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The Multi-Year Non-Life Insurance Risk 

Abstract: The aim of this paper is to extend recent contributions in the field of risk modeling 

for non-life insurance companies by modeling insurance risk in a multi-year context. 

Academic literature on non-life insurance risk to date has only considered an ultimo 

perspective (using traditional methods) and, more recently, a one-year perspective (for 

solvency purposes). This paper is motivated by the fact that strategic management in an 

insurance company requires a multi-year time horizon for economic decision making, e.g., in 

the context of internal risk models. We extend the simulation-based method for quantifying 

the one-year non-life insurance risk presented in Ohlsson and Lauzeningks (2009) to a multi-

year perspective. Moreover, we present a simulation approach for calculating the risk margin 

which can be consistently integrated in the model so that approximation approaches are no 

longer needed. The usefulness of the new multi-year horizon is illustrated in the context of 

internal risk models using an application to a claims development triangle based on Mack 

(1993) and England and Verrall (2006). 

Keywords: Non-Life Insurance; Internal Risk Models; Claims Reserving; Risk Capital 

1. Introduction 

Typically, non-life insurance risk is divided into reserve risk and premium risk (see Ohlsson 

and Lauzeningks, 2009). For the modeling of reserve risk, the academic literature contains a 

variety of stochastic claims reserving methods that can be used for quantifying the risk on an 

ultimo view, including bootstrapping methods, regression approaches, and Bayesian 

techniques (see, e.g., England and Verrall 2002, 2006; Wüthrich and Merz, 2008).1

                                                 
1  The literature on stochastic claims reserving methods based on an ultimo view is extensive. Schmidt (2011) 

provides a bibliography of more than 700 contributions in the field of loss reserving. Wüthrich and Merz 
(2008) summarize the most important methods. 

 Some of 

them are analytical (see, e.g., Buchwalder et al., 2006), while others are based on simulations 

(see, e.g., England and Verrall, 2006). Traditionally, all approaches are based on an ultimo 

view, which means reserve risk uncertainty is quantified up to final settlement. Recently, 
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however, regulators have required a one-year perspective of non-life insurance risk for 

solvency purposes, e.g., in Solvency II and the Swiss Solvency Test (see Eling et al., 2009), 

which means insurance risk uncertainty should be quantified for one calendar year only. This 

requirement has spurred a great deal of discussion by both academics and practitioners as to 

how one-year insurance risk should be quantified, and a new stream of literature has 

developed over a very short period (see Merz and Wüthrich, 2007, 2008; Bühlmann et al., 

2009; Ohlsson and Lauzeningks, 2009; Wüthrich et al., 2009; Gault et al., 2010). 

Merz and Wüthrich (2008) present an analytical approach for calculating the mean squared 

error of prediction (MSEP) of the claims development result (CDR) on a one-year 

perspective, i.e., for the next calendar year. However, especially due to the need for simulated 

cash flows of a future claims settlement process within internal risk models, analytical 

approaches need to be complemented by simulation-based approaches. Ohlsson and 

Lauzeningks (2009) describe such a simulation-based method – which we call stochastic re-

reserving – for quantifying the one-year reserve risk. While Ohlsson and Lauzeningks (2009) 

give a general description for the process of simulating the one-year reserve risk, Kraus and 

Diers (2010) utilize this description and give a concrete mathematical formulation of the 

stochastic re-reserving process based on bootstrap methods and Bayesian techniques. 

Both the one-year and the ultimo view are relevant and helpful in understanding the nature of 

reserve risk in non-life insurance. From a practitioner's point of view, however, a multi-year 

(m-year) time horizon (which means that reserve risk uncertainty is quantified up to calendar 

year m) is relevant for practical decision making and both these two approaches do not 

provide this view. The first considers only one year, while the second summarizes uncertainty 

over the whole projection horizon. To our knowledge, there is no model for analyzing multi-

year non-life insurance risk. An internal risk model with a multi-year view might be useful, 

e.g., to calculate the necessary risk capital to cover those risks. 
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The aim of this paper is thus to develop a simulation-based model for the determination of 

multi-year risk capital based on the multi-year non-life insurance risk. Our model can be used 

to calculate both the reserve risk and the premium risk and we emphasize its use especially in 

the context of internal risk models. For example, by using these models, management will be 

able to answer the following important question: How many years of high aggregate losses or 

adverse claim developments is it possible to withstand at a certain confidence level without 

the need for external capital? We empirically illustrate the usefulness of our model using a 

claims development triangle that has been considered in academic literature several times 

(e.g., Mack, 1993; England and Verrall, 2006). We also address another recent related 

discussion, i.e., how to calculate the risk margin in a multi-year context and present an 

integrated simulation approach for the calculation of the risk margin. So far, mostly simplified 

methods for the approximation of the risk margin have been presented in academic literature 

(see, e.g., Ohlsson and Lauzeningks, 2009). In this paper we present a simulation approach so 

that approximations are no longer needed. We thus build upon and extend the work by 

Ohlsson and Lauzeningks (2009) in three ways: (1) next to a one-year view we allow for a 

multi-year time horizon; (2) we present a consistent and integrated approach for calculating 

the premium risk and the reserve risk; (3) we present a simulation-based approach for 

calculating the risk margin that can be integrated into internal risk models. 

Although our paper focuses on contributing to the academic discussion on risk modeling, this 

work is also highly relevant to practitioners and policymakers. Internal risk models are 

becoming increasingly important in the value-based management of non-life insurance 

companies and are an important tool for determining business decisions. Furthermore, 

regulators encourage insurers to develop internal risk models that might also be used to 

determine solvency capital requirements, e.g., under Solvency II and the Swiss Solvency Test. 

Our work, therefore, shall not only expand the academic discussion, but also provide a tool 

for modeling non-life insurance risk in insurance practice. 
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This paper is organized as follows. In Section 2 we describe a multi-year internal risk model 

framework and define the claims development result in a multi-year context. In Section 3, we 

present a mathematical formulation of the simulation-based stochastic re-reserving process 

and calculate multi-year risk capital for non-life insurance risk. Section 4 provides the 

associated simulation model for calculating the risk margin considering both a one-year and 

multi-year time horizon. The usefulness of the new multi-year model for practical applications 

is illustrated in Section 5. Finally, we conclude in Section 6. 

2. Modeling the Multi-Year Non-Life Insurance Risk 

Insurance risk is typically divided into reserve risk and premium risk. Reserve risk considers 

known and unknown claims that have already occurred in the past, it thus focuses on 

uncertainty about future payments due to a claims settlement process. In contrast, premium 

risk (also called pricing risk or underwriting risk) deals with the uncertainty that payments for 

future claims are higher than their expected value, so it deals with future accident years. Both 

risk categories constitute major risks for non-life insurers. Therefore, quantifying the reserve 

risk and the premium risk by means of stochastic claims reserving methods plays an essential 

role in risk modeling of non-life insurers. 

In this paper, we analyze reserve and premium risk in the context of internal risk models, 

which have been developed since the 1990s and in the meantime play an essential role in 

analyzing the risk and return situation of non-life insurance companies. Internal risk models –

also called dynamic financial analysis (DFA) models – project future cash flows of non-life 

insurance companies using stochastic simulation techniques (see, e.g., Kaufmann et al., 2001; 

Blum and Dacorogna, 2004; D’Arcy and Gorvett, 2004; Eling and Toplek, 2009). Internal risk 

models usually take into account management strategies in response to changing risk factors 

such as insurance risk and asset risk (see Blum and Dacorogna, 2004). 

Within internal risk models many different scenarios are stochastically generated in order to 

derive the distribution of the economic earnings (EcE) for each future calendar year t up to 
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final settlement ω (t ∈ {1, … ,ω}). We assume management is interested in a multi-year 

planning horizon of m years, e.g., five years. Thus, based on the internal model description in 

Diers (2011), we define the m-year economic earnings (EcE[0,m]) in a multi-year context as 

the change in net asset value (NAV) over the period t = 0 and t = m. This can be calculated 

by adding the m-year investment result (I[0,m]) and the m-year technical result (T[0,m]): 

EcE[0,m] = NAVm − NAV0 = I[0,m] + T[0,m]  

As a simplifying assumption we do not consider taxes and dividends in this model. Moreover, 

we do not take into account inflation and discount effects. Thus the multi-year view of the 

economic earnings corresponds to a one-year view in such a way that m-year economic 

earnings equals the sum of the economic earnings of each calendar year t, i.e., EcE[0,m] =

EcE1 + ⋯+ EcEm. The technical result (T[0,m]) is calculated using the m-year underwriting 

result (U[0,m]) and the m-year claims development result (CDR[0,m]):
2

T[0,m] = U[0,m] + CDR[0,m]   

 

The reserve risk, i.e., risk with regard to past claims (which are settled in the future: IBNR, 

IBNER), and the premium risk, i.e., risk with regard to future claims (which will occur in the 

future), can be specified as follows. 

Reserve Risk 

The academic literature on stochastic claims reserving methods concentrates mostly on an 

ultimo view, which means reserve risk uncertainty would be quantified up to final settlement 

t = ω (see, e.g., England and Verrall, 2002; Wüthrich and Merz, 2008). Calculations are 

based on an ultimate claims development result (CDR[0,ω]), which can be determined by the 

                                                 
2  The technical result typically represents catastrophe risks and non-catastrophe risks, which due to the 

different statistical behavior should be modeled separately (see Kaufmann et al., 2001). Non-catastrophe 
losses are further divided in losses caused by large claims and attritional claims, which again should be 
modeled separately (see Kaufmann et al., 2001). As a simplification, we concentrate on the attritional claims 
and model their reserve risk (represented by the claims development result of attritional claims) and their 
premium risk (represented by the underwriting result of attritional claims). For the stochastic modeling of 
catastrophe risks in internal risk models, we refer to Diers (2009). 
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difference of the opening best estimate claims reserve (R�𝔇𝔇) based on all past observations 𝔇𝔇 

and future cash flows (the sum of all future claim payments) based on previous accident years 

(C[0,ω]) simulated up to final settlement t = ω: 

CDR[0,ω] = R�𝔇𝔇 − C[0,ω]  

Merz and Wüthrich (2008) calculate a one-year claims development result (CDR[0,1]) as the 

difference of the opening best estimate claims reserve (R�𝔇𝔇), the claim payments based on 

previous accident years for the next calendar year t = 1 (C[0,1]), and the closing best estimate 

claims reserve (R�𝔇𝔇1) at the end of period t = 1, based on the updated information 𝔇𝔇1 (see, 

e.g., Merz and Wüthrich, 2007, 2008; Wüthrich et al., 2009; Bühlmann et al., 2009; Ohlsson 

and Lauzeningks, 2009): 

CDR[0,1] = R�𝔇𝔇 − �C[0,1] + R�𝔇𝔇1�  

The innovative element of this paper is to consider a multi-year time horizon, which means 

we have to define the m-year claims development result (CDR[0,m]). Reserve risk uncertainty 

should thus be quantified up to calendar year t = m. This is then defined as the difference 

between the opening best estimate claims reserve (R�𝔇𝔇), the sum of claim payments based on 

previous accident years up to calendar year t = m (C[0,m]), and the closing best estimate 

claims reserve (R�𝔇𝔇m) at the end of period t = m, based on the updated information 𝔇𝔇m: 

CDR[0,m] = R�𝔇𝔇 − �C[0,m] + R�𝔇𝔇m� (1) 

Premium Risk 

In the context of Solvency II, premium risk is defined as the risk that results from fluctuations 

in the timing of frequency and severity of insured events (see CEIOPS, 2010). Ohlsson and 

Lauzeningks (2009) suggest how to calculate one-year premium risk from an economic 

perspective. They take into account the earned premium for the next calendar year ( P[0,1]
NY ), 

corresponding operating expenses ( E[0,1]
NY ), claim payments based on future accident years 
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( C[0,1]
NY ), and the (closing) best estimate claims reserve ( R�𝔇𝔇1NY ) at the end of period t = 1, 

based on the information of simulated first-year payments 𝔇𝔇1: 

U[0,1] = P[0,1]
NY − E[0,1]

NY − � C[0,1]
NY + R�𝔇𝔇1NY �  

We follow this approach and integrate the premium risk into our multi-year internal risk 

model by defining the m-year underwriting result as the difference between the sum of earned 

premiums ( P[0,m]
NY ), the sum of operating expenses ( E[0,m]

NY ) and the sum of ultimate future 

claim payments over the next m calendar years ( S[0,m]
NY ): 

U[0,m] = P[0,m]
NY − E[0,m]

NY − S[0,m]
NY    

Initially (in t = 0) the m-year underwriting result is forecasted by: 

U�[0,m]
𝔇𝔇 = P�[0,m]

𝔇𝔇NY − E�[0,m]
𝔇𝔇NY − R� [0,m]

𝔇𝔇NY   

Hereby P�[0,m]
𝔇𝔇NY  and E�[0,m]

𝔇𝔇NY  denote forecasts for premium income P[0,m]
NY  and operating 

expenses E[0,m]
NY  over the next m calendar years. R� [0,m]

𝔇𝔇NY  represents the best estimate of 

future claim payments S[0,m]
NY  (cash flows) for future accident years given the current 

information 𝔇𝔇. After m further years the m-year underwriting result is calculated from the 

effectively earned premiums P�[0,m]
𝔇𝔇mNY , incurred expenses E�[0,m]

𝔇𝔇mNY , and the sum of observed 

claim payments ( C[0,m]
NY ) up to calendar year t = m and the closing best estimate claims 

reserve ( R� [0,m]
𝔇𝔇mNY ) for future accident years at the end of period t = m, based on the updated 

information 𝔇𝔇m: 

U�[0,m]
𝔇𝔇m

= P�[0,m]
𝔇𝔇mNY − E�[0,m]

𝔇𝔇mNY − � C[0,m]
NY +  R� [0,m]

𝔇𝔇mNY �  

We now define the m-year premium risk for new accident years as the deviation of the 

estimated underwriting result U�[0,m]
𝔇𝔇m

 after m years from the initial forecast U�[0,m]
𝔇𝔇  . For the 

reason of simplification we assume, that the initially forecasted technical underwriting result 
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U�[0,m]
𝔇𝔇  directly leads to an increase / decrease of own funds in t=0. The deviation can be 

expressed in the following decomposition: 

∆= U�[0,m]
𝔇𝔇m

− U�[0,m]
𝔇𝔇  

   = � P�[0,m]
𝔇𝔇mNY − P�[0,m]

𝔇𝔇NY � −  � E�[0,m]
𝔇𝔇mNY − E�[0,m]

𝔇𝔇NY � − ( R� [0,m]
𝔇𝔇mNY + C[0,m]

NY − R� [0,m]
𝔇𝔇NY )  

If premiums and expenses are regarded as deterministic and known, the premium risk can be 

directly calculated from the claims development result for new accident years  

CDR[0,m]
NY  = R� [0,m]

𝔇𝔇NY − ( C[0,m]
NY + R� [0,m]

𝔇𝔇mNY ), (2) 

which is consistent and directly comparable with the claims development result for previous 

accident years (reserve risk, see equation (1)). Note, that it is a simplifying assumption that 

premiums and expenses are deterministic. Usually in internal risk models premiums and 

expenses are modeled stochastically and premium cycles have to be taken into account (see, 

e.g., Kaufmann et al., 2001). 

Insurance Risk 

To derive an integrated approach of modeling the non-life insurance risk we combine the 

claims development result for previous accident years (see equation (1)), i.e., reserve risk and 

for future accident years (see equation (2)), i.e., premium risk, and thus define the m-year 

claims development result for the non-life insurance risk as: 

CDR[0,m]
PY+NY ≔ CDR[0,m] + CDR[0,m]

NY   (3) 

Note that in general the m-year premium risk and m-year reserve risk have an implicit 

dependency due to the joint estimation and re-reserving process. 

Based upon this definition we can now use stochastic re-reserving techniques to derive the 

empirical frequency distribution of CDR[0,m]
PY+NY (see Section 3.1.) and then compute any risk 

measure of interest to derive the insurance risk as well as the reserve risk and premium risk 

(see Section 3.2.). Furthermore, we might determine the risk capital (RC), i.e. the amount the 

insurance company needs to hold to cover non-life insurance risk. 
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3. Stochastic Re-Reserving and Calculation of Multi-Year Non-Life Insurance Risk 

3.1. Stochastic Re-Reserving 

Based on the model description in Ohlsson and Lauzeningks (2009), we now present a 

simulation-based modeling approach for quantifying the m-year claims development result of 

the non-life insurance risk (see equation (3)), which is called stochastic re-reserving. As the 

underlying stochastic reserving method we use bootstrapping and Bayesian techniques, 

implemented using Markov Chain Monte Carlo (MCMC) methods (see England and Verrall, 

2006). Stochastic re-reserving allows us to quantify the empirical probability distribution of 

the one-year and multi-year claims development result, which is then the basis for risk capital 

calculations. Since stochastic re-reserving is a simulation-based approach, it can be easily 

integrated into internal risk models. 

Besides the modeling of reserve risk, which has been the focus of much academic debate, we 

also incorporate premium risk in our analysis. Ohlsson and Lauzeningks (2009) describe the 

quantification of premium risk in a one-year perspective. Gault et al. (2010) represent a 

stochastic simulation model for measuring premium risk over a one-year and an ultimo risk 

horizon. We, however, integrate the premium risk in our stochastic re-reserving model and 

thus present an integrated approach for modeling non-life insurance risk in a one-year, multi-

year, and ultimo perspective. 

Following Mack (2002) we denote incremental payments for accident year i ∈ {1, … , n} and 

k ∈ {1, … , K} by Si,k. Cumulative payments are given by Ci,j (where Ci,k = ∑ Si,jk
j=1 ). Hereby 

Ci,K is called the ultimate claim amount for accident year i. At time t = 0, having 1 ≤ n ≤ K 

years of claims development observed, a set of all past observations 𝔇𝔇 is given by 

𝔇𝔇 = �Si,k : i + k − 1 ≤ n, 1 ≤ i ≤ n, 1 ≤ k ≤ K�. 

If we now go ahead m ∈ {1, 2, … ,ω} years in time, from t = 0 to t = m, a new set of 

observations 𝔇𝔇m (including future accident years) is given by 

𝔇𝔇m = �Si,k: i + k − 1 ≤ n + m, 1 ≤ i ≤ n + m, 1 ≤ k ≤ K�. 
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For simplicity, we assume K = n, so that for each accident year i we have a complete 

settlement of our claims in development year n; we thus do not take into account any tail 

factors. We choose the distribution-free Mack model (1993) as the underlying reserving 

model for the re-reserving process and make a slight extension to it by adding some additional 

assumptions about the claim payments in the first development period. 

Definition 1 (Extended Mack Model) There exist parameters fk, σk > 0, 1 ≤ k ≤ n such 

that for all 1 ≤ i ≤ n + m , 1 ≤ k ≤ n we have: 

• E�Ci,k | Ci,k−1� = fk ∙ Ci,k−1  

• Var�Ci,k | Ci,k−1� = σk2 ∙ Ci,k−1 

• Different accident years i are independent 

Hereby Ci,0 represents an appropriate volume measure such as premiums or number of 

insurance contracts for the accident year i (which have to be forecasted for n), and f1 

represents its respective incremental loss ratio or average loss (see Merz and Wüthrich, 2010) 

in the first development period. Then, according to Mack (2002), unbiased and uncorrelated 

estimators f̂k for fk (at time  t = 0) are given by 

f̂k = ∑ Ci,kn−k+1
i=1

∑ Ci,k−1n−k+1
i=1

, 

and unbiased estimators  σ�k2 for  σk2 are given by 

σ�k2 = 1
n−k

∙ ∑ Ci,k−1n+1−k
i=1 ∙ � Ci,k

Ci,k−1
− f̂k�

2
, 1 ≤ k < n. 

For simplification we set σ�n2 ≔ min{σ�n−12 ,σ�n−22 ,σ�n−32 }. For an extensive description of 

different extrapolation rules we refer to Mack (2002). 

Since the Mack (1993) model produces the same reserve estimates as the deterministic chain-

ladder algorithm (see, e.g., Mack, 1993, 1994; England and Verrall, 1999; Verrall, 2000), we 

can use the chain-ladder algorithm to give best estimates for the opening and closing reserve 

estimates. The modeling steps for quantifying the multi-year reserve risk and the multi-year 
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premium risk using the re-reserving process are shown in Figure 1. The derivation of the 

modeling steps comes from the definition of the m-year claims development result for the 

non-life insurance risk (see equation (3)): 

CDR[0,m]
PY+NY = R�𝔇𝔇 + R�𝔇𝔇NY  �������

Step 1

− �C[0,m] + C[0,m]
NY

�����������
Step 2

+ R�𝔇𝔇m +  R�𝔇𝔇mNY���������
Step 3

�
�������������������������

Z simulations

  

 

Figure 1: Modeling Steps for the Re-Reserving Process 

In the following we present an integrated and detailed mathematical framework for the use of 

the multi-year stochastic claims reserving process for modeling the multi-year reserve risk 

(previous accident years) and the multi-year premium risk (future accident years) and thus the 

multi-year non-life insurance risk. 

Step 1: Calculating the opening reserve estimate 

In Step 1 we calculate an estimator for the opening reserve of previous accident years as well 

as a forecast for the ultimate claims of new accident years (based on all past observations 𝔇𝔇). 

The opening reserve estimate / initial ultimate claim forecast can be calculated from any 

underlying reserving model and should agree with the actuary's best estimate for outstanding 

claims in time t = 0 (see Ohlsson and Lauzeningks, 2009) and the underwriting assumptions 

for new business (future accident years). We thus calculate a predictor for the (ultimate) best 
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estimate claims reserve R𝔇𝔇 at the beginning of period t = 0. For this purpose we chose the 

deterministic chain-ladder algorithm as described in Wüthrich and Merz (2008): 

R�𝔇𝔇 = ∑ R�i𝔇𝔇n
i=1    and   R�𝔇𝔇NY = ∑ R�i𝔇𝔇 n+m

i=n+1  

Hereby the predictors for single accident years i are given by 

R�i𝔇𝔇 = �
C�i,n𝔇𝔇 − Ci,n+1−i for 1 ≤ i ≤ n

C�i,n𝔇𝔇 for n + 1 ≤ i ≤ n + m
� 

whereas 

C�i,n𝔇𝔇 = Ci,max (n−i+1,0) ∙ f̂max (n−i+2,1) ∙ … ∙ f̂n−1 ∙ f̂n , with f̂k = ∑ Ci,kn−k+1
i=1

∑ Ci,k−1n−k+1
i=1

. 

Step 2: Calculating the cumulative payments 

Then, in Step 2, payments for the next m calendar years of previous accident years C[0,m] and 

of future (upcoming) accident years C[0,m]
NY  are simulated. For this purpose, we use 

simulation-based reserving methods such as bootstrapping and Bayesian techniques (see, e.g., 

England and Verrall, 2006; Bjoerkwall et al., 2009) for previous accident years and direct 

parameterization of the first-year payment for future accident years.3

C[0,m] = ∑ Simn
i=1   and C[0,m]

NY = ∑ Simn+m
i=n+1   

 We thus obtain a new 

level of knowledge at the end of calendar year t = m, and new payments for the next m 

diagonals can be derived by 

whereas 

Sim = �
Ci,n − Ci,n−i+1 for 1 ≤ i ≤ m + 1
Ci,n−i+m+1 − Ci,n−i+1 for m + 2 ≤ i ≤ n
Ci,m for n + 1 ≤ i ≤ n + m

�. 

                                                 
3  There are many different possibilities of how to simulate the next m diagonals. Instead of using bootstrapping 

and Bayesian techniques, Ohlsson and Lauzeningks (2009) propose to simulate from any distribution that fits 
the data (e.g., normal or lognormal) with mean given by the best estimate and variance given by σj2 according 
to Mack (1993). For the simulation process of future accident years, as already mentioned by Ohlsson and 
Lauzeningks (2009) aggregate loss models might be used, where frequency and severity are simulated 
separately (see Klugman et al., 2004). Kaufmann et al. (2001) first simulate the ultimate claim of each future 
accident year and then model the incremental payments of those ultimate loss amounts over the development 
periods by using a beta probability distribution. 
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To simulate all cumulative payments for the next m diagonals Ci,k, for 1 ≤ k ≤ m, we use 

bootstrap methods and Bayesian methods implemented using MCMC techniques based on the 

classic Mack (1993) model as presented in England and Verrall (2006). Hereby, the procedure 

to obtain predictive distributions for outstanding claims can be divided into three steps. As a 

starting point, a well-specified underlying statistical model needs to be declared. For this 

purpose the classic Mack (1993) model can be embedded within the framework of generalized 

linear models (GLM) and then leads to Mack’s bootstrapping model (see England and Verrall, 

2006). In a second step the estimation error needs to be incorporated. This can be done either 

by the use of bootstrapping or by the use of MCMC techniques. As a last step the process 

error needs to be described. This can be done by choosing appropriate assumptions for the 

underlying process variance. An appropriate assumption can be, e.g., a normal distribution, an 

over-dispersed Poisson distribution, a gamma distribution or a lognormal distribution (see, 

e.g., Bjoerkwall et al., 2009; England and Verrall, 2002, 2006). 

In this paper, we use the normal distribution as a process distribution and simulate with the 

mean and variance given by the “pseudo” chain-ladder factors f̂k∗ and the estimated variance 

parameters σ�k2 based on the underlying Mack (1993) model: 

Ci,k|Ci,k−1~Normal�f̂k∗ ∙ Ci,k−1 , σ�k2 ∙ Ci,k−1�  

Hereby, in order to incorporate the estimation error, f̂k∗ is derived by a new set of “pseudo 

data” created using the data in the original claims development triangle based on all past 

observations 𝔇𝔇 with the help of bootstrapping techniques as described in England and Verrall 

(2006). 

Step 3: Calculating the closing reserve estimates 

Finally, in Step 3, an estimator for the closing reserve estimate of previous and future 

accident years (based on all the updated observations 𝔇𝔇m) needs to be calculated. This 

process is called re-reserving. Hereby, 𝔇𝔇m is composed by all past observations 𝔇𝔇 and the 

increase in information about the claims development process for the new simulated m 
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diagonals from Step 2 (see Merz and Wüthrich, 2008). The closing reserve estimate should 

then be derived by the same reserving model as chosen within Step 1 (see Ohlsson and 

Lauzeningks, 2009). 

Thus, we calculate a predictor R�𝔇𝔇m for the (ultimate) best estimate claims reserve at the end 

of period t = m. For this purpose we need to use the same deterministic algorithm as chosen 

within Step 1, i.e., the chain-ladder algorithm: 

R�𝔇𝔇m: = ∑ R�i
𝔇𝔇m

n
i=1    and   R�𝔇𝔇mNY : = ∑ R�i

𝔇𝔇m
 n+m

i=n+1  

Hereby the predictors for the single accident years 1≤ i ≤ n + m are given by 

R�i
𝔇𝔇m

= �
0 for 1 ≤ i ≤ m + 1
C�i,n𝔇𝔇

m
− Ci,n−i+m+1 for m + 2 ≤ i ≤ n + m

�  

whereas 

C�i,n𝔇𝔇
m

= Ci,n−i+m+1 ∙ f̂n−i+m+2
(m) ∙ … ∙ f̂n

(m)   with f̂k
(m) = ∑ Ci,kn−k+m+1

i=1
∑ Ci,k−1n−k+m+1
i=1

 . 

Step 2 and Step 3 refer to the simulation process and are carried out many times (Z simulation 

steps) to derive the empirical frequency distribution of CDR[0,m]
PY+NY. With a growing number of 

simulation steps, the empirical frequency distribution of the multi-year CDR converges 

against the underlying theoretical frequency distribution. 

3.2. Calculation of Multi-Year Non-Life Insurance Risk 

The information from step 1 to 3 delivers the empirical frequency distribution of the multi-

year claims development result for the non-life insurance risk (CDR[0,m]
PY+NY). A selected risk 

measure ρ can now be applied to derive the multi-year reserve risk and premium risk as well 

as the resulting multi-year risk capital. The multi-year risk capital corresponds to the amount 

of equity capital necessary to withstand years of worst-case scenarios at a predefined 

confidence level over a predefined time horizon; it is also often referred to as risk-based 

capital or economic capital (see Porteous and Tapadar, 2008). The risk capital can be 

calculated by using appropriate risk measures ρ such as value at risk (VaR) or tail value at 
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risk (TVaR) (for a discussion of these risk measures we refer to Artzner et al., 1999; Tasche, 

2002; Acerbi and Tasche, 2002; Heyde et al., 2007; Cont et al., 2010). To obtain the risk 

capital for non-life insurance risk RC[0,m], the risk measure ρ is applied to the random variable 

of CDR[0,m]
PY+NY: 

RC[0,m] = ρ�−CDR[0,m]
PY+NY� (4) 

However, since we consider reserve risk in a multi-year context, management also faces the 

risk of running out of capital before the end of period t = m. To address this issue, we follow 

Diers (2011) and define the multi-year risk capital by considering the following definition of a 

loss random variable L (MaxLoss[0,m]) for the multi-year reserve risk, taking into account m 

future accident years: 

MaxLoss[0,m] = max1≤t≤m�−CDR[0,t]
PY+NY�  (5) 

The risk measure ρ can now be applied to the probability function of the random variable 

MaxLoss[0,m] to calculate the amount of the m-year risk capital needed to cover the multi-year 

non-life insurance risk. To withstand years of adverse claim developments at a certain 

confidence level without the need for external capital, the insurance company needs to hold 

the following risk capital: 

RC[0,m]
MAX = ρ�MaxLoss[0,m]� (6) 

For illustration purposes of the different effects between reserve risk and premium risk we 

restrict the application in Section 5 of this paper to a separate calculation of the multi-year 

risk capital for previous accident years (see equation (1)), i.e., reserve risk, and for future 

accident years (see equation (2)), i.e., premium risk. Note that the within the modeling 

approach described in Section 3.1 the overall (combined) non-life insurance risk is calculated 

so that dependencies are considered. That means no further correlation assumptions about 

premium and reserve risk have to be made, as the dependencies are automatically determined 

by the common estimation and re-reserving process. 
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4. Calculation of the Risk Margin 

Next to the quantification of the non-life insurance risk based on best estimate reserves, for 

solvency purposes (Solvency II and Swiss Solvency Test) and in the context of the 

International Financial Reporting Standards (IFRS), insurance companies also have to 

calculate a risk margin. This is necessary because within an economic balance sheet the 

market-consistent value of liabilities is determined by the best estimate of liabilities (i.e., the 

expected value of future cash flows) and an additional allowance for uncertainty associated 

with the expected cash flows called risk margin (see IAA, 2009). The difference between the 

market value of assets and the market value of liabilities then yields available capital and thus 

defines the (solvency) coverage ratio between available capital and solvency capital 

requirements (SCR). An extra amount of available capital on top of the SCR is called free 

surplus (see Figure 2). The SCR includes, among others, the non-life insurance risk (reserve 

and premium risk). The calculation of the risk margin is thus another critical element of 

market-consistent valuation that we can analyze in a multi-year context. 

 

Figure 2: Economic Balance Sheet 

There are several approaches to calculate the risk margin such as quantile-based methods, 

discount-related methods, and cost-of-capital methods (see IAA, 2009). Recent research uses 

an economic approach where the risk margin is related to the risk aversion of the 

owner/shareholder, modeled using probability distortion techniques (see Wüthrich et al., 

2011). In the context of Solvency II, however, to calculate the risk margin a cost-of-capital 

approach is prescribed (see European Union, 2009). Using the cost-of-capital approach 

Available Capital

Risk Margin

Best Estimate of 
Liabilities
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Liabilities

Free Surplus 

SCR



17 
 

usually calls for simplification, since in most cases the risk margin is analytically not tractable 

and the use of numerical methods necessitates a large amount of nested simulations (see, e.g., 

Ohlsson and Lauzeningks, 2009; Salzmann and Wüthrich, 2010; Wüthrich et al., 2011). Thus 

approximation approaches, e.g., the duration approach, are necessary in order to be able to 

calculate the risk margin (see Ohlsson and Lauzeninkgs, 2009). 

In this paper, however, we present a simulation-based model for calculating risk margin in a 

multi-year context so that approximation approaches are no longer needed. This approach can 

also be easily combined with the re-reserving model described in Section 3. The reason why 

both approaches can be integrated is that under Solvency II requirements, the risk margin (the 

so-called cost-of-capital margin CoCM0) is defined as the product of a cost-of-capital rate coc 

and the sum of discounted future SCRs up to final settlement of the existing insurance 

business (see CEIOPS, 2010): 

CoCM0 = coc ∙ ∑ SCRt
(1+rt)t

ω
t=1   (7) 

The SCRt at each point in time is calculated by using some risk measure ρ (e.g., VaR) applied 

to the probability distribution of the one-year claims development result in year t (CDRt) 

based on all past observations up to t − 1 (𝔇𝔇t−1): 

SCRt = ρ(CDRt|𝔇𝔇t−1)  

For simplification and illustration purposes we demonstrate the calculation of solvency capital 

requirements for reserve risk. The premium risk can be treated analogously. Moreover, 

following Ohlsson and Lauzeningks (2009), as a simplification we neglect the risk margin 

within our SCR calculations and the interest rate rt is set equal to zero. 

The real difficulty comes with the calculation of SCRt at each point in time t ∈ {2, … ,ω}. In 

contrast to the multi-year claims development result CDR[0,t] defined in Section 2, for the 

determination of the empirical probability distribution of the one-year claims development 

result in year t (CDRt), nested simulations are necessary (see, e.g., Ohlsson and Lauzeningks, 

2009). For example, for the calculation of the SCR2 within each point of the respective 
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individual simulation path (e.g., Z simulations) another set of Z simulations of the one-year 

claims development result based on the updated information 𝔇𝔇1 is necessary to derive its 

corresponding empirical frequency distribution (see Figure 3). Overall, this process leads to 

Zt+1 iterations for SCRt, t ∈ {2, … ,ω} (see Ohlsson and Lauzeningks, 2009). 

 

Figure 3: Nested Simulations 

In our simulation-based modeling approach we avoid the problem of nested simulations by 

using the method of moments. Hereby, for an estimator of the first moment (mean) the best 

estimate reserve is used, and for an estimator of the second moment (variance) the MSEP of 

the one-year claims development result (see Merz and Wüthrich, 2008), based on the actual 

state of information, is used. Then the first and second moments can be applied to fit an 

appropriate probability distribution such as the normal, log-normal, or gamma distribution. 

Figure 4 describes the two modeling steps for calculating the future SCRs at each point in 

time and thus the corresponding risk margin. 

 

Figure 4: Calculating Future SCRs for Reserve Risk 
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In Step 1 we use simulation techniques such as bootstrapping or Bayesian methods to derive 

simulated future claim payments until final settlement t = ω has been reached. This 

procedure equals Step 2 in our re-reserving model (Section 3) with m set equal to ω. Based on 

all past observations 𝔇𝔇 this delivers Z different possibilities of completing the upper claims 

development triangle into a quadrangle. In Step 2 we now move one year ahead and only use 

the simulated payments for the next calendar year from Step 1 in order to derive the best 

estimate claims reserve R�𝔇𝔇1 and its corresponding mean squared error of prediction msep�CDR
𝔇𝔇1

 

using the analytical formula by Merz and Wüthrich (2008), both based on the (updated) 

observations 𝔇𝔇1. Now, for each simulation step z, we are able to fit a distribution, e.g., the 

normal distribution with mean / variance given by R�𝔇𝔇1/ msep�CDR
𝔇𝔇1

 and with the help of some 

risk measure ρ we calculate its corresponding SCR2
z , without needing additional simulation. 

The overall SCR2 is then approximated by calculating the expected value of SCR2 (≈

∑ SCR2i
Z
i=1

Z
). 

Step 2 delivers an empirical frequency distribution of different (possible) SCRs, given Z 

different real-world scenarios for the development from t to t + 1 and it is not quite clear 

which measure to consider for aggregation. We follow Stevens et al. (2010) and approximate 

the SCR in year t with the expected value of future values of SCR. We also might consider 

alternative measures for aggregation, e.g., the median. Step 2 is repeated until final settlement 

in t = ω has been reached, and within each repetition we have the following coherence: 

SCRt ≈
∑ SCRti
Z
i=1

Z
  (8) 

Using equation (7) we now are able to calculate the corresponding risk margin. Note that this 

procedure can be performed only if within Step 1 simulation techniques are chosen such that 

they are consistent with the Mack (1993) model and if the best estimate claims reserve is 

calculated using the chain-ladder method. This is because only for this case the analytical 
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formula by Merz and Wüthrich (2008) delivers the standard deviation of the claims 

development result. 

Next to the one-year view within Solvency II, in our paper we present multi-year risk capital, 

based on the multi-year non-life insurance risk. Along this line of reasoning we argue that the 

risk margin, following CEIOPS (2010), has a shape defined by the following equation: 

CoCMm = coc ∙ �SCR[0,m] + ∑ SCRt
(1+rt)t

ω
t=m+1 �  

The first term of the sum (SCR[0,m]) now represents the multi-year risk capital calculated 

using equation (6), and the remaining terms of the sum present a risk calculation for all the 

remaining years until final settlement t = ω. Those SCRs can be derived using the same 

simulations steps described above. 

5. Application of the Model to a Claims Development Triangle 

5.1. Setup and Definitions 

To illustrate the usefulness of modeling the multi-year non-life insurance risk for internal risk 

models we apply the stochastic re-reserving process to a typical claims development triangle 

used in academic literature. We show the development of risk capital in a multi-year context 

up to final settlement and compare our results with the one-year risk capital used for Solvency 

II purposes and the ultimo perspective used so far used in internal risk models for reserve risk 

and premium risk. The results presented in this paper are based on 100,000 simulations 

carried out using the simulation software EMB IGLOOTM Extreme. For quantification of the 

risk capital we use the value at risk (VaR) and tail value at risk (TVaR). 

Definition 2 (Value at Risk) Let L be a real random variable on a probability space {Ω,ℱ,ℙ}. 

The value at risk at confidence level α ∈ (0,1) is defined as: 

VaRα(L) = inf{x ∈ ℝ: FL(x) ≥ 1 − α}  

Definition 3 (Tail Value at Risk) Let L be a real random variable on a probability space 

{Ω,ℱ,ℙ}. The tail value at risk at confidence level α ∈ (0,1) is defined as: 
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TVaRα(L) = E[L|L ≥ VaRα(L)]  

We use the claims development triangle presented in Mack (1993) and England and Verrall 

(2006) shown in Table 1. This kind of claims development triangle corresponds to a long-tail 

line of business such as third-party motor liability. The second column of Table 2 shows the 

chain-ladder reserve estimates, which are calculated using the deterministic chain-ladder 

algorithm. The prediction error according to Mack (1993) is estimated using Mack's formula 

and is presented in the third column of Table 2. The results shown in our paper slightly differ 

from those in Mack (1993). Since we do not have enough data, to calculate σ�82, extrapolation 

techniques have to be used. We used the simplified extrapolation rule σ�102 = min{σ�92,σ�82,σ�72}. 

This kind of extrapolation differs from the form used in Mack (1993). 

 Ci,1 Ci,2 Ci,3 Ci,4 Ci,5 Ci,6 Ci,7 Ci,8 Ci,9 Ci,10 
i=1 357,848 1,124,788 1,735,330 2,218,270 2,745,596 3,319,994 3,466,336 3,606,286 3,833,515 3,901,463 
i=2 352,118 1,236,139 2,170,033 3,353,322 3,799,067 4,120,063 4,647,867 4,914,039 5,339,085   
i=3 290,507 1,292,306 2,218,525 3,235,179 3,985,995 4,132,918 4,628,910 4,909,315    
i=4 310,608 1,418,858 2,195,047 3,757,447 4,029,929 4,381,982 4,588,268     
i=5 443,160 1,136,350 2,128,333 2,897,821 3,402,672 3,873,311      
i=6 396,132 1,333,217 2,180,715 2,985,752 3,691,712       
i=7 440,832 1,288,463 2,419,861 3,483,130        
i=8 359,480 1,421,128 2,864,498         
i=9 376,686 1,363,294          
i=10 344,014                   

Table 1: Claims Development Triangle (Accumulated Figures) 

 Chain-Ladder Reserves Prediction Error Mack (1993) Prediction Error in % 
i=2 94,634 75,535 79.82 
i=3 469,511 121,699 25.92 
i=4 709,638 133,549 18.82 
i=5 984,889 261,406 26.54 
i=6 1,419,459 411,010 28.96 
i=7 2,177,641 558,317 25.64 
i=8 3,920,301 875,328 22.33 
i=9 4,278,972 971,258 22.70 

i=10 4,625,811 1,363,155 29.47 
Total 18,680,856 2,447,095 13.10 

Table 2: Estimated Reserves and Prediction Errors 

The payments for the next m diagonals are simulated using bootstrapping techniques and 

Bayesian methods for the clearly defined Mack model (see England and Verrall, 2006). 

Because both techniques lead to very similar results, we present only those results derived by 

the bootstrap methodology (Bayesian results are available upon request). For the calculation 

of the reserve risk we consider 10 previous accident years as shown in Table 1. For the 

calculation of the premium risk we consider five future (upcoming) accident years. To 
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simulate future accident years volume measures are needed. We estimated future premium 

income using loss ratios for a comparable claims development triangle presented in DAV-

Arbeitsgruppe Interne Modelle (2008). By applying those ratios to our claims development 

triangle, we determine premium income for all past accident years. With linear projection we 

then obtain 6,943,622 (i=11), 7,055,884 (i=12), 7,234,379 (i=13), 7,417,390 (i=14), and 

7,605,031 (i=15) as volume measures (details are available upon request). 

We use parametric bootstrap to generate pseudo data and calculate pseudo development 

(= chain ladder) factors for measuring parameter uncertainty. We use the normal distribution 

for the simulation of pseudo data and the process error, which is considered in this application 

only for illustrative purposes. Relying on the normal distribution, however, has some 

disadvantages, e.g., it allows negative cumulative claim payments, which is not adequate. 

Furthermore, the symmetric form of the normal distribution is not adequate for the right-

skewed claim distributions in non-life insurance. As a different process distribution the log-

normal or the gamma distribution can be used (see, e.g., England and Verrall, 2002, 2006; 

Bjoerkwall et al., 2009). 

100,000 repetitions of this process lead to 100,000 different claims development triangles. For 

the multi-year stochastic re-reserving process we use the cash flows generated with 

bootstrapping techniques for the next m calendar years. Hereby we get 100,000 new claims 

development triangles, differing only in the last m diagonals. We use the deterministic chain-

ladder method on each of these new claims development triangles for the re-reserving 

process. 

5.2. Results for Multi-Year Reserve Risk, Premium Risk and Insurance Risk 

We repeat the re-reserving process until the final settlement of all claims has been reached. 

Figure 5 shows the empirical frequency density of the simulated multi-year claims 

development result for previous accident years (CDR[0,m]; reserve risk) and for future accident 

years (CDR[0,m]
NY ; premium risk). Corresponding descriptive statistics are presented in Table 3. 
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Figure 5: Frequency Density 

Statistics 1-year 2-year 3-year 4-year 5-year 6-year 7-year 8-year 9-year 
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 Minimum -8,476,694 -10,090,542 -11,240,089 -11,797,525 -11,636,995 -11,535,298 -11,727,293 -11,833,367 -11,937,955 

Maximum 7,053,536 9,033,016 9,474,044 8,874,613 9,119,273 9,420,865 9,385,580 9,310,110 9,297,364 

Median 23,279 43,272 61,624 62,010 64,535 68,196 66,576 67,636 66,851 

Mean 41 444 -136 -406 -238 -353 -422 -484 -495 

Std.Dev. 1,777,576 2,128,792 2,310,305 2,393,617 2,430,902 2,445,167 2,448,778 2,451,074 2,451,642 

Skewness -0.0824 -0.1313 -0.1526 -0.1678 -0.1744 -0.1769 -0.1779 -0.1785 -0.1785 

Kurtosis (Excess) 0.0036 0.0164 0.0476 0.0626 0.0692 0.0697 0.0708 0.0720 0.0713 
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Minimum -5,300,287 -9,713,775 -13,870,920 -18,103,486 -21,168,624 -25,785,345 -26,662,522 -27,986,612 -25,999,204 

Maximum 4,827,589 8,844,468 10,560,766 12,841,581 15,757,742 16,181,548 17,312,924 17,206,025 17,224,165 

Median 5,118 68,213 120,669 161,609 207,785 224,717 240,823 235,955 246,059 

Mean -161 503 550 954 1,148 621 728 339 838 

Std.Dev. 1,134,309 2,064,130 2,887,956 3,706,287 4,491,062 4,744,158 4,855,871 4,925,736 4,957,674 

Skewness -0.0295 -0.1890 -0.2267 -0.2456 -0.2555 -0.2649 -0.2718 -0.2759 -0.2792 

Kurtosis (Excess) 0.0264 0.0761 0.0691 0.0761 0.0911 0.1101 0.1065 0.1054 0.1061 
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 Minimum -11,521,278 -17,093,449 -21,881,676 -27,005,804 -27,005,376 -29,147,608 -29,164,262 -29,409,450 -28,481,491 

Maximum 8,904,549 13,107,117 15,119,426 17,445,809 20,357,457 21,063,225 21,967,108 22,256,138 22,587,783 

Median 34,420 92,687 139,172 175,497 244,604 255,686 262,232 279,466 279,566 

Mean -119 947 414 551 907 260 296 -153 334 

Std.Dev. 2,257,751 3,263,050 4,120,271 4,925,328 5,684,727 5,897,981 5,992,552 6,052,526 6,079,577 

Skewness -0.0985 -0.1685 -0.2070 -0.2213 -0.2361 -0.2426 -0.2486 -0.2492 -0.2508 

Kurtosis (Excess) 0.0113 0.0788 0.0912 0.0794 0.0916 0.1053 0.1037 0.0994 0.1000 

 Pearson's correlation 0.1614 0.2111 0.2472 0.2701 0.2857 0.2716 0.2664 0.2635 0.2621 

 Spearman´s correlation 0.1542 0.1987 0.2338 0.2569 0.2724 0.2588 0.2540 0.2514 0.2500 

Table 3: Descriptive Statistics 

The figures show that the greater the time horizon, the greater the risk exposure since the 

standard deviation increases. Furthermore, with increasing time horizon, the variation, and 

thus the risk exposure, becomes greater for the simulation process of future accident years 

(premium risk) than for previous accident years (reserve risk). For example, for a one-year 
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time horizon the standard deviation of CDR[0,1] is 1,777,576 whereas for the CDR[0,1]
NY  it is 

1,134,309, but for a nine-year time horizon the standard deviation of CDR[0,9] is 2,451,642 

and 4,957,674 for the CDR[0,9]
NY . To emphasize the benefit of our integrated simulation-

approach, we also present the descriptive statistics for the aggregated multi-year non-life 

insurance risk and correlation coefficients between premium and reserve risk. The results 

show a diversification effect between premium and reserve risk. For example, the sum of the 

standard deviation of CDR[0,1] and CDR[0,1]
NY  is 2,911,885 (= 1,777,576 + 1,134,309) whereas 

the standard deviation of CDR[0,1]
PY+NY only is 2,257,751. The respective correlation parameters 

are derived automatically and no correlation assumptions for modeling the dependencies 

between reserve risk and premium risk are necessary. This is a major advantage since, 

usually, for the combined non-life insurance risk the two empirical frequency distributions of 

the m-year claims development result for previous accident years CDR[0,m] and for future 

accident years CDR[0,m]
NY  have to be aggregated with appropriate correlation assumptions (e.g., 

within the standard formula of Solvency II or within internal risk models). For this purpose 

appropriate methods for modeling dependencies between the different stochastic variables 

have to be found (see e.g., Kaufmann et al., 2001) which is difficult and so very different 

assumptions can be found in practice. For example, in case of normally distributed risks, this 

can be done using a square root aggregation formula and predefined correlation parameters 

(for a critical discussion of the square root aggregation formula see Pfeifer and Strassburger, 

2008). Within internal risk models, very often independence between premium risk and 

reserve risk is assumed, whereas in Solvency II the correlation coefficient used within the 

standard formula is 50% (see CEIOPS, 2010). In our case, both assumptions don’t match. The 

first choice (i.e., 0%) seems relatively low, whereas the second choice (i.e., 50%) seems 

relatively high, since the correlation coefficient for the combination of the one-year reserve 

and premium risk in our model is 16.14%. 
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Because the claims development triangle in Table 1 is completely settled after nine years, we 

have CDR[0,9] = CDR[0,ω]. This means for previous accident years the ultimate claims 

development result is equal to the nine-year claims development result. This is achieved by 

repeating the re-reserving method for nine future development years. For future accident 

years, however, the state of final settlement has only been reached after 14 years (14 = 9 +

5), i.e., CDR[0,14]
NY = CDR[0,ω]

NY . Nevertheless, for the reason of comparability between reserve 

risk and premium risk, we decided to only present nine future development years also.4

 

 

Figure 6: Prediction Error (Ultimo versus Multi-Year) 

To illustrate the mechanism of the re-reserving process, in Figure 6 we show the development 

of the prediction error (standard deviation, see Table 3) of the one-year claims development 

result for previous accident years (and for future accident years, respectively) up to the nine-

year claims development result for previous accident years (and for future accident years, 

respectively). Here we find that the greater the time horizon the higher the variability that 

comes from the claims development result. This is because the greater the time horizon, the 

more future claim payments are simulated via stochastic simulation methods and thus the 

variability increases. Moreover – since we only consider five future accident years – the 

                                                 
4  This is not a critical assumption, since later considerations will show that, also for future accident years, after 

nine development years the ultimate has almost been reached. For example in Table 4 we show the 
development of risk capital for reserve risk and premium risk. Here the risk capital for the nine-year CDR, at 
99.5% confidence level using VaR, equals 14,087,283. The risk capital for the 14-year CDR, at 99.5% 
confidence level using VaR, equals 14,127,872. This only represents a difference of 0.29%. 
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ultimate prediction error of future accident years (right part of Figure 6) increases within the 

first five accident years on an annual basis whereas the final ultimate prediction error is only 

reached, when no further accident years are considered (starting in year 5). It is interesting to 

note, that especially for the first new accident year the one-year premium risk is below the 

ultimate risk. 

By means of the risk measures VaR and TVaR we now calculate the risk capital needed to 

survive at a given confidence level α. For this purpose we use the empirical frequency density 

shown in Figure 5 where we have the negative multi-year claims development result for 

previous accident years (−CDR[0,m]) as well as the negative multi-year claims development 

result for future accident years (−CDR[0,m]
NY ) as random variables of losses L for the respective 

time horizon (m-year). The result, i.e., the development of risk capital over time from a one-

year time horizon up to the ultimo time horizon, for different confident levels, is shown in 

Table 4. Here we first apply ρ on −CDR[0,m] and −CDR[0,m]
NY  (see equation (4)), whereas in the 

following step (see Table 5) we apply ρ on the maximum function of −CDR[0,m] and 

−CDR[0,m]
NY  (see equation (6)). 

Year Previous Accident Years Future Accident Years 
VaR99.5% VaR99.8% TVaR99.5% TVaR99.8% VaR99.5% VaR99.8% TVaR99.5% TVaR99.8% 

1-year 4,749,386 5,316,952 5,286,335 5,823,192 2,977,628 3,321,919 3,350,394 3,691,877 
2-year 5,792,383 6,507,259 6,472,509 7,155,006 5,716,118 6,498,808 6,506,921 7,181,772 
3-year 6,327,244 7,156,092 7,135,439 7,900,373 8,003,254 9,059,710 9,107,288 10,077,765 
4-year 6,581,494 7,468,877 7,462,006 8,254,423 10,349,252 11,664,837 11,760,559 13,004,729 
5-year 6,677,161 7,618,148 7,580,640 8,450,888 12,588,903 14,243,983 14,333,964 15,943,355 
6-year 6,734,002 7,660,221 7,623,855 8,491,308 13,428,579 15,168,296 15,270,085 16,916,089 
7-year 6,741,888 7,669,861 7,602,873 8,499,022 13,696,218 15,435,701 15,588,639 17,318,276 
8-year 6,741,053 7,681,002 7,635,883 8,521,712 13,965,029 15,754,658 15,829,143 17,463,571 
9-year 6,737,416 7,680,650 7,608,386 8,527,169 14,087,283 15,901,677 15,948,394 17,583,110 

Table 4: Risk Capital (Non-Maximum Function) 

Table 4 shows that the one-year risk capital for the reserve risk measures is around 70% of the 

ultimo risk capital (e.g., at 99.5% confidence level using VaR, 4,749,386 are needed at a one-

year horizon and 6,737,416 at a nine-year horizon). The one-year risk capital for the premium 

risk, however, is around 62% of the ultimo risk capital. Moreover, the development of risk 

capital from a one-year perspective to a nine-year perspective shows that after approximately 

five years we have almost reached the ultimate. 
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In a multi-year context management also risks of running out of capital before the end of 

period t = m. Hence, we have to take into account the fact that the negative multi-year claims 

development result for previous accident years (−CDR[0,m]) and for future accident years 

(−CDR[0,m]
NY ) at the end of period t = m can be lower than any negative multi-year claims 

development result before the end of this period. Thus, we take the maximum loss of all 

negative multi-year claims development results as a random variable of losses L for the 

respective future development years {1, … , m}. To illustrate this effect we picked one 

randomly chosen scenario out of the 1,000,000 simulations and compared the development of 

the multi-year claims development result for previous and future accident years using the 

maximum function defined within equation (5) (see Figure 7). For the simulated previous 

accident years (starting from year 3) and for the simulated future accident years (starting from 

year 2) we have a different development with and without the use of the maximum function. 

 

Figure 7: Maximum Function Versus Non-Maximum Function 

This process leads to different empirical frequency distributions for the multi-year claims 

development result of previous accident years and of future accident years and thus to a 

different need for risk capital. The results for the risk capital in the case of using the 

maximum function are shown in Table 5. Hereby, risk capital for the one-year claims 

development result exactly equals the case of not using the maximum function (see Table 4). 
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For all the other claims development results, however, the demand for risk capital is slightly 

higher than before (e.g., for a five-year time horizon at 99.5% confidence level using VaR 

6,677,161 are needed not using the maximum function, whereas 6,927,992 are needed using 

the maximum function). 

Year Previous Accident Years Future Accident Years 
VaR99.5%

max  VaR99.8%
max  TVaR99.5%

max  TVaR99.8%
max  VaR99.5%

max  VaR99.8%
max  TVaR99.5%

max  TVaR99.8%
max  

1-year 4,749,386 5,316,952 5,286,335 5,823,192  2,977,628 3,321,919 3,350,394 3,691,877 
2-year 5,829,230 6,535,172 6,487,012 7,168,015 5,716,118 6,498,808 6,506,921 7,181,772 
3-year 6,453,611 7,258,944 7,226,344 7,972,264 8,020,660 9,060,623 9,118,491 10,079,486 
4-year 6,762,882 7,636,010 7,628,222 8,397,742 10,385,040 11,688,567 11,783,031 13,017,758 
5-year 6,927,992 7,850,977 7,889,427 8,642,606 12,639,356 14,273,330 14,380,954 15,991,365 
6-year 7,027,061 7,941,547 7,950,906 8,737,128 13,698,378 15,515,873 15,538,528 17,161,237 
7-year 7,057,542 7,969,071 7,980,294 8,763,660 14,175,366 16,036,263 16,074,499 17,734,383 
8-year 7,069,649 7,986,028 7,987,464 8,784,452 14,519,945 16,312,349 16,414,612 18,051,804 
9-year 7,072,591 7,993,424 7,992,291 8,795,100 14,739,488 16,440,857 16,602,097 18,224,937 

Table 5: Risk Capital (Maximum Function) 

Finally, in Figure 8 we illustrate the development of risk capital for all risk measures and 

confidence levels we used overall. This Figure shows that the higher the confidence level, the 

higher the demand for risk capital. Furthermore, the use of TVaR instead of VaR leads to a 

higher demand as well. Moreover, the use of the maximum function also leads to a different 

demand on risk capital. The use of the maximum function yields a slightly higher demand 

than the non use of the maximum function. 

 

Figure 8: Risk Capital (Ultimo versus Multi-Year) 

5.3. Discussion of Long-Tail versus Short-Tail Business 

In this application we use a claims development triangle for a long-tail line of business. To 

complement the results of this analysis, we have also used a claims development triangle for a 
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short-tail line of business. In this case the one-year risk capital for the reserve risk is around 

90% of the ultimo risk, and for the premium risk it is around 85% of the ultimo risk (detailed 

results are available upon request). Comparing the results for the short- and long-tail line, we 

can see that the risk capital for the long-tail line is strongly underestimated in the one-year 

view compared to the ultimo view – a problem which was discussed several times in the 

literature (see Ohlsson and Lauzeningks, 2009; Dhaene et al., 2008). Hence, in the context of 

Solvency II, the use of an additional risk margin is supposed to prevent the underestimation of 

risk in the one-year view. 

For this phenomenon the multi-year view introduced in this paper can provide valuable 

managerial information as it adequately takes into account the long-term nature of some 

insurance contracts and provides a more complete picture of the development of the risk 

situation over time. The integration of the multi-year view in internal risk models might also 

serve as a solution to the dilemma outlined by Ohlsson and Lauzeningks (2009) that “an 

ultimo perspective for liabilities with a one-year perspective for assets is not an alternative if 

we are interested in the combined total risk of the company.” Both perspectives can be well 

integrated in the multi-year analysis of assets and liabilities, e.g., using a five-year planning 

horizon both for assets and liabilities. We thus believe that the multi-year approach can create 

a better sense for risk exposure and enriches the one-year and ultimo perspective. 

5.4. Results for the Risk Margin 

In a last step we calculate the risk margin used within Solvency II (see Section 4). For this 

purpose we first have to determine the future SCRt at each point of time t ∈ {2, … ,9}. We use 

the method of moments within each simulation step z (i.e. 100,000 simulation steps) to fit a 

normal distribution and then use VaR at 99.5% confidence level (see CEIOPS, 2010) to 

derive the corresponding SCRt
z  (we select the normal distribution to derive consistent results 

with premium risk and reserve risk as presented in Section 5.2). Hence, within each point of 

time t ∈ {2, … ,9} we get an empirical frequency distribution of future SCRt (see Figure 9). 
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Figure 9: Frequency Density of SCRt 

The greater the time horizon, the smaller the variation and thus the risk exposure, since the 

standard deviation decreases. The reason for this effect comes from the fact that for later years 

the claims in our application are almost completely settled and thus not much variation is left. 

As a consequence thereof, we can also see that the greater the time horizon the smaller the 

mean, since the different frequency distributions move to the left. We can use equation (8) to 

derive the overall SCRt at each point in time and then use equation (7) to calculate the 

corresponding risk margin. The results are shown in Table 6. 

  SCRt Aggregated SCR[0,m] Multi-Year SCR[0,m] 
1-year 4,749,386 4,749,386 4,749,386 
2-year 2,628,209 7,377,595 5,792,383 
3-year 1,883,095 9,260,690 6,327,244 
4-year 1,269,995 10,530,686 6,581,494 
5-year 939,482 11,470,168 6,677,161 
6-year 590,827 12,060,995 6,734,002 
7-year 265,374 12,326,369 6,741,888 
8-year 223,263 12,549,632 6,741,053 
9-year 120,191 12,669,823 6,737,416 

Risk Margin 760,189   

Table 6: Aggregated SCR versus Multi-Year SCR 

The second column of Table 6 shows the SCRt at each point in time t ∈ {2, … ,9}. The SCRt is 

calculated by quantifying the expected value of the corresponding random variables shown in 

Figure 9. The risk margin is then derived by the product of the sum of future SCRt at each 

point in time, and a cost-of-capital rate (see equation (7)). We choose the cost-of-capital rate 

of 6% (see CEIOPS, 2010). The third and fourth column of Table 6 show a comparison 

between the aggregated SCR[0,m] derived by summing up the one-year SCRt in year t and the 
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multi-year SCR[0,m] taken from Table 5 of the multi-year internal risk model. The comparison 

reveals a tremendous diversification effect by using multi-year risk capital instead of 

summing up the one-year risk capital of each future calendar year t. This is because 

calculating the one-year SCRt at each point of time means that some risk measure 𝜌 is applied 

every year, whereas within the multi-year internal risk model, the risk measure 𝜌 is only 

applied once over the whole time horizon of m years; we thus see diversification over time. 

6. Conclusion 

The aim of this paper was to present a modeling approach for determining the non-life 

insurance risk in a multi-year context. Multi-year non-life insurance risk can be analyzed by 

simulating the probability distributions of the random variables of the claims development 

result for previous accident years (reserve risk) and for future accident years (premium risk). 

We quantified the corresponding risk capital using risk measures such as VaR and TVaR. 

Furthermore, based on the cost-of-capital approach used within Solvency II, we presented an 

integrated simulation model for determining the corresponding risk margin in a multi-year 

context. Next to the traditional view (ultimo perspective) of non-life insurance risk, academic 

literature has so far focused only on a one-year perspective (see, e.g., Merz and Wüthrich, 

2008; Ohlsson and Lauzeningks, 2009; Gault et al., 2010). We extend those recent 

contributions by illustrating how the one-year perspective can be transferred into an ultimo 

perspective using a step-by-step multi-year perspective. We believe the multi-year approach 

can improve our sense of risk exposure and thus enrich the one-year and ultimo perspective. 

The three main contributions of this paper are the following. (1) Strategic management and 

decision making of insurance companies require a multi-year risk horizon; the model 

presented in this paper offers the benefit of a multi-year risk perspective on reserve risk and 

premium risk that can be used in the context of internal risk models. (2) The one-year risk 

perspective within Solvency II does not take into account the long-term nature of especially 

long-tail lines of business. The simulation model presented here provides a good 
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understanding of how non-life insurance risk evolves over time. (3) For the calculation of the 

Solvency II risk margin a cost-of-capital approach is used. We present an integrated way of 

simulating future SCRs that can be used for calculating the risk margin in a one-year 

economic perspective as well as in a multi-year economic perspective. 

The risk model presented here opens various future research options. First, the use of the 

Mack (1993) model as the underlying stochastic re-reserving model and the corresponding 

chain-ladder claims reserving algorithm can be replaced by different stochastic claims 

reserving models such as the over-dispersed Poisson model or the over-dispersed negative 

binomial model (see England and Verrall, 2006). Second, the underlying claims development 

triangle usually ends before the claims are completely settled, thus extrapolation techniques 

can be used to analyze the tail behavior by estimating corresponding tail factors. Third, the 

market-consistent valuation of best estimate claims reserve and the corresponding risk margin 

usually includes discounting by an adequate risk-free yield curve (see Ohlsson and 

Lauzeningks, 2009), hence future research can extend the present risk model by discounting 

aspects. 

Another avenue of future research might be to evaluate whether the multi-year view can also 

be transferred to analytical reserving methods. For this purpose one could try to extend the 

analytical approach for quantifying the MSEP of the one-year claims development result – 

based on the classic chain-ladder method (see Merz and Wüthrich, 2008) or based on the 

additive loss reserving method (see Merz and Wüthrich, 2010) – from a one-year perspective 

to a multi-year context. The results for risk capital based on analytical and simulation-based 

methods could then be compared.  
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