Proceedings of Equadiff-11
2005, pp. 1-10

FLENS — A FLEXIBLE LIBRARY FOR EFFICIENT NUMERICAL
SOLUTIONS

MICHAEL LEHN , ALEXANDER STIPPLER , AND KARSTEN URBAN *

Abstract. In this paper we describe the main design and realization principles of our software
library FLENS (A Flexible Library for Efficient Numerical Solutions). FLENS is a C++ library
allowing easy and straightforward coding while providing a maximum extend of efficiency. FLENS
is in particular suited as a platform for the realization of fast solvers for differential equations.

AMS subject classifications.

1. Introduction. Nowadays, a whole variety of software packages for numeri-
cally solving differential equations is available. Commercial tools offer solvers even
for complex industrial problems. Why the need for a new one?

Our software package FLENS is motivated by several aims and scopes, in partic-
ular it should be

e used both for teaching and research;

e flexible in the sense that is easily possible for a user to extend the library. In
particular, it should be easy to realize and test new numerical methods;

e open source and free for students and researchers;

e highly efficient providing a platform also for complex industrial applications.

The use of commercial numerical software in particular undergraduate classes
may conflict with high fees for the corresponding licences. Thus it was one source
of motivation to provide our students with a free but easy to use package. This
also includes graduate and PhD students writing the particular thesis in our group.
Those students enter the group and should be able to become familiar with a software
package within short time. Moreover, such persons typically leave the group after a
certain amount of time after finishing the particular thesis. The software that has
been produced in the framework of the thesis should be written in such a way that is
can be used for further research.

On the other hand, we work on numerical methods for pde’s since a couple of
years, in particular on adaptive wavelet methods. It has become clear that the full
potential of such methods cannot be shown by using standard existing software. The
new theoretical paradigm also requires a corresponding new software design.

The third issue is that we have a variety of third party research projects, some
of them in close cooperation with industrial partners. For these purposes, we need
a flexible and efficient software platform that enables us also to provide numerical
schemes for such applications.

These goals seem to be conflicting. In particular, known packages are typically
either highly efficient or easy to handle. We introduce some of the design principles
of FLENS that bridge these two demands. The framework of FLENS is suitable both
for academic and commercial applications. It my be downloaded via the webpage
flens.sourceforge.net.

This paper is organized as follows. In Section 2 we describe the design of our
matrix and vector types allowing a clear separation of data and algorithm, an easy

*University of Ulm, Department of Numerical Analysis, 89069 Ulm, Germany
1

usage without loss of efficiency. This is in particular achieved by avoiding virtual
functions. Section 3 is devoted to the description of the efficient realization of basic
matrix-vector operations. Here, we also make use of BLAS routines, [4]. In Section
4, we show the possible interaction of FLENS with other numerical libraries such as
LAPACK. One feature particularly useful for adaptive numerical schemes, namely
slices of matrices and vectors, are described in Section 5. In Section 6, we show one
short example how to solve pde’s with FLENS and we end with some comments on
efficiency and benchmarks in Section 7.

2. Implementation of matrix and vector types. Polymorphism means that
a particular interface is provided by entities of different types [1]. In C++ this is
realized through base classes and thereof derived classes. The base class defines the
interface that has to be provided by all derived classes. For our purpose minimal
interfaces for matrix/vector types are defined in the corresponding base classes Matrix
and Vector. For the sake of simplicity we consider in this section just an interface that
enforces that all concrete implementations support index based element access and
have methods to retrieve row and column dimensions. Based upon this, a function
minij that initializes a matrix A with (A);; = min{i, j} can obviously be implemented
like this:

void minij(Matrix &A)

{
for (int i=1; i<=A.numRows(); ++i) {
for (int j=1; j<=A.numCols(); ++j) {
A(i,j) = min(i,j);
}
¥
}

This function will work with any matrix implementation derived from Matrix. With
this example we address an issue that usually comes along with polymorphism: virtual
function calls [2].

While the function minij is written for the matrix base type, the specialized
member functions have to be dispatched for derived classes. In C++, this is usually
achieved by declaring virtual member functions in the base class. Calls to such a
virtual function are dispatched using a lookup table which contains pointers to the
specialized versions of the method. Due to this indirection, using virtual functions
inside loops may lead to a considerable loss of efficiency. As the actual type of the
matrix object is not known at compile time, the indirection can not be avoided through
inlining.

Virtual functions can be avoided by a technique that became known as the Barton-
Nackman-Trick [3], which is illustrated in the following for the matrix hierarchy:

template <typename Impl>
class Matrix
{
public:
Impl &
impl O {
return static_cast<Impl &>(*this);

}

double &
operator () (int row, int col)
{
impl () (row, col);
}
s

class GeneralMatrix : public Matrix<GeneralMatrix>
{
public:
double &
operator () (int row, int col)
{
/]

}

3

The type of the derived class is provided to the base class through a template param-

eter. If we just adopt the declaration part of the above function minij we can see
that now polymorphism can be achieved without performance penalty:

template <typename I>

void
minij(Matrix<I> &A)
{
// ... as above ...
}

Calling a method in the base class, e.g., A(i,j) results in a conversion to the derived
class and a subsequent call of the specialized version. As the type of the derived class
is now known at compile time, this can be inlined by a compiler. Thus, specialized
methods in GeneralMatrix are called directly. In fact, writing functions in terms of
our base classes comes without any additional runtime overhead.

FLENS provides matrix implementations that correspond to those defined in
BLAST [6]. These are GeneralMatrix, TriangularMatrix, SymmetricMatrix and
HermitianMatrix. Those are further parameterized with respect to

1. Element type, which can be:
float, double, complex<float>, complex<double>,
2. row or column oriented storage,
3. full, banded or (except for GeneralMatrix) packed storage!.
In Section 6 we will describe how users can add new matrix/vector types.

3. Basic matrix-/vector operations. FLENS implements an efficient mech-
anism to evaluate linear algebra expressions. Temporary objects are hereby avoided
where possible. For appropriate standard operations BLAS routines are used to
achieve high performance. While the core of this mechanism is hidden from the
user inside the library, it can easily be extended to support operations on user defined
matrix types (see Section 6 below). We first outline drawbacks of a straightforward

but naive implementation and conclude with an outline of the mechanism used by
FLENS.

1See [4] for details

Consider the expression z = ATz +y where z, y and z are vectors and A is some
matrix type of appropriate dimension. We want that this can be coded in the most
natural and readable way:

z = transpose(A)*x+y;

In order to realize such a notation in C++, one has to overload operators * and + and
provide a function transpose?. In a naive implementation operators and functions
would compute and return the result of the operation as follows:

const VectorType
operator*(const MatrixType &A, const VectorType &x)
{

// compute A*x and return result

3

Behind the scene computation of z = ATz + y would trigger in this case

1. the computation of t; = AT (i.e., one temporary matrix),

2. the computation of to = t;2 (i.e., one temporary Vector)7

3. the computation of t3 = t5 + y (i.e., a second temporary vector) and

4. the assignment z = t3 (i.e., copying a vector).
Hence a lot of CPU time and memory is just consumed for the sake of a readable
notation. Now we are going to describe a natural and efficient realization.

For the evaluation of linear algebra expression, BLAS routines can be regarded as
building blocks. Single BLAS routines can cover the computation of compound (but
still simple) expressions. Let us consider how the above example can be computed
using BLAS routines. Only two BLAS routines are needed. For a general matrix A
with full storage and dense vectors x and y the routine gemv is capable to perform
operations of type y = aop(A)x + By, where «, 8 are scalars and op(A) represents
A, AT or A", Obviously « is a scaling parameter for the product while 8 can be
regarded as an update parameter for the left-hand side of an assignment. For other
matrix types routines of similar or same form are provided. For the sum of two dense
vectors the routine axpy, capable to perform y = ax +y, is used. Putting both pieces
together, we compute z = ATz + y in two steps:

1. compute z = ATz using gemv with a = 1, 3 =0 and op(A) = AT,

2. compute z = z + y using axpy with a = 1.
Hence, no temporary objects are created. Hardware vendor tuned BLAS implemen-
tations will typically recognize cache sizes and other architecture specific features
providing near optimal performance.

To combine the neat notation through operator overloading with the high perfor-
mance of BLAS implementations, we adopt the closure concept known from functional
programming. In C++ this can be realized by a technique that became known as ez-
pression templates ([7]). In FLENS, we refined the expression template technique to
ease integration of new, user defined matrix/vector types and to simplify maintain-
ability ([8]). For matrix/vector operations that involve types that are not supported
by BLAS, user defined BLAS-style functions must be provided (see Section 6 below).

The general idea is that an operator is overloaded such that it merely returns a
closure object, i.e., an object containing references of the operands and whose type
represents the operation. A closure in turn can be an operand of an operation. So
finally the right-hand side of an assignment ends up as a single composite closure ob-
ject. In the above example this composite closure object would then contain references

2Unfortunately C++ does not allow to support the notation A’ to express AT

5

of A, z and y, while its type would represent the operation A"z + 3. For its evalua-
tion, FLENS provides a mechanism that ‘breaks’ the closure into such parts that can
be evaluated by BLAS routines. In our example the evaluation is done through the
BLAS routines gemv and axpy as demonstrated above.

Usage of overloaded operators and expressive functions like transpose reduces
the risk of error prone code. At the same time, an at most negligible runtime overhead
is added. This is mainly due to the fact that the type of a closure object represents
the type of the encapsulated operation. Thus, a compiler is capable to map simple
expressions directly onto corresponding BLAS routine calls.

4. Using FLENS with other numerical libraries. Matrix/vector types that
are implemented in FLENS provide methods to directly access internal data. In par-
ticular we explicitly allow the user to receive pointers to underlying storage schemes.
It is therefore possible to use FLENS together with other numerical libraries. The
storage schemes of our matrix types are conforming to the schemes documented in
BLAST ([6]) and can directly be passed to LAPACK routines ([5]). But obviously
working with pointers always requires some extra caution even if the structures be-
hind are well documented. Some object oriented libraries completely prohibit direct
access for this reason. The compromise in FLENS is kind of a gentlemen’s agree-
ment. Other libraries should only be accessed through well-tested wrapper functions
and methods accessing internal data only used herein. For many LAPACK routines,
FLENS already provides such wrappers.

In addition, FLENS provides a convenient notation for calling numerical routines.
The motivation is simply that in every assignment the output parameter should be on
the left-hand side whereas input parameter should be on the right-hand side. However,
C++ only allows one single object on the left-hand side. Spending some thoughts,
the bottom line is that the desired notation can be achieved allowing more than one
and even a variable number of output parameter on the left-hand side.

To illustrate functionality and notation, we consider the computation of eigenval-
ues and right/left eigenvectors. For this purpose, FLENS offers the function eig. For
real-valued symmetric matrices it acts as wrapper to the LAPACK routine syev:

DenseVector d;
SymmetrixMatrix A;
GeneralMatrix VL, VR;

d = eig(A); // only eigenvalues

(d, VR) = eig(A); // eigenvalues and right eigenvectors

(VvL, 4) = eig(h); // eigenvalues and left eigenvectors

(VL, d, VR) = eig(A); // eigenvalues, left and right eigenvectors

The neat thing is that types of the output parameter and their ordering control what
actually is computed. While the implementation details are beyond the scope of
the present paper, what basically gets achieved is that a wrapper routine gets called
receiving references of the left hand side objects and const references of the right-hand
side objects.

This also solves the problem one usually faces when functions return large objects.
In a straightforward implementation, a function would return a temporary object that
gets copied. The advantage of our mechanism becomes obvious when we consider the
LU-decomposition of a matrix. With A = 1u(A), the matrix A is overwritten by the
decomposition. This happens while no temporary matrix is created and no matrix

copied.

Following a well-defined pattern, users can write their own wrappers providing
the same capabilities. Again, these kind of wrappers can be treated by compilers such
that no runtime overhead is added.

5. Working with matrix/vector slices. Many numerical applications de-
mand operations on parts of matrices or vectors. Common examples for such parts
would be sub-matrices or single rows/columns of a matrix. Creating copies of such
slices would in some cases cause an unnecessary waste of memory. Instead, we allow to
merely reference them. As this concept bears on similarities with views in database
systems, we will adopt this term to denote referenced matrix/vector slices. For a
convenient way to express index ranges an object named _ is used. Hereby _(2,7)
denotes the indices from 2 to 7 and _(2,2,7) the indices from 2 to 7 with stride
2, i.e. {2,4,6}. A maximal index range can be expressed by _ without arguments.
Obviously this shows similarities with the MATLAB notation in which _(k, 1) is
playing the role of (k:1). Here some examples:

FLENS notation ‘ mathematical meaning
AC_,3) (Ai3)i=1,...m (i-e., 3-rd column of A)
A(3,0) (Asj)j=1,....n (i.e., 3-rd row of A)

ACL(2,6),_(4,7)) | (Aij)i=2,..6;j=4,..7

Whether matrix views should finally get copied or referenced can be expressed with
the usual C++ semantic

GeneralMatrix &B = A(_(2,6), _(4,7));

GeneralMatrix C = A(_(2,6), _(4,7));
Here, B will be an alias for a sub-matrix while C is a copy of it. For FLENS users
the concept of views is completely transparent. Matrix/vector views behave just as
regular matrix/vector types.

6. Integration of user defined matrix-/vector types. To illustrate how
users can add new matrix/vector types to FLENS, we consider the Poisson problem
on the unit square Q = (0,1)%:

—Au =

f in €,
u =

g on 0f).

Using the finite difference method with the standard 5-point stencil for discretization,
leads to a linear system of equations Apu, = fj,. Hereby, the matrix A is a block
matrix of following structure

T -I 2 -1

Ay = -1 T . CT= -1 2
. S U
-1 T -1 2

Obviously, it would be a waste of memory and CPU time to actually set up this matrix.
Instead, one would want to implement a matrix class Poisson2D whose instances just
stores the dimension of the matrix:

class Poisson2D
: public Matrix<Id>

{
public:
Poisson2D(int n);
private:
int n;
};

Now assume that we want to use the conjugate gradient method to solve the linear
system of equations. In FLENS iterative methods like this are implemented as generic
functions and only require that the needed matrix/vector operations are defined for
the involved types. If for up and f;, FLENS builtin types are used, only a user
defined function for the matrix-vector product Apup has to be implemented. Such
an implementation has to follow a certain naming and signature convention with the
BLAS-style functionality®: y = aop(A4)z + By.

Without further effort, user defined operations are integrated into the evaluation
mechanism described in Section 3. This means in particular that an expression like z =
Ax + y, where A is of type Poisson2D, gets evaluated without creation of temporary
objects.

In a similar fashion matrix-matrix products or matrix-matrix sums can be imple-
mented for user defined types.

7. Performance benchmarks. It is not completely obvious what could be a
reasonable benchmark for the efficiency of our design and its realization. Since we
provide a wrapping mechanism in order to use efficient BLAS or LAPACK routines
in a user-friendly way, the optimum we can reach is the performance of the pure
BLAS or LAPACK routines. This has been tested for a whole variety of applications
clearly showing that we do not lose in this comparison. Of course, the compile time
is growing, but not the execution time.

As a second test, we performed comparisons of standard LU-decomposition to
solve a linear system of equation for FLENS on the one hand and for MATLAB on
the other hand. Depending on the underlying matrix and the size of the problem,
FLENS is faster by a factor between 2 and 5.

REFERENCES

[1] BJARNE STROUSTRUP, The C++ Programming Language, Addison Wesley, 1997.

[2] K. DRIESEN AND U. HOLZLE, The direct cost of virtual function calls in C++, In OOPSLA’96
Conference Proceedings, volume 31, 10 of ACM SIGPLAN Notices, pages 306-323, New
York, NY, USA, Oct. 1996. ACM Press.

] J. BARTON AND L. NACKMAN, Scientific and engineering C++, Addison Wesley, 1994.

[4] BLAS, Basic Linear Algebra Subprograms, http://www.netlib.org/blas.

| LAPACK, Linear Algebra Package, http://www.netlib.org/lapack.

] BLAST, Basic Linear Algebra Subprograms Technical (BLAST) Forum Standard,
http://www.netlib.org/blas/blast-forum.

[7] Topp L. VELDHUIZEN, Ezpression templates, C++ Report, 1995.

M. LEHN, Implementation of Linear Algebra Packages in C++, Preprint, Universit”’at Ulm,
2005.

3As A in this case is a symmetric matrix the implementation can assume that op(A4) = A

