let Py denote a mapping from L, into g[\' Py
1s called E-admissible, if

1Prg = gl o0 S E(ON), AEA,

and #A < #A.



Remark 2.5 [t is easy to verify that the index set A will have tree structure. The ap-
proach in [17] is completely based on (M-graded) tree-like index sets. For our purpose this
restriction is not explicitly needed, but may be contained implicitly.

In conclusion, if we have a suitable method for choosing A, satisfying (2.10) and have
an F-admissible operator Py, we know that

1Prg = gll ) S #A 7 g

Bg(LT(D)) )

which is almost the best possible N-term approximation order (where 7 = ¢ = (2 + %)_1).
For g = f(u), f € C™(R), the prediction of A is based on the local regularity of g, which
in turn can be estimated by the local regularity of u. The local regularity of u can be
predicted from the index set A**<.

Finally, one obtains the following result ([17, Theorem 4.2])

Theorem 2.6 Assume that f € C™(R), that Py is E-admissible for E defined by (2.11)
or by (2.12), and that w € By(L™(0O)), 7 > (3 + }D)_l, s < m. For any e > 0 and A"*

described above there exists a set A so that A% C A such that

1f(w) = Paf(u)le, Se. #A S,
with constants that are independent of € and .

Roughly speaking, we may assume that such a prediction scheme is available that
determines A. A simple example of such a scheme is presented in [17]. It remains to find
an F-admissible operator Py, which will be applied in the third step of Algorithm 2.3.
For the case of semiorthogonal wavelets, we will present such an operator in Section 4.

2.3.2 Reconstruction

The input uj is given in terms of its wavelet expansion. For the next steps in the algo-
rithm, however, a representation with respect to scaling functions on several levels is more
convenient. This is often called local scaling function representation. One starts with

uy = ZCA Pa, (2.14)

with some subset Z C A. Note that such a representation is not unique. For com-
putational reasons one wants to find a representation which satisfies the following two
conditions.

1. The number of nonzero coefficients should be ‘small’; i.e., #Z < #A"*.



2. To compute the function value u§(z), x € Q, only a fixed number of terms in (2.14)
shall be needed, i.e.,
#{)\GI; :L‘EO')\}Sl

with a constant independent of z, A, and uj.

The first condition makes sure that the representation can be computed with O(#A)
operations using the refinement equations (2.2) and (2.6) (if primal scaling functions and
wavelets have local support). The second condition permits the computation of function
values at unit cost.

An example of such a representation is given in [17].

2.3.3 Quasi-Interpolation

Given the predicted set A and the local scaling function representation of u = wuy, a
computable scheme is needed in order to obtain an E-admissible approximation in terms
of dual scaling functions according to Theorem 2.6. This is done in [17] by a particular
approximate evaluation of wavelet coefficients of compositions. At this point, it makes a
difference if one works with biorthogonal or semiorthogonal wavelets. Hence, we concen-
trate on this issue in Section 3 below where we construct an adaptive quasi-interpolation
scheme for semiorthogonal spline wavelets.

2.3.4 Decomposition

The quasi-interpolation results in an approximation of f(u) again with respect to a lo-
cal scaling function representation in terms of the dual scaling functions. In order to
obtain the desired approximation of f(u) in terms of the dual wavelet basis, we need a
decomposition algorithm. Since the decomposition algorithm for dual wavelets needs the
refinement coefficients of the primal basis functions, local support of the primal scaling
functions is sufficient in order to have a fast decomposition algorithm (cf. [17]).

3 Quasi-interpolation schemes

In this section, we consider quasi-interpolation schemes in general (i.e., non-adaptive) and
give examples in terms of splines. These schemes will be used in Section 4 to construct a
corresponding adaptive quasi-interpolant. Let us start by defining such schemes.

Definition 3.1 (a) A linear operator L : L,(2) — L,(S2) is called local if there exists
a compact set M so that f‘erM = 0 implies Lf(x) =0 for all z € (.

(b) A linear functional ¢ : L,(2) — R is called local if there exists a compact set M so
that f‘M = 0 implies c(f) = 0. In this case we call M the support of c.

Definition 3.2 We say the linear operators @Q; : L,(Q) — S;, j € Ny, form a quasi-
interpolation scheme, if the following conditions are satisfied:

(a) Q; preservers polynomials of degree less then m € N, i.e., Q;P = P for P € II,,_;.

10



(b) The operators Q; are local in the sense of Definition 3.1 and uniformly bounded,
i.e., there is a constant Cg and a compact set K so that for each U C Q

1Q; fllz, @) < Co I flle,ws2-ik)- (3.1)

The locality in Definition 3.2 (b) in particular implies that for any fixed x € Q the
value Q; f(z) depends only on values f(y) with |z —y| < 277. In particular, the operators
Q) satisfy (3.1) if and only if they are uniformly bounded, local linear operators (with the
compact set M in Definition 3.1 being M = 277 K).

Since @); is a linear operator onto S; = span{¢, : A € A;}, there exist (uniquely
determined) functionals gy so that

Qif =Y af)on (3.2)

AEA;

For computational purposes it is usually important that the functionals are local. In
particular, if the g\ = ¢q(; ) are uniformly bounded, are supported on 277k + K’ and if
supp ¢k C 277 [k, k 4 d|", then condition (3.1) is satisfied with K = K’ + [0, d].

It is well-known that quasi-interpolation schemes are well-suited for the approximation
of functions. For later use, we formulate the following result.

Lemma 3.3 If (); is a quasi-interpolation scheme, we have for p > 2

—I\(r_n .
If = Quifllamy S 27ME7F) inf |If = Pllz, @y,

m—

where 005 = Oy + 27K, In particular, we have Oy C 0% and diam 5 = (1 +
diam K)2-,

Proof. By definition, we have for any P € II,,,_; and U C R"

1f = Qi fllc,w If = Pllz,w) + 1Qx(f — P,

<
< (1+CIIf = Pllr, w2k

Hence,
If = @Sz, < (1 +Co) Peiﬁli 1 1f = Pl w21k

In particular, for U = [y and p > 2 we obtain by Holder’s inequality

NS

If = Quflloy < 27"ME7) |1 f — Quiflin.on
< —n|/\\(%—%) : . N
< 2 (1+CQ)pe1rB£_1 1f = pllz, @),

where (0% := O, + 27K, which proves the claim. [

Let us give some examples that will be important in the sequel.
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Example 3.4 (The cardinal case.) Let 2 =R and ¢ ) = 2%¢(2j -—k), j,k € Z, for
a given refinable function ¢. Usually, one considers functionals q; ) defined by ¢ (f) =
2_%q(f(2*j - +k)) for some ¢ : L, — R. Hence, we obtain Q;f(z) = Q(f(277+))(27z),
where

Qf(x) =Y q(f(-+ k) — k). (33)

keZ
If @ is a bounded, linear local operator which preserves polynomials, then it follows
immediately that (); is a quasi-interpolation scheme in the sense of Definition 3.2 with

Co = 1Qllz,®—L,®)-

One often is interested in the case p = oo (f € C'(R)), which is of particular interest
because one can define ¢ as a weighted sum of point values ¢(f) = Zfzf Lwe f(0+7)
with some suitable 7 € R and suitable weights wy, € R .

Example 3.5 (Cardinal splines.) Let ¢ = Ny be the cardinal B-spline of order d.
Following a result of Zheludev [25] one can choose the specific functional
[4241
a(f) = 3 (=1)Bar ATF(3) (34)

(=0

to obtain quasi-interpolation operators, which are exact for polynomials of degree d — 1.
Here, AY denotes the symmetric difference defined by Al f(z) := f(z + 2 by — f(z—1%) and

Affl f(x) = A}LAfL f(z). The coefficients 34, are defined via the generating function

(2 arcsin § ) Z 8, A2 (3.5)

For completeness we give a proof of the polynomial exactness of the quasi-interpolant
obtained from (3.4).

Lemma 3.6 The cardinal spline operator Q) defined in (3.3) with the functional q from
(8.4) is exact for polynomials of degree less than d.

Proof. Using the centered B-spline My = Ny(- + ) we have to show that

Q' f(@) =3 (2 (=1)Bae A F()) Mol k)

preserves polynomials of degree less than d. Since Qf(x) = Q* (f( + %))(m — g) it then
follows that () is exact of the same order.
Note that A?f(x) = f(z — 1) — 2f(z) + f(x + 1), and hence

S TAY (k) Myl — k) = ATV f(R) AlMy(z — k) = f(k) A¥ My(z — k).

kEZ keZ keZ

12



Changing the order of summation, we obtain
1454 ]
Qf(x) = D (=1)Bae Y AYf(k) My(x — k)

=0 kEZ
44

= D0 (V) Bue Y k) A Ml — k).
£=0 keZ

For B-splines we have the well-known relation AéMy(z) = M é?e(x) between differences
and derivatives (see, e.g., [5, Theorem 4.3 (vii)]). Hence, we obtain the representation

Qf=) f(k)(z—~
keZ

where
Exd

I(x) = (~1) BueMyiin ().

=0
Now, we consider the monomials p,(z) = (—2miz)”. For any compactly supported
function g € L'(R) it is well-know that

[ p@) @) do = 50,
R
where we denote the Fourier transform of a function f: R" — R by
f© = [ fla)e?™™tde,  £eR™
Rn

On the other hand

[@ntag@ds = Smity [ i oy dr

keZ R
= Z( 2mik)” / —2mikT Z Hr 4+ k) gt + k) dr
kEZ neZ
1 A
— Z(—2m’k)"/ e~ 2mikT Z 1+ k)g(T+ k)dr e2mike
keZ 0 nez £=0

= = ;ﬁgm E+R)|

From My(¢) = sinc(€) and we conclude

[4541
19(5) = Z Bae ( (27€)? smcd+2£(§)

=0
= smcd(f‘) i Bar (2)25 sm%(ﬂf)
=0



Applying (3.5), we obtain for |¢| < 3

19(6) = sinc?(¢) (sincd(ﬁ) — Z ﬁd7g(2)2£ sin%(ﬂf)) =1+0@Eh, ¢—0.

=44

For ¢ — 0 and k € Z\ {0} we have sinc?(k + &) = O(£%) and hence J(€ + k) = O(£9).
Thus,
[ @p@gta) iz =50) = [ pia)g)de. v <d

R

for all g € Ly(R), i.e., Q*p, = p,. Finally, note that {p, : v =0,...,d — 1} is a basis for
IT4_1, which completes the proof. [

Let us conclude this example by noting that the functional ¢ defined in (3.4) can be
expanded in terms of point values of f in the following form

d—1
> Yae f(£), if d is even,
a(f) =49 3
S qae f(£— 1), if dis odd,
/=1

where the weights 74, can be determined explicitly from (3.4). The values for d < 6 are
given in Table 2.

L d [ ae | Cq |
1|1 1
211 1

1 5 1 3

3 T840 8 2
1 4 1 5

4 T 673 6 3
5| 4T _ 107 319 _ 107 47 | 179
11527 ~ 2887 1927 ~ 288’ 1152 | 72

6| 3 7 W _ 7 13 43
240° ~ 15 40° 15’ 240 15

Table 2: Coefficients vg,.

One easily checks that in this case the compact set K in Definition 3.2 can be chosen
as K =[1—d,d—1] for even d and K = [} — d,d — 3] for odd d.

Example 3.7 (Splines on the unit interval.) Here, we we consider splines with uni-
formly distributed knots as they are used for the construction of wavelets on the interval
6, 16]. Let the level j be fixed. We assume that the basis {¢;x) :k=1—4d,...,2" — 1}
of S; consists of the ’interior’ B-splines ¢ ) = Na(2’ - —k), k € [ := {0,...,2 — d},
as well as left and right boundary splines ¢;, k € ]]1- ={l—d,...,~1}and k € [} :=
{29 +1—d,...,2 —1}. The boundary functions are restrictions of linear combinations
of functions in span{Ny(2’ - —k) : k € I;} and span{Ny(2’ - —k) : k € I}}, respectively.

14



Since I1;—1([0,1]) C span{¢;x : k € L;}, I; := I; U I U I}, we conclude that for
each polynomial p € II4_1([0, 1]) there exist uniquely determined coefficients (cx)res, such
that p =5, 9 ck(P) ¢k Obviously, for the coefficients of the interior B-splines we can

use the functional ¢ from (3.4) explained above, i.e., we set g x)(f) := q(f(2_j(- + k))),

ke It
j
Now, consider a fixed k € I; U I}. For the monomials p,(z) = 2 we can determine
the coefficients ¢ (p,) as follows. We choose knots ., € o(jr), £ =0,...,d—1, which are

mutually different. The linear system of equations

d—1
> wpery, =ci(p), €=0,....d—1,
=0

has a unique solution, since the corresponding system matrix is a transposed Vandermonde
matrix. If we set

d-1
qélj,k)(f) = Zwk,é flxr,), k€ []1‘ U,
=0

then ¢;,(p) = cx(p) and thus polynomials of order at most d — 1 are reproduced by the
quasi-interpolation operator (); defined by these functionals in terms of (3.2). Obviously,
this operator is also local.

However, it is not clear at this point how one should choose the knots xj ¢ in order to
obtain a particular ‘good’ quasi-interpolation operator (whatever this may mean in the
particular application at hand).

4 Adaptive quasi-interpolation

We now extend the above constructed spline quasi-interpolation schemes to an adaptive
version. Even though the technical details differ from [17], the idea behind is quite similar.
Let us assume that we have predicted a partition set A satisfying (2.9). We set

Jo = QAT and = g

Denote now by

Q= Oy

)\EAJ'

the area covered by the cubes from level j. Note that () is the union of the disjoint sets
;. Now we define

Pif = a(f)

with
Ij = {)\GA]‘I |O')\ﬂQj| 7é0}

Note that Z; is the minimal index set for which P;f ‘Q =Q,f ‘Q

15



Starting with P, ;, := P;, we want to define successive updates P, ; so that finally the
operator Py := P, jis E- adm1581ble We set

Prjf i=Prjaf +Pif — Z(PA,J‘—J, $2)Ls - (4.1)

)\EI]'

Note, that qg,\ in general does not have local support. However, that does not pose a
problem here, since Py j_1f € S;_1 so that each coefficient (P ;_1f, ¢~>,\)L2 can be deter-
mined by a finite number of operations, using the refinement relation (2.2) and duality.
For the numerical realization of Py we refer to the next section.

Theorem 4.1 The operator Py defined in (4.1) is an adaptive quasi-interpolation oper-
ator in the sense that

(a) it preserves all polynomials p € 11,,,_1, i.e., Pxp = p,

(b) it is local with respect to A, i.e., for any open set U C Q; we have

P ‘ =P, - ;
A . A (Xvt2-ik f) .
where K is the compact set from Definition 3.2.

Proof. (a) We will show by induction that

Py jp(x) = p(x), pell,_1, 2€Q., r=jo,...,7J. (4.2)

From the definition of Py j, := Pj, we know that the statement is true for j = jo.
Assume now that (4.2) holds for j — 1. Since Q;p = p we have ¢x(p) = (p, ¢A)L2- If
zr € Q= jo,...,Jj—1, we know by induction hypothesis that Py ;_1p(z) = p(z). Hence,

Py jp(x )+ Z n(p)oar(z Z( éA)LQ or=plx), €, <y

AEZ; AET;

On the other hand, if z € Q; we have Pjp(z) = Q;p(z) = p(x) and since Py ;_1f € S;
we have

D (Pajorf. 00 oa(@) = D (Pajorfida)i, 0a(x) = Pajaf(x), z€Q;, (43)

AEZ; )\EAJ-

which immediately yields Py jp(x) = p(z), x € §;, and (4.2) is shown. In particular, for
j = J we obtain (a).

(b) Let U C Q; be open. By (4.3) we know, that Py ;f(z) = P;f(z) = Q; f(x). From
the locality of @; (see Definition 3.2 (b)) we know for g := xyy2-ix f that ng‘U = ij|U.
Hence, PA,jg’U = PA7jf|U and

Z (PAJg — Pyl QEA>L2 ¢>\‘U =0.

)\EAj+1

16



Now, local linear independence implies that (Py g, dx)r, = (Pajf, ®x)r, if |ox N U| # 0,
i.e., the relevant coefficients in (4.1) are equal.

By an analogous argument we conclude Pj+1g|U = j+1f‘U from Qng’U = Qj+1f|U.
Thus, PAJ+19|U = PA7j+1f|U. Now, by induction one shows immediately that PAg‘U =

Pyfl|, O

The operator P, is a finite sum of bounded operators and hence it is bounded itself.
Unfortunately, ||Py|| may depend on A, because the number of terms in this sum grows
with J — jo. One possibility to obtain a fixed upper bound for ||P,|| is to consider only
graded (or M-graded) partition sets A. Then, one needs locally only a fixed number of
upgrades and can therefore prove uniform boundedness. Moreover, for certain classes of
scaling functions and quasi-interpolants, one can show uniform boundedness independent
of A. We restrict ourselves to the case p = oo. This includes the particular relevant
case when the functionals g;; are based on a finite number of function values as in the
Examples 3.5 and 3.7.

Theorem 4.2 Let the quasi-interpolation operators Q; : C(2) — S; satisfy the following
conditions:

a) The functionals q\ : C(2) — R are bounded by ||q,\|| < C 2’%, AeA.
q

(b) The scaling functions and the refinement coefficients from (2.2) are non-negative,
i.e., oa(x) > 0 and ay, > 0.

Then,
| Palle@)—c@) < Cq.

Proof. First, we will show by induction that for any f € C'(Q2) and j > jo the operator
Py ; can be written in the form

Prif =Y paf) o, (4.4)

)\GAJ‘

nlA|

where [pr(f)| < Cy27 72 || f]|oo- For j = 0 the statement is obviously true with

[ ane(f), ke,
Plos) () = { 0 otherwise.

We assume now that the statement is already shown for j—1. The refinement equations
(2.2) yield

Pyjaf =) cxéa

)\EAJ'
with

Cx = Z Pulf) @

HEA; 1

17



In particular, from a, \ > 0 we conclude

_n(Al=1)
el <C27 7 1 flee Y uns
MEA; 1
Since the ¢, form a partition of unity (2.3), we know that

Y am=27 AeA,

HEA;_1

iLe., ey < CqQ_%HfHOO. Applying this to the definition of Py ; in (4.1) we obtain the
representation (4.4) with

o(f), ifXe,

Cx otherwise.

pa(f) = {
Now, we obtain with ¢,(z) > 0 and (2.3) that

Pagf(@)] < Collflle2% Y oa(z) = C,.

AEA;
Taking the supremum over = for j = J proves the theorem. [
In particular, the assumptions of Theorem 4.2 are satisfied for B-splines.

Theorem 4.3 Let the assumptions of Theorem 4.2 be satisfied. Then, one has for X € A

IPAf = fllraoy S27M2 inf ||f = plle@y)-

i
pEllm—1
Proof. For A € A we have [y C ) and hence by Theorem 4.1 (b) and Theorem 4.2
[Prflle@, < HPA(XDf\f)HLP(Q) < Cyllflle@,
where (05 = [0y + 27 K. Then for any p € II,,_; we have by Theorem 4.1 (a)
If = Pafllecy < If =plle@y + 1PAS = plleay
< (L+C)If = pllecy)-

Hence,

Hf - PAfHLQ(D)\) < 27%|)\|Hf - PAf”LP(DA)
11

—n|A(5—= i
< 27"MGD (14 ¢) pelr?ﬂf_l If =plle,op O

Remark 4.4 Under the assumption that the partition set A is M-graded (for some M €
N) one can show a similar statement for p < oo where the restrictions from Theorem 4.2
are not necessary. The estimate then reads

>\ n_n .
IPrf — fllzacoy S 226 2)peglf 1 If = Pfllr,o-

m—

The proof is similar to [17, Theorem 5.3].

18



We are now able to show that P, is an E-admissible mapping.
Theorem 4.5 Let the assumptions of Theorem 4.2 be satisfied and assume that s <
m and T > % (so that B;(L.(S)) is embedded in C(S2)). Then the mapping Py is
E*-admissible with E* defined in (2.12), i.e.,

[1PAf = fllao S

S (L (05)) A€EA, (4.5)

and #A < #A.

1

Proof. Tt was proven in [17, Lemma 3.10] that for 7 > (2 + ID)*1 one has

inf ||f - pllz,o S 2N

pEILn—1 )

Combining this with Theorem 4.3 yields (4.5).
Now, we define

=Jon (4.6)

)\EZJ‘

By the local support of ¢, we conclude that ]ﬁjl < 274N ;. Furthermore, we choose
Ai={AeV: [wxnQ|=0, r>j} (4.7)

From (4.6) it follows that (P\f,¥x)r, = 0 for A & A, ie., for any f we have Pyf € g[\-
By (2.5) we conclude that

J
#A; <27 N |9,
r=j+1

Hence,

J

nr#A < Z#Arz2n] r)

j=—1

Z = O (4.8)

>>

M“

J_Z

-1

\ |
+

5 Computational aspects and realization
We conclude this paper with some remarks concerning the realization of the presented

method. Let us assume that we can compute the functionals g,(f) with a fixed number
of operations. This was shown to be the case in the presented examples in Section 3.
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5.1 Computation of the Quasi-Interpolant

To determine P, f we will compute the coefficients 7, in the expansion
Pof = 1o
AeT

To compute the update, we furtherly need some of the coefficients (3, from the level-wise
representations

Py,f = Z B ¢

/\EA]‘

By local linear independence we know that () # 0 only if o\ C Qs, s < j, with Q, defined
in (4.6). On the other hand, we only need coefficients ) for the remaining updates for
those A\ which satisfy o, C oy for some p € Z,, r > j. Therefore, we compute for every
level only the coefficients
ﬁ)\ = (PA,jfaé)\)L ) AEI;:
2
where B
Ij+ ={\N€A;: 0, CoyCQ, forsome peZ, s<j<r}
We start by setting vy = ¢x(f), A € Zj,, i.e., we consider

Prjof = > 1 o

/\EIJ'O

Furthermore, we set By = v\, A € I}; . Now, assume that we have already computed the
coefficients 7, in the representation

j—1
Py f= Z Z A P

’I"=j0 )\EIT
as well as the coefficients 3y, A € ZJ_,. For A € I we deduce from (4.1) that
5, = o(f), if A € Z;,
A (Paj—1f,¢x)r, otherwise.

From the refinement equation (2.2) we know that for A € Z1
<PA,j—1f> ¢,\> o > Butun.

Moreover, for A € Z; we have
Y= <PA,jfa GB,\)L - (PA,jflﬁ <5A>L =a(f) - Z Bty
2 2 MEA;_1: oxCopy

1.e.
_ ﬁ)‘ - Zuezjtl 5;1@“,)\, if ¢ I;r,
» o(f) otherwise.

Repeating this scheme for each level, leads to the following efficient algorithm.
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Algorithm 5.1 QI_ADAPT(f, A)

1. Initialization:

Determine I, I;g,

™= (), A€ L,
Bri=m A€,

2. Forj=j0+1,...,J
(a) Determine I;L,
(b) ﬂ)\ = q,\(f>, )\EIJJF ﬂIj,
(¢) b= X Buaun,  AEIF\TI,

,uEIjtl
(d) = ﬂ)\ - Z ﬁuau,)\; A€ I;_ ij,
utetl
() m=a(f), Ae;\I.

Output: v, 7

We will assume that we can compute function values f(z) at unit cost independent
of . Then the number of function values needed to determine ¢,(f) is independent of
A. This requirements are usually fulfilled, and we can estimate the complexity of the
algorithm as follows.

By definition of Z we conclude immediately that #Z < #A. Furthermore A\ € Z;r

implies |0y N S~2r| # 0 and by the local support of ¢, (2.1) we conclude analogously to
(4.8) that

J
> HIT S #A.
J=jo
As we know for any A € A the number of non-vanishing refinement coefficients a,  is
bounded by a constant independent of A, i.e., for each A € Z and each A € ZT we need
only a fixed number of operations independent of A. Hence, the number of operations as
well as the size of the output can be estimated by O(A).

Remark 5.2 If|Q, NQ,| =0, [r—s| > 1, one has always I/ CT; and Br = ¢a(f) =,
PS If, i.e., the coefficients By are not needed in the algorithm. Such a partition can
always be determined (cf. [17]). However, the size of A may be increased by a factor
depending on the support size of ¢, while the above algorithm works for any partition set

A and keeps the size of T minimal at no extra cost.

5.2 Change of Basis

The final ingredient in the DSX-algorithm is the decomposition of the approximation
of f(u) from local scaling function representation to wavelet representation (in terms of
the dual wavelets). Algorithm 5.1 is based on the finite support of the primal scaling
functions. The decomposition algorithm in terms of the primal functions is expensive
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(or not even possible exactly), because it is based on the infinitely supported mask of
the dual scaling functions and wavelets. The way-out is rather simple. Since primal and
dual functions span the same space (as opposed to general biorthogonal systems), we can
perform a change of basis, which can be done fast in this direction and gives the desired
representation of f(u).

This means that we want to represent a scaling function expansion of the form

Pof =) 1éa

AET

in terms of the dual scaling functions ¢,. Since the dual scaling functions form a basis
for the same space S}, we obtain the following expansion for any v € S;

U= Z (U7 ¢M>L2 QNSN‘

HeA;
Thus,
v 1= Z VAPA = Z Z '7)\<¢>\a¢u)L2 gblt?
)\sz ;J,Ejj AEBM
with

Bﬂ = {/\ S A\M\ : |U)\ﬂ0'#| =+ 0},
7, = {NeA;: |oxnoy,| #0 for some p € Z;}.

From the local support of ¢, (2.1) we know that #B, = (2d — 1)" and #fj S #I, e,
for 7 := U;.]:jo fj we have #7 < #7 < #A. Now
Pyf = A 6a

\eZ

The quantities g¢x),i.0) = (Dik), ()L, are usually known (these are just integrals of
splines on the same level), so that we can compute the coefficients

=D Y e (5.1)

neBy,

with at most (2d —1)" operations, i.e., The change of basis can be performed with O(#A)
operations.

This shows that the change of basis can be performed efficiently. This can also be seen
from the fact that this change of basis is nothing else then the multiplication of the given
vector with the Gramian matrix ((gbA, bu) LQ) el which is a sparse matrix. It should be

noted that the number of operations per coefficient is independent of the level.
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5.3 Decomposition

After performing the above described change of basis we now have a vector of expansion
coefficients with respect to the dual scaling functions. For a function

v = Z,Y“Q;“’ ICAJ'-H
HELy
we know by biorthogonality that
v = Z (Uv ¢)\)L2 é)\ + Z (U7 w)\>L2 ’QE)\
AETw AEK,
with
Jo={ €A, : |oxnsuppv| #0} and K, ={A€V;: |w\Nsuppv| # 0}

With the refinement equations (2.2) of the primal scaling functions, we have

Cx = U ¢)\ Z Z Yu a/)\l/(¢u7¢1/> = Zﬁma)\,u-

HELy VGAJ+1 HeLy,

Analogously, one obtains

dy = (v, Z Yo O
HELy
Recall that for any A the number of non-zero coefficients ay , and by, is bounded by a
constant independent of A, i.e., the coefficients ¢, and d) can be computed at fixed cost.
Given the coefficients 7;, from (5.1) we are now able to compute the desired represen-
tation of Py f in terms of the dual wavelets. Set

jJ = (Z)u
J; = {)\GAj: lox No,| # 0 for SOmeueij+1U\7j+l}a J<J,
K; = {)\evj: \w,\ﬂaﬂ\%Oforsome,uefjHUjo}, J<J

Algorithm 5.3 LOC_DECOMP (7, 7)
1. For j=J-1 downto 0

(Cl) C\ = Z fy,u a)x,,Lw A S \7j7

neL

dy = Z Yu b)w“ A€ IC]'.

pneL
(b) Ax:=cx+ A, AEL; U T,
2. d(fl,k) = C(Ok ( 1 k’) € IC—l - jO
J—1
= U K;
j=—1
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Output: d, A.

Note that this adaptive algorithm is highly efficient, in particular the number of op-
erations per coefficient is independent of the level. The reason is that the decomposition
of an expansion with respect to the dual functions uses the refinement coefficients of the
primal functions (which is a finite set). Hence, this is like a Fast Wavelet Transform. In
particular, for a given P, f

This means that we now have an approximation P, f of f(u) with respect to the dual
wavelets at hand. That is, with the coefficients d, from the above algorithm we have

Ppf = Z driy,

AeA

where
d)\ = (PAf7 w)\)LQ ~ (fa w)\>lz2'
Since this representation is unique, we conclude immediately that set A is exactly

the one we have found in (4.7). Furthermore, #J; < #K;, i.e., the complexity of the
decomposition step is O(#A).

5.4 Approximate evaluation of wavelet coefficient of f(u)

Combining the methods described above yields the following algorithm.

Algorithm 5.4 EVAL f(u)(uj, f, &, A“%)
1. Prediction of A corresponding to Section 2.3.1.

2. Local reconstruction of uy corresponding to Section 2.5.2.

(7,Z) =QI_LADAPT(f(u}), A).

co

. Change of basis: Y» = Y. VuOru, ANETL.
weby,

B

5. (d,A) =LOC_DECOMP (7, 7).
Output: d, A.

The prediction and reconstruction step can be done in complete analogy to biorthog-
onal wavelets (see [17]), since this steps are only based on the compact support of the
primal scaling functions and wavelets. Furthermore, we have already shown that the
complexity of step 3, 4, and 5 is O(#A). Hence, we have the following result.

Theorem 5.5 Let f € C™(R) and u € By(L7(0)), 7> (3 + ;)7 s < m. Assume that
for any & > 0 the input satisfies ||u — ui|lL, < &, #A» < e7™/5. Then Algorithm 5./
computes the coefficients dy, X € A, with

(Z |dx — (f(U)»%)LQ‘2> ’ Se (5.2)

AEV

(dy =10, X\ & A) at cost O(#A) = O(e™/*).
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Proof. With a suitable prediction of A we have #A < e~™/*. Furthermore, the algorithm
will yield an approximation P, f(uj) with

I1f () = Paf(up)llz, < I1f(u) = Paf(u)lle, + Co 1f e llu — willz, S e

Now, (5.2) follows from the Riesz basis property of ¥. [
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