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Abstract. We consider parametric partial differential equations (PPDEs)
with stochastic influences e.g. in terms of random coefficients. Using standard

discretizations such as finite elements, this often amounts to high-dimensional
problems. In a multi-query context, the PPDE has to be solved for vari-

ous instances of the deterministic parameter as well as the stochastic influ-

ences. To decrease computational complexity, we derive a reduced basis (RB)
method, where the uncertainty in the coefficients is modeled using Karhunen-

Loève (KL) expansions. We restrict ourselves to linear coercive problems with

linear and quadtratic output functionals. A new a-posteriori error analysis
is presented that generalizes and extends some of the results by Boyaval et

al. [3]. The additional KL-truncation error is analyzed for the state, output

functionals and also for statistical outputs such as mean and variance. Error
estimates for quadratic outputs are obtained using additional non-standard

dual problems. Numerical experiments for a two-dimensional porous medium

demonstrate the effectivity of this approach.

1. Introduction

Several problems in science, medicine, economy and engineering are modeled by
partial differential equations (PDE) with stochastic influences. One could think of
measurements that are uncertain or unknown spatial coefficients such as porosity.
Examples include porous media flows (e.g. groundwater, Li-ion batteries or fuel
cells), models in finance or inverse problems. In addition to such uncertainties,
many problems also depend on a number of (deterministic) parameters, i.e., one has
a parameterized PDE (PPDE). Examples include geometry, model parameters or
forces. We are particularly interested in situations where the PPDE with stochastic
influences has to be evaluated quite often for various instances of the deterministic
parameters and the stochastic influences. In the stochastic framework, such a
situation occurs e.g. in Monte Carlo simulations to compute statistical quantities
such as mean, variance or other moments. For the deterministic parameters, one
might think of parameter studies or optimization. Such a multi-query situation
requires the numerical solution of the PDE for many instances of parameter and
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program. This paper was partly written while K.U. was Visiting Professor at MIT, Cambridge
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stochastic influence which is infeasible in particular for more complex PDEs. Hence,
model reduction is required.

It should be noted that we are not concerned with stochastic PDEs involving
the Itô calculus. This is the reason why we use the term PDEs with stochastic
influences, even though this might be a bit lengthy.

The reduced basis method (RBM) has intensively been studied for the numerical
solution of PPDEs, e.g. [7, 15, 16, 19], a complete list of references would go far
beyond the scope of this paper. The basic idea is an offline-online decomposition
combined with a rigorous a-posteriori error control. In the offline stage, a reduced
basis is formed by solving the complex PPDE for certain parameter values, so-called
snapshots. The selection is based upon a Greedy algorithm using a rigorous error
bound, [20]. The so formed reduced system is then used in the online stage for a
highly efficient simulation for a given new parameter.

One might think that this approach can immediately be used also for PPDEs
with stochastic influences, viewing the stochasticity, i.e. stochastic events or inputs,
as additional parameters. However, unlike for deterministic parameters, we have
generally no distance measure in the probability space at our disposal, so that the
ideas cannot be transferred directly. A basic assumption of the RBM is a smooth
dependence of the solution of the PPDE w.r.t. the parameter, which can not be
assured due to the lack of the distance measure. Furthermore, the dimension of
the parameter space crucially influences the efficiency of the RBM. In the case of
stochastic influences, the parameter space may be infinite-dimensional.

As a way-out, we propose to use a Karhunen-Loève (KL) expansion [12, 13, 17]
of the stochastic process and appropriately truncate it. Even though the resulting
expansion coefficients are still random variables, i.e. functions w.r.t. the stochastic
event, we treat them in some way as parameters that can be modeled using poly-
nomial chaos (PC) expansions [21, 22]. The KL truncation error of course has to
be analyzed. The KL expansion shows some resemblance to the empirical interpo-
lation method (EIM) [2, 18] in order to obtain an affine decomposition of random
and spatial variables, where the random variables correspond to the parameter de-
pendent EIM coefficients. Consequently, our analysis is in some parts similar to
the EIM analysis e.g. in [18].

PDEs with stochastic influences have been widely studied in the literature,
where, apart from Monte Carlo methods, also weak solutions in space and prob-
ability are considered. These techniques are also known as stochastic collocation
methods [1] or stochastic finite elements [6]. For more information we refer to
[5, 8, 14] and the references therein.

So far, not much work on RBM regarding stochastic problems has been done. In
[3], Boyaval et al. studied a specific problem with stochastic Robin-type boundary
conditions. However, to the best of our knowledge, the analysis presented there
does not cover the case of general stochastic influences, e.g. in terms of random
spatial coefficients. In this sense, the present paper generalizes and extends the
findings in [3]. For the sake of completeness, let us also mention [4], where an RB
control variate technique for variance reduction is introduced.

In particular in the presence of stochastic influences, one is not only interested
in a good approximation of the state, i.e. the solution of the PPDE, but in accu-
rate outputs, together with corresponding statistical quantities such as expectation
or variance. The latter requires the computation of quadratic output functionals.
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Different RBMs for quadratic outputs have been studied. These methods use ex-
panded formulations that eliminate the nonlinearity [9], or introduce special dual
problems [10]. Due to the KL truncation effects, however, these approaches cannot
be used directly for our problem at hand. Hence, we introduce two more modi-
fied dual linear problems in order to derive a-posteriori error bounds also for the
above mentioned statistical quantities. These error estimates can then be used in
a standard Greedy approach [20] for the offline snapshot selection.

We are aware of the fact that the stochastic influences in general cause the
underlying problem to be high-dimensional. This leads to the necessity of solving
high-dimensional problems in the offline stage which calls for the use of specific
numerical methods. This aspect, however, is not investigated in this paper, also
since we consider a Monte Carlo framework w.r.t. the stochasticity.

The remainder of the paper is organized as follows. In Section 2, we collect
known facts on variational problems with stochastic influences, the KL expansion
and the RBM. We restrict ourselves to linear coercive problems. Section 3 contains
our a-posteriori error analysis for the primal and dual solution as well as linear and
quadratic outputs. In Section 4, we introduce the error analysis for the statisical
quantities such as moments and variances. Note that since the operator has sto-
chastic influences, we cannot derive a deterministic PDE for linear moments such as
the expectation even for linear PDEs. The offline-online decomposition is presented
in Section 5 as well as a method to compute coercivity lower bounds adjusted to
stochastic problems. Our numerical experiments are described in Section 6.

2. Preliminaries

In this section, we collect the basic features of the problem under consideration.

2.1. Variational problems with stochastic influences. Let D ⊂ Rd be an
open, bounded domain, D ⊂ RP a set of deterministic parameters and (Ω,A,P) a
probability space. For some X ⊂ H1(D) (accounting also for the corresponding
boundary conditions) let a : X × X × M → R, M := D × Ω, be a possibly
nonsymmetric form that is bilinear, continuous and coercive w.r.t. the first two
arguments and let f : X×M→ R be a form with f(·;µ, ω) ∈ H−1(D), (µ, ω) ∈M
such that the variational problem

(2.1) a(u, v;µ, ω) = f(v;µ, ω), v ∈ X,
admits a unique solution u(µ, ω) = u(·;µ, ω) ∈ X for all (µ, ω) ∈ M. As an
example, think of a linear elliptic second order PDE whose coefficients and right-
hand side depend on deterministic parameters µ ∈ D and stochastic inputs ω ∈ Ω.
In particular we have the case in mind in which a coefficient function on D depends
on stochastic influences modeled by ω. A formulation of type (2.1) is also called D-
weak/Ω-strong, [3], and the difference to a variational approach w.r.t. both terms,
e.g. stochastic Galerkin methods [14], should be noted. As already mentioned in
the introduction, the direct view of ω as an additional parameter is not entirely
possible. One should think of it merely as an uncertainty, i.e., a(·, ·; ·, ω) is a
random variable or a stochastic process. Nevertheless, we somtimes refer to ω as
the stochastic parameter.

In order to achieve computational efficiency of a RBM for (2.1), we assume both
terms in (2.1) to allow for an affine decomposition with respect to the deterministic
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parameter µ, namely

a(w, v;µ, ω) =

Qa∑

q=1

θaq (µ)
[
āq(w, v) + aq(w, v;ω)

]
,(2.2)

f(v;µ, ω) =

Qf∑

q=1

θfq (µ)
[
f̄q(v) + fq(v;ω)

]
,(2.3)

with Qa, Qf ≥ 1, θaq , θ
f
q : D → R, āq, aq(·, ·;ω) : X×X → R as well as f̄q, fq(·;ω) :

X → R bounded for all ω ∈ Ω. Note that āq and f̄q denote the expectations of
the terms in brackets, aq(·, ·;ω) and fq(·;ω) denote the respective fluctuating parts.
In general, we do not require any further assumption on these terms. However, in
Section 5, some restrictions are introduced in order to use an alternative method
for the computation of coercivity lower bounds. A standard tool to derive an affine
approximation of a non-affine function is the Empirical Interpolation Method (EIM,
[2]), which, however, may not be applicable here since we have different types of
parameters and influences, respectively.

In order to describe the well-posedness of (2.1), one usually defines the coercivity
and continuity constants, respectively

(2.4) α(µ, ω) := inf
v∈X

a(v, v;µ, ω)

‖v‖2X
, γ(µ, ω) := sup

w∈X
sup
v∈X

a(w, v;µ, ω)

‖w‖X‖v‖X
.

We assume that for some 0 < α0, γ∞ <∞, we have

(2.5a) α(µ, ω) ≥ α0 > 0, (uniform coercivity),

(2.5b) γ(µ, ω) ≤ γ∞ <∞, (uniform continuity),

for all (µ, ω) ∈ D × Ω. Under these assumptions, the Lax-Milgram theorem guar-
antees the well-posedness of (2.1). Next, we define parameter-dependent bilinear
forms and energy norms as (µ ∈ D, ω ∈ Ω)

(2.6) (w, v)µ,ω := a(w, v;µ, ω), ‖w‖2µ,ω := (w,w)µ,ω, v, w ∈ X.
In many situations, one is not (or not only) interested in the state u(µ, ω) or

the error in the energy norm, but in some quantity of interest in terms of a linear
continuous functional ` : X ×M→ R. Again, we assume that ` is affine, i.e.,

(2.7) `(v;µ, ω) =

Q`∑

q=1

θ`q(µ)
[
¯̀
q(v) + `q(v;ω)

]

with Q` ≥ 1, θ`q : D → R and ¯̀
q, `q(·;ω) : X → R bounded and linear for all ω ∈ Ω.

If ` is deterministic, we set `q ≡ 0. The output s :M→ R is given as

(2.8) s(µ, ω) := `(u(µ, ω);µ, ω).

If ` = f , the output coincides with the right-hand side which is called the compliant
case. In the non-compliant case, it is fairly standard to consider a dual problem of
finding p(1) = p(1)(µ, ω) such that for given (µ, ω) ∈ D × Ω one has

(2.9) a(v, p(1);µ, ω) = −`(v;µ, ω), v ∈ X.
The superscript (1) in (2.9) is motivated by the fact that we will introduce further
dual problems later on.
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2.2. Karhunen-Loève expansion. As already stated in the introduction, we con-
sider the well-known Karhunen-Loève (KL) expansion [12, 13]. Let us briefly recall
the main facts. Let κ : D × Ω→ R be a spatial stochastic process with zero mean
and existing covariance operator Covκ(x, y) := E

[
κ(x; ·)κ(y; ·)

]
, x, y ∈ D. Let

(λk, κk(x)), k = 1, . . . ,∞, be the eigenvalue/eigenfunction-pairs of the covariance
operator, then the KL expansion reads

(2.10) κ(x;ω) =

∞∑

k=1

√
λk ξk(ω)κk(x),

where ξk : Ω→ R are uncorrelated random variables with zero mean and variance
1. The eigenvalues are ordered λ1 ≥ λ2 ≥ · · · ≥ 0 and typically decay exponentially
fast. One of the main reasons why we consider the KL expansion is now obvious
since the above equation allows for a separation of the stochastic and the spatial
terms. This is very similar to an affine expansion of a form with respect to a deter-
ministic parameter as common in RBM. Here, we can use the deterministic, purely
space-dependent terms for calculations in the offline phase so that the stochastic
influences only enter through the coefficients in the KL expansion and are thus
scalar quantities.

Since the KL expansion requires zero-mean random variables, the affine decom-
positions in (2.2), (2.3) and (2.7) are made by a separation into the deterministic
expectation āq, f̄q, ¯̀

q and the zero-mean stochastic parts. We apply the KL ex-
pansion to the factors aq, fq, and `q. For b ∈ {a, f, `}, we get (using the correct
arguments of course)

b(·;µ, ω) =

Qb∑

q=1

θbq(µ)

[
b̄q(·) +

∞∑

k=1

ξbq,k(ω) bq,k(·)
]
,(2.11)

where for notational convenience bq,k also contain
√
λbq,k from the spectral decom-

position of the corresponding covariance operator.
For numerical purposes, one usually restricts the infinite sum by some Kb

q <∞.
It is well-known that the KL approximation is optimal in a certain sense, [12, 13].
For b ∈ {a, f, `} we obtain the truncated forms

bK(·;µ, ω) :=

Qb∑

q=1

θbq(µ)

[
b̄q(·) +

Kb
q∑

k=1

ξbq,k(ω) bq,k(·)
]
.(2.12)

Here and in the following, an index K indicates that the expression is or is derived
from a truncated form. We do not distinguish the dependencies on Kb

q , q = 1, ..., Qb,
b ∈ {a, f, `}. The truncated primal and dual problem read for (µ, ω) ∈M

aK(uK(µ, ω), v;µ, ω) = fK(v;µ, ω), v ∈ X,(2.13)

aK(v, p
(1)
K (µ, ω);µ, ω) = −`K(v;µ, ω), v ∈ X,(2.14)

with solutions uK = uK(µ, ω) and p
(1)
K = p

(1)
K (µ, ω), respectively.

2.3. Reduced Basis Approximation. We consider a Reduced Basis (RB)-appro-
ximation w.r.t. our parameters (µ, ω) ∈M. To this end, we first consider the ‘truth’
approximation of the primal and dual problem e.g. by a finite element discretization
on a sufficiently fine grid. The corresponding spaces are usually again denoted by X
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indicating that the ‘truth’ approximation and the exact solution are (numerically)
indistinguishable. We assume that dim(X) = N , where N is assumed to be ‘large’.

The primal and dual RB spaces are then appropriate subspaces

XN ⊂ X,dim(XN ) = N � N , X̃
(1)
N ⊂ X,dim(X̃

(1)
N ) = Ñ (1) � N .

Here and in following, an index N indicates that the expression denotes or is based
on reduced systems. We do not explicitely indicate the dependencies on the different

dimensions of the reduced systems, e.g. the dimensions of XN and X̃
(·)
N defined

below may be different. We obtain a truncated primal-dual RB formulation. For

(µ, ω) ∈ M, determine uN,K = uN,K(µ, ω) ∈ XN , p
(1)
N,K = p

(1)
N,K(µ, ω) ∈ X̃(1)

N such
that

aK(uN,K , v;µ, ω) = fK(v;µ, ω), v ∈ XN ,(2.15)

aK(v, p
(1)
N,K ;µ, ω) = −`K(v;µ, ω), v ∈ X̃(1)

N .(2.16)

We will comment later on the specific construction of XN and X̃
(1)
N .

3. A-posteriori error analysis

Now, we focus on the introduction of a-posteriori error bounds for the primal
and dual problem as well as for (linear and quadratic) output functionals. We will
partly follow similar considerations as in [18].

3.1. Notation. We start by fixing some notation for the subsequent analysis. In
many cases, where it should be clear from the setting, we will omit the parameter
(µ, ω) for notational convenience. Let

(3.1) eRB(µ, ω) := uK(µ, ω)− uN,K(µ, ω), ẽ
(1)
RB(µ, ω) := p

(1)
K (µ, ω)− p(1)

N,K(µ, ω),

be the primal and dual RB error, respectively, where again uK and p
(1)
K denote the

solution of (2.13) and (2.14), respectively. The corresponding residuals read

rRB(v;µ, ω) := fK(v;µ, ω)− aK(uN,K , v;µ, ω) = aK(eRB(µ, ω), v;µ, ω),(3.2a)

r̃
(1)
RB(v;µ, ω) := −`K(v;µ, ω)− aK(v, p

(1)
N,K ;µ, ω) = aK(v, ẽ

(1)
RB(µ, ω);µ, ω).(3.2b)

Assuming the availability of a computable lower bound 0 < αLB(µ, ω) ≤ α(µ, ω) of
the coercivity constant, it is fairly standard to derive RB error bounds in terms of
the following quantities

(3.3) ∆RB(µ, ω) :=
1

αLB
sup
v∈X

rRB(v)

‖v‖X
, ∆̃

(1)
RB(µ, ω) :=

1

αLB
sup
v∈X

r̃
(1)
RB(v)

‖v‖X
.

Following the arguments of standard RB a-posteriori error analysis [15], the terms

∆RB and ∆̃
(1)
RB account for the error caused by restricting X to XN or X̃

(1)
N (i.e.,

the RB error) given the truncated KL forms in (2.13, 2.14). Next, we investigate
the KL truncation error. In view of the definition of aK , fK and `K we see that
any truncation error depends on the random variable ω and thus on the particular
realization. This dependency is somehow unsatisfactory since all derived bounds
would depend on a realization of a random variable. Thus, we propose to replace the
random variables ξbk,q(ω), k > Kb

q , b ∈ {a, f, `}, by some ω-independent quantity.
If the probability density functions of the random variables have finite support or
the problem that underlies the PDE restricts their variations, we can use rigorous
upper bounds ξbUB, i.e., |ξbk,q(ω)| ≤ ξbUB, b ∈ {a, f, `} for all ω ∈ Ω. In many cases,
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however, it is also appropriate to use quantiles, instead. For some 0 < ρ < 1, we
define ξbUB such that |ξbk,q(ω)| ≤ ξbUB holds with probability 1 − ρ, where ρ should
be sufficiently small to be negligible in the following analysis. Hence, we can define
the error terms for the primal and dual problem as

δKL(v;µ, ω) :=

Qa∑

q=1

|θaq (µ)|
∞∑

k=Ka
q+1

ξaUB |aq,k(uN,K(µ, ω), v)|,(3.4a)

δ̃
(1)
KL(v;µ, ω) :=

Qa∑

q=1

|θaq (µ)|
∞∑

k=Ka
q+1

ξaUB |aq,k(v, p
(1)
N,K(µ, ω))|,(3.4b)

as well as for the right-hand sides b ∈ {f, `}

(3.4c) δbKL(v;µ) :=

Qb∑

q=1

|θbq(µ)|
∞∑

k=Kb
q+1

ξbUB |bq,k(v)|.

Note, that δKL and δ̃
(1)
KL still depend on ω via the RB solutions uN,K and p

(1)
N,K .

The right-hand side terms δfKL and δ`KL are deterministic and thus only depend on
µ ∈ D. For numerical realizations, the terms in (3.4) are usually truncated at some
Kmax, where Kb

q < Kmax � N < ∞. In a similar fashion as for the RB error, we
set

(3.5) ∆KL(µ, ω) :=
1

αLB
sup
v∈X

δKL(v)

‖v‖X
, ∆̃

(1)
KL(µ, ω) :=

1

αLB
sup
v∈X

δ̃
(1)
KL(v)

‖v‖X
,

as well as

(3.6) ∆b
KL(µ, ω) :=

1

αLB
sup
v∈X

δbKL(v)

‖v‖X
, b ∈ {f, `}.

3.2. Primal and dual error. We start by estimating primal and dual errors in-
volving both KL and RB truncation, i.e.,

(3.7) e(µ, ω) := u(µ, ω)− uN,K(µ, ω), ẽ(1)(µ, ω) := p(1)(µ, ω)− p(1)
N,K(µ, ω),

where u and p denote the exact (truth) primal and dual solution of (2.1) and (2.9),
respectively. For a better readability and for notational compacteness, we omit the
parameters µ and ω in the following whenever it does not affect the understanding.

Proposition 3.1. Setting ∆(µ, ω) := ∆RB(µ, ω) + ∆KL(µ, ω) + ∆f
KL(µ, ω), we get

‖e(µ, ω)‖X ≤ ∆(µ, ω) for all (µ, ω) ∈M.

Proof. We have for any v ∈ X that

a(e, v) = a(u, v)− a(uN,K , v)

=
(
f(v)−fK(v)

)
+
(
aK(uN,K , v)−a(uN,K , v)

)
+
(
fK(v)−aK(uN,K , v)

)
.

The last term coincides with aK(eRB, v) = rRB(v). Testing with v = e yields

‖e‖X ≤ αLB
−1 a(e, e)

‖e‖X

≤ |f(e)− fK(e)|
αLB ‖e‖X

+
|aK(uN,K , e)− a(uN,K , e)|

αLB ‖e‖X
+
|fK(e)− aK(uN,K , e)|

αLB ‖e‖X
≤ ∆f

KL + ∆KL + ∆RB
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by standard RB estimates. �

Corollary 3.2. Setting ∆̃(1)(µ, ω) = ∆̃(1) := ∆̃
(1)
RB+∆̃

(1)
KL+∆`

KL yields the estimate

‖ẽ(1)(µ, ω)‖X ≤ ∆̃(1)(µ, ω) for all µ, ω ∈MK .

Proof. In a similar way as above we get for any v ∈ X that

a(v, ẽ(1)) = a(v, p(1))− a(v, p
(1)
N,K)

=
(
`K(v)−`(v)

)
+
(
aK(v, p

(1)
N,K)−a(v, p

(1)
N,K)

)
−
(
`K(v)+aK(v, p

(1)
N,K)

)

and using v = ẽ(1) yields the desired estimate. �

The next step is to investigate the effectivities of the above estimators. To this
end, we define the Riesz representations of primal and dual residual by

(3.8)
(
ERB(µ, ω), v

)
X

= rRB(v;µ, ω),
(
Ẽ(1)

RB(µ, ω), v
)
X

= r̃
(1)
RB(v;µ, ω), v ∈ X,

for µ ∈ D and ω ∈ Ω. Since ERB is the Riesz representation, we have that
‖ERB(µ, ω)‖X = ‖rRB(µ, ω)‖X′ and thus by definition

‖ERB(µ, ω)‖X = αLB(µ, ω) ∆RB(µ, ω),(3.9a)

‖Ẽ(1)
RB(µ, ω)‖X = αLB(µ, ω) ∆̃

(1)
RB(µ, ω).(3.9b)

Analogously, we define the Riesz representations of the KL residuals by
(
EKL(µ, ω), v

)
X

= r(v;µ, ω)− rRB(v;µ, ω),(3.10a)
(
Ẽ(1)

KL(µ, ω), v
)
X

= r̃(v;µ, ω)− r̃(1)
RB(v;µ, ω),(3.10b)

where the truth residuals are defined as

r(v;µ, ω) := f(v;µ, ω)− a(uN,K , v;µ, ω),(3.11a)

r̃(v;µ, ω) := −`(v;µ, ω)− a(v, p
(1)
N,K ;µ, ω).(3.11b)

We obtain that

‖EKL‖X = ‖r − rRB‖X′ = ‖f − a(uN,K , ·)− fK + aK(uN,K , ·)‖X′
≤ ‖f−fK‖X′ + ‖a(uN,K , ·)−aK(uN,K , ·)‖X′ = αLB(µ, ω)(∆f

KL+∆KL)

and similarly ‖Ẽ(1)
KL‖X ≤ αLB(∆`

KL + ∆̃
(1)
KL). Finally, in order to estimate the effec-

tivities

(3.12) η(µ, ω) :=
∆(µ, ω)

‖e(µ, ω)‖X
, η̃(1)(µ, ω) :=

∆̃(1)(µ, ω)

‖ẽ(1)(µ, ω)‖X
,

we define the following quantitites

c(µ, ω) :=
∆KL(µ, ω) + ∆f

KL(µ, ω)

∆RB(µ, ω)
,(3.13a)

c̃(1)(µ, ω) :=
∆̃

(1)
KL(µ, ω) + ∆`

KL(µ, ω)

∆̃
(1)
RB(µ, ω)

.(3.13b)

Proposition 3.3. If c(µ, ω) ∈ [0, 1), we get

η(µ, ω) ≤ γUB(µ, ω)

αLB(µ, ω)

1 + c(µ, ω)

1− c(µ, ω)
,

where γUB(µ, ω) ≥ γ(µ, ω) is an upper continuity bound.
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Proof. It is straightforward to see that for v ∈ X we have

a(e, v) = r(v;µ, ω) = r(v;µ, ω)− rRB(v;µ, ω) + rRB(v;µ, ω)

= (EKL(µ, ω), v)X + (ERB(µ, ω), v)X = (EKL(µ, ω) + ERB(µ, ω), v)X ,

thus, with v = ERB − EKL

a(e, ERB − EKL) = (EKL + ERB, ERB − EKL)X = ‖ERB‖2X − ‖EKL‖2X ,
hence

‖ERB‖2X − ‖EKL‖2X = a(e, ERB − EKL) ≤ γUB ‖e‖X (‖ERB‖X + ‖EKL‖X)

= γUB ‖e‖X
‖ERB‖2X − ‖EKL‖2X
‖ERB‖X − ‖EKL‖X

,

i.e., by the above estimates

‖e‖X ≥
1

γUB
(‖ERB‖X − ‖EKL‖X) ≥ αLB

γUB
(∆RB −∆KL −∆f

KL).

This finally implies that

η =
∆

‖e‖X
≤ γUB

αLB

∆RB + ∆KL + ∆f
KL

∆RB −∆KL −∆f
KL

=
γUB

αLB

1 + c

1− c ,

which proves the claim. �

Completely analogously we can estimate the dual effectivity as follows.

Corollary 3.4. If c̃(1)(µ, ω) ∈ [0, 1), we get

η̃(1)(µ, ω) ≤ γUB(µ, ω)

αLB(µ, ω)

1 + c̃(1)(µ, ω)

1− c̃(1)(µ, ω)
.

�

Finally, for later reference, we note another result. Defining

(3.14) η0(µ, ω) :=

√
γUB(µ, ω)

αLB(µ, ω)

(
1 + c(µ, ω)

1− c(µ, ω)

)
,

we get the following estimate for the effectivity w.r.t. the energy norm.

Corollary 3.5. If c(µ, ω) ∈ [0, 1), we get
√
αLB(µ, ω)∆(µ, ω)

‖e(µ, ω)‖µ,ω
≤ η0(µ, ω).

Proof. In the proof of Proposition 3.3, we replace ‖e‖X by ‖e‖µ,ωγUB
−1/2. �

3.3. Output error. Now we consider the approximation `K(uN,K ;µ, ω) to the
output `(u;µ, ω) = s(µ, ω). As already known from the RB a-posteriori error
analysis of linear output functionals, [15], we add a correction term and consider

(3.15) sN,K(µ, ω) := `K(uN,K ;µ, ω)− rRB(p
(1)
N,K ;µ, ω)

and define the output error estimator by

(3.16) ∆s := αLB∆∆̃(1) + δKL(p
(1)
N,K) + δfKL(p

(1)
N,K) + δ`KL(uN,K).

Then, we obtain the following estimate.

Theorem 3.6. It holds |s(µ, ω)− sN,K(µ, ω)| ≤ ∆s(µ, ω) for all µ ∈ D and ω ∈ Ω.
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Proof. By standard arguments, we get (omitting the argument (µ, ω))

s− sN,K = `(u)− `K(uN,K) + rRB(p
(1)
N,K)

= `(u)− `K(uN,K) + fK(p
(1)
N,K)− aK(uN,K , p

(1)
N,K)

= [`K(u)− `K(uN,K)] + [f(p
(1)
N,K)− aK(uN,K , p

(1)
N,K)]

+[`(u)− `K(u)]− [f(p
(1)
N,K)− fK(p

(1)
N,K)].

For the first term on the right-hand side, we have

`K(u)− `K(uN,K) = −aK(u, p
(1)
K ) + aK(uN,K , p

(1)
K ) = −aK(e, p

(1)
K ).

Using f(p
(1)
N,K) = a(u, p

(1)
N,K), we get for the first two terms

[`K(u)− `K(uN,K)] + [f(p
(1)
N,K)− aK(uN,K , p

(1)
N,K)] =

= −aK(e, p
(1)
K ) + a(u, p

(1)
N,K)− aK(uN,K , p

(1)
N,K)

= −aK(e, p
(1)
K ) + aK(u− uN,K , p(1)

N,K) + [a(u, p
(1)
N,K)− aK(u, p

(1)
N,K)]

= −aK(e, p
(1)
K − p

(1)
N,K) + [a(u, p

(1)
N,K)− aK(u, p

(1)
N,K)]

= −aK(e, ẽ
(1)
RB) + [a(u, p

(1)
N,K)− aK(u, p

(1)
N,K)].

Putting all this together yields

s− sN,K =− aK(e, ẽ
(1)
RB) + [a(u, p

(1)
N,K)− aK(u, p

(1)
N,K)]

+ [`(u)− `K(u)] − [f(p
(1)
N,K)− fK(p

(1)
N,K)].

(3.17)

Using the triangle inequality, we have to estimate these 4 terms separately, i.e.,

|aK(e, ẽ
(1)
RB)| = |r̃(1)

RB(e;µ, ω)| ≤ ‖e‖X ‖r̃(1)
RB‖X′ = ‖e‖X αLB ∆̃

(1)
RB ≤ αLB ∆ ∆̃

(1)
RB

by Proposition 3.1. For the second term, we have

|a(u, p
(1)
N,K)− aK(u, p

(1)
N,K)| ≤ |a(e, p

(1)
N,K)− aK(e, p

(1)
N,K)|

+|a(uN,K , p
(1)
N,K)− aK(uN,K , p

(1)
N,K)|

≤ ‖e‖X ‖δ̃(1)
KL‖X′ + δKL(p

(1)
N,K)

≤ αLB ∆ ∆̃
(1)
KL + δKL(p

(1)
N,K)

again by Proposition 3.1. Next,

|`(u)− `K(u)| ≤ |`(uN,K)− `K(uN,K)|+ |`(e)− `K(e)| ≤ δ`KL(uN,K) + αLB ∆ ∆`
KL

and |f(p
(1)
N,K) − fK(p

(1)
N,K)| ≤ δfKL(p

(1)
N,K). Putting everything together yields the

desired result. �

The above analysis shows two effects. First of all the RB and KL error terms in

∆ = ∆RB + ∆KL + ∆f
KL and ∆̃(1) = ∆̃

(1)
RB + ∆̃

(1)
KL + ∆`

KL are multiplied. In order
to obtain the full order of approximation, RB and KL error terms should thus be
of comparable sizes. Secondly, as opposed to the deterministic case, we obtain the

additional additive terms δKL(p
(1)
N,K), δfKL(p

(1)
N,K) and δ`KL(uN,K) as we see from the

estimates of |a(u, p
(1)
N,K)− aK(u, p

(1)
N,K)|, |f(p

(1)
N,K)− fK(p

(1)
N,K)| and |`(u)− `K(u)|.

Finally, we investigate the effectivity of the output error bound for the special
case of a compliant output, i.e., ` = f , and symmetric bilinear form a. For this
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case, we have p
(1)
N,K = −uN,K , Ñ (1) = N and ∆s = αLB ∆2 + δcomp

KL , δcomp
KL :=

δKL(uN,K) + 2δfKL(uN,K).

Proposition 3.7. In the compliant case and with symmetric bilinear form a and
for η0(µ, ω) from (3.14), we assume that αLB(µ, ω)∆(µ, ω)2 ≥ η0(µ, ω)2δcomp

KL (µ, ω).

Then, the effectivity ηs(µ, ω) := ∆s(µ,ω)
|s(µ,ω)−sN,K(µ,ω)| is bounded by

(3.18) ηs(µ, ω) ≤ η0(µ, ω)2 αLB(µ, ω)∆(µ, ω)2 + δcomp
KL (µ, ω)

αLB(µ, ω)∆(µ, ω)2 − η0(µ, ω)2δcomp
KL (µ, ω)

.

Proof. Following the proof of Theorem 3.6 yields for ` = f and p
(1)
N,K = −uN,K that

s− sN,K= f(u)− 2 fK(uN,K) + aK(uN,K , uN,K)

= a(u, u) + 2[f(uN,K)− fK(uN,K)]− 2f(uN,K) + a(uN,K , uN,K)

−[a(uN,K , uN,K)− aK(uN,K , uN,K)]

= a(e, e) + 2[f(uN,K)− fK(uN,K)]− [a(uN,K , uN,K)− aK(uN,K , uN,K)],

Using Corollary 3.5, we get
αLB

η2
0

∆2 ≤ ‖e‖2µ,ω = a(e, e) ≤ |s− sN,K |+ δcomp
KL .

This yields ∆s

|s−sN,K | ≤
αLB∆2+δcomp

KL
αLB
η2
0

∆2−δcomp
KL

which proves the claim. �

The assumption αLB(µ, ω)∆(µ, ω)2 ≥ η0(µ, ω)2δcomp
KL (µ, ω) is rather restrictive

and can be validated only a-posteriori. It requires either the energy norm error
effectivity η0 or the KL truncation error δcomp

KL to be small. However, the effectivity
bound is consistent with the deterministic case in the sense that for large K, it
converges to the energy norm error effectivity bound η2

0 as provided in Corollary
3.5, where c is approaching zero at the same time.

3.4. Quadratic output. As a next step, we consider quadratic output functions
of the form

s2(µ, ω) := [`(u(µ, ω);µ)]2,

where ` is a ω-independent linear functional. If ` would be stochastic itself, the
subsequently constructed error bounds would include terms depending on the size
of s which is independent of N and K. Also, it is readily seen that just squaring
the output sN,K from (3.15) is not sufficient. In fact, since

(3.19) s2 − (sN,K)2 = (s− sN,K)(s+ sN,K) ≤ ∆s · (s+ sN,K),

the right-hand does not have the desirable “square” effect, as typical in RB methods.
Hence, we follow a different path by introducing an additional dual problem, namely

determine p
(2)
K (µ, ω) ∈ X such that

(3.20) aK(v, p
(2)
K (µ, ω);µ, ω) = −2 sN,K(µ, ω) · `(v;µ) =: −`(2)(v;µ, ω), v ∈ X.

Of course, the solution of (3.20) reads p
(2)
K = 2 sN,K p

(1)
K , which, however, is use-

less in the RB context since we have a different parameter-dependent right-hand

side and thus different RB spaces. Hence, we consider an RB space X̃
(2)
N ⊂ X,

dim(X̃
(2)
N ) = Ñ (2) and determine some p

(2)
N,K(µ, ω) ∈ X̃(2)

N such that

(3.21) aK(v, p
(2)
N,K(µ, ω);µ, ω) = −`(2)(v;µ, ω), v ∈ X̃(2)

N .
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We can apply the analysis performed in Section 3.2 and just need to adjust

the notation. The dual error reads ẽ
(2)
RB := p

(2)
K − p

(2)
N,K , the residual r̃

(2)
RB(v) :=

aK(v, ẽ
(2)
RB) and the RB bounds as ∆̃

(2)
RB := αLB

−1 supv∈X
(
r̃

(2)
RB(v)/‖v‖X

)
. The KL

truncation term δ̃
(2)
KL is defined analogously to (3.4b) by replacing p

(1)
N,K by p

(2)
N,K , and

analogously to (3.5), ∆̃
(2)
KL := αLB

−1 supv∈X
(
δ̃

(2)
KL(v)/‖v‖X

)
. The terms δ`

(2)

KL (v;µ)

and ∆`(2)

KL (µ, ω) vanish since ` is deterministic. Then, Proposition 3.1 and Corollary

3.2 yield the following estimate for ẽ(2) := p(2) − p(2)
N,K , namely

(3.22) ‖ẽ(2)(µ, ω)‖X ≤ ∆̃(2)(µ, ω) := ∆̃
(2)
RB(µ, ω) + ∆̃

(2)
KL(µ, ω).

We consider the approximation [`(uN,K(µ, ω);µ, ω)]2. Similar to the definition
of sN,K in Section 3.3, we add correction terms and consider

(3.23) s
[2]
N,K(µ, ω) := (`(uN,K))

2 −
(
rRB(p

(1)
N,K)

)2

− rRB(p
(2)
N,K).

It is important to keep in mind that we distinguish the squared approximation

(sN,K)2 = sN,K · sN,K from the approximation s
[2]
N,K of the square of s. In fact, it

is easy to see that we can also write s
[2]
N,K in terms of sN,K = `(uN,K)− rRB(p

(1)
N,K),

(3.24) s
[2]
N,K(µ, ω) = (sN,K)

2
+ 2sN,K · rRB(p

(1)
N,K)− rRB(p

(2)
N,K),

i.e., we have two additional correction terms. For X̃
(2)
N = X̃

(1)
N , the correction terms

would cancel out. We define the quadratic output error bound

(3.25) ∆s2(µ, ω) := (∆s)
2

+ αLB∆∆̃(2) + δKL(p
(2)
N,K) + δfKL(p

(2)
N,K)

and obtain the following result.

Theorem 3.8. It holds
∣∣∣s2(µ, ω)− s[2]

N,K(µ, ω)
∣∣∣ ≤ ∆s2(µ, ω) for all µ ∈ D, ω ∈ Ω.

Proof. With (3.24), the output error is given by

s2 − s[2]
N,K = s2 − (sN,K)2 − 2sN,K rRB(p

(1)
N,K) + rRB(p

(2)
N,K)

= (s− sN,K)2 + 2sN,K(s− sN,K)− 2sN,K rRB(p
(1)
N,K) + rRB(p

(2)
N,K).

Using sN,K = `(uN,K)− rRB(p
(1)
N,K) yields

2sN,K(s− sN,K) = 2sN,K

(
`(u)− `(uN,K) + rRB(p

(1)
N,K)

)
.

Together, replacing 2sN,K` by `(2), we have

s2 − s[2]
N,K = (s− sN,K)2 + `(2)(u)− `(2)(uN,K) + rRB(p

(2)
N,K).(3.26)

From Theorem 3.6, we know that (s− sN,K)2 ≤ (∆s)
2
. The second part of (3.26)

can be estimated analogously to Theorem 3.6 by replacing ` by `(2) and p(1) by
p(2). Since ` = `K , we obtain∣∣∣`(2)(u)− `(2)(uN,K) + rRB(p

(2)
N,K)

∣∣∣ ≤ αLB∆∆̃(2) + δKL(p
(2)
N,K) + δfKL(p

(2)
N,K),

which proves the claim. �

If ∆s is already small, the first part of the error bound ∆s2 will be comparatively
negligible. The second part of the error bound is of the same form as ∆s in (3.16).

Hence, we can hope that ∆s2 is approximately of the same order than ∆s.
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4. Statistical output error analysis

In this section, we consider first and second moments of the linear output func-
tional s(µ, ω) = `(u(µ, ω);µ),

M1(µ) := E [s(µ, ·)] , M2(µ) := E
[
s2(µ, ·)

]
, V(µ) := M2(µ)− (M1(µ))

2
.

We assume again that the functional ` is deterministic, i.e., there is no explicit
dependence on the stochastic parameter ω but the randomness of the output func-
tional s is only through u.

4.1. First and second moment. The straightforward estimate for the first mo-
ment M1(µ) is given by M1,NK(µ) := E [sN,K(µ, ·)] and Theorem 3.6 yields the
error bound

(4.27) |M1(µ)−M1,NK(µ)| ≤ ∆M1(µ) := E [∆s(µ, ·)] .
Analogously, the straightforward estimate for the second moment M2(µ) is given

by M2,NK(µ) := E
[
s

[2]
N,K(µ, ·)

]
and Theorem 3.8 yields the error bound

(4.28) |M2(µ)−M2,NK(µ)| ≤ ∆M2(µ) := E
[
∆s2(µ, ·)

]
.

4.2. Squared first moment. In order to get an estimation of the variance, it
remains to find an estimation for the the squared first moment. We follow the same
approach as in Section 3.4 and introduce a third dual problem with right-hand side
`(3)(v;µ) := 2M1,NK(µ) `(v;µ). The dual and the corresponding reduced system
are then given by

aK(v, p
(3)
K ;µ, ω) = −`(3)(v;µ), v ∈ X,(4.29)

aK(v, p
(3)
N,K ;µ, ω) = −`(3)(v;µ), v ∈ X̃(3)

N ,(4.30)

respectively, where X̃
(3)
N ⊂ X denotes the RB space of dimension dim(X̃

(3)
N ) = Ñ (3).

The error analysis is now mainly straightforward, following Section 3.4. We denote

the new dual error by ẽ
(3)
RB := p

(3)
K − p

(3)
N,K and the residual by r̃

(3)
RB(v) := aK(v, ẽ

(3)
RB)

to define the RB bound ∆̃
(3)
RB := αLB

−1‖r̃(3)
RB‖X′ . The KL truncation term δ̃

(3)
KL

is defined analogously to (3.4b) by replacing p
(1)
N,K by p

(3)
N,K , and analogously to

(3.5), ∆̃
(3)
KL := αLB

−1 ‖δ̃(3)
KL‖X′ . Then, Proposition 3.1 and Corollary 3.2 yield the

following estimate for ẽ(3) := p(3) − p(3)
N,K ,

(4.31) ‖ẽ(3)(µ, ω)‖X ≤ ∆̃(3)(µ, ω) := ∆̃
(3)
RB(µ, ω) + ∆̃

(3)
KL(µ, ω).

We define the approximation of the squared first moment adding some correction
terms. Analogously to (3.24), we consider

(4.32) M[2]
1,NK(µ, ω) = (M1,NK)

2
+ 2M1,NK · E

[
rRB(p

(1)
N,K)

]
− E

[
rRB(p

(3)
N,K)

]
.

Note the distiction between the squared approximation (M1,NK)2 = M1,NK ·M1,NK

and the direct approximation M[2]
1,NK of the squared first moment. The error bound

is given by

(4.33) ∆M2
1(µ, ω) := (∆M1)2 + E

[
αLB∆∆̃(3) + δKL(p

(3)
N,K) + δfKL(p

(3)
N,K)

]
.

Theorem 4.1. It holds
∣∣∣M2

1(µ)−M[2]
1,NK(µ)

∣∣∣ ≤ ∆M2
1(µ) for all µ ∈ D.
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Proof. Analogously to Theorem 3.8, the output error is given by

M2
1 −M[2]

1,NK = (M1 −M1,NK)2 + E
[
`(3)(u)− `(3)(uN,K) + rRB(p

(3)
N,K)

]

From (4.27), we know (M1 −M1,NK)
2 ≤ (∆M1)2 = (E [∆s])2. Analogously to

Theorem 3.6, replacing ` by `(3) and p(1) by p(3), we obtain
∣∣∣`(3)(u)− `(3)(uN,K) + rRB(p

(3)
N,K)

∣∣∣ ≤ αLB∆∆̃(3) + δKL(p
(3)
N,K) + δfKL(p

(3)
N,K)

and the claim follows directly. �

4.3. Variance. It is straightforward to define

(4.34) VNK(µ) := M2,NK(µ)−M[2]
1,NK(µ)

and it is furthermore clear that |V− VNK | ≤ E[∆s2 ] + ∆M2
1 is an upper bound for

the error. However, we can derive more precise error bounds. Denoting r̃
(4)
RB(v) :=

aK(v, ẽ
(2)
RB − ẽ

(3)
RB) and ∆̃

(4)
RB := αLB

−1 supv∈X
(
r̃

(4)
RB(v)/‖v‖X

)
as well as defining

the KL truncation term δ̃
(4)
KL by (3.4b), replacing p

(1)
N,K by (p

(2)
N,K − p

(3)
N,K), and

analogously to (3.5), ∆̃
(4)
KL := αLB

−1 supv∈X
(
δ̃

(4)
KL(v)/‖v‖X

)
, we obtain ‖ẽ(2) −

ẽ(3)‖X ≤ ∆̃(4) := ∆̃
(4)
RB + ∆̃

(4)
KL and the variance error bound

∆V(µ, ω) := E
[
(∆s)2

]
+ (∆M1)2 + E

[
αLB∆∆̃(4)

]

+ E
[
δKL(p

(2)
N,K − p

(3)
N,K) + δfKL(p

(2)
N,K − p

(3)
N,K)

](4.35)

Proposition 4.2. It holds that |V(µ)− VNK(µ)| ≤ ∆V(µ) for all µ ∈ D.

Proof. From Theorems 3.8 and 4.1 we know

V− VNK = E
[
(s− sN,K)2

]
− (M1 −M1,NK)2

+ E
[
`(2)(u)− `(2)(uN,K) + rRB(p

(2)
N,K)

]

− E
[
`(3)(u)− `(3)(uN,K) + rRB(p

(3)
N,K)

]

and the first two terms can be bounded by E
[
(∆s)2

]
and (∆M1)2, respectively.

Analogously to Theorem 3.6, we transform the other two expressions to the form
of (3.17) and obtain

`(i)(u)− `(i)(uN,K) + rRB(p
(i)
N,K) = −aK(e, ẽ

(i)
RB) + [a(u, p

(i)
N,K)−aK(u, p

(i)
N,K)]

−[f(p
(i)
N,K)− fK(p

(i)
N,K)], i = 2, 3.

We subtract the two expressions and follow again the proof of Theorem 3.6. The
claim follows directly using the definitions from above. �

In our numerical experiments, we have observed that it is suffient to use the same
reduced space for the third dual problem (4.30) as for the second dual problem

(3.21), i.e. X̃
(2)
N = X̃

(3)
N . Then, it is sufficient to solve only one additional dual

problem and it holds that p
(3)
N,K(µ, ω) = p

(2)
N,K(µ, ω)M1,NK(µ)/sN,K(µ, ω). Hence,

we consider

aK(v, p
(4)
N,K(µ, ω);µ, ω) = −2`(v;µ), v ∈ X̃(2)

N(4.36)
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such that p
(2)
N,K = sN,K · p(4)

N,K and p
(3)
N,K = M1,NK · p(4)

N,K . For the evaluation of the

variance error bound (4.35), we therefore use p
(2)
N,K −p

(3)
N,K = (sN,K−M1,NK) p

(4)
N,K .

5. Offline-Online Decomposition

In this section, we describe the offline and online procedures and provide cor-
responding run-time and storage complexities. We start with the description of
a method to evaluate lower bounds for the coercivity constant. For this method,
we assume the bilinear form a to be parametrically coercive with respect to the
deterministic parameter, i.e. θaq (µ) > 0 for all µ ∈ D and āq(v, v) + aq(v, v;ω) ≥ 0,
v ∈ X, for all ω ∈ Ω and 1 ≤ q ≤ Qa.

5.1. The Coercivity Lower Bound. From the deterministic case, we know the
following methods to determine lower bounds αLB(µ, ω) for α(µ, ω), the “min-θ”
approach [15] and the “Successive Constraint Method” (SCM) [11]. The latter
approach is less restrictive and could be directly applied to the stochastic parameter
case. However, it requires much more effort, online as well as offline. The “min-θ”
approach requires the bilinear form a to be parametrically coercive with respect to
the deterministic and stochastic parameter. Therefore, the extension of the method
to our case is not possible. We would reqire ξq,k(ω) to be positive.

To partially maintain the advantage of the “min-θ” approach, we propose a
combination of both methods. We fix some parameter µ̄ ∈ D and get the inequality

(5.1) α(µ, ω) = inf
v∈X

a(v, v;µ, ω)

‖v‖2X
≥ inf
v∈X

a(v, v;µ, ω)

a(v, v; µ̄, ω)
· inf
v∈X

a(v, v; µ̄, ω)

‖v‖2X
.

If a is parametrically coercive, we apply the “min-θ” approach on the first term, i.e.,
for θmin(µ) := min1≤q≤Qa{θaq (µ)/θaq (µ̄)}, we obtain ω-independent lower bounds

a(v, v;µ, ω)

a(v, v; µ̄, ω)
≥ θmin(µ), ∀v ∈ X, ∀(µ, ω) ∈M

analogously to [15]. For the approximation of second term, we first apply the SCM
to the truncated form and obtain µ-independent lower bounds

aK(v, v; µ̄, ω)

‖v‖2X
≥ αKSCM(ω), ∀v ∈ X, ∀ω ∈ Ω.

To take the truncation error into acount, we consider the parameter independent
truncation error

(5.2) ∆α
KL := sup

v∈X

(
Qa∑

q=1

θaq (µ̄)

Kmax∑

k=K+1

ξUB
aq,k(v, v)

‖v‖2X

)

such that −∆α
KL‖v‖2X ≤ a(v, v; µ̄, ω)− aK(v, v; µ̄, ω). Hence, we define αSCM(ω) :=

αKSCM(ω) − ∆α
KL and obtain the coercivity lower bound αLB(µ, ω) := θmin(µ) ·

αSCM(ω). It is essential that K is large enough to obtain a positive αSCM.
Both αSCM(ω) and θmin(µ) can be evaluated independently. Therefore, in the

offline stage, it might be useful to evaluate and store αSCM for many ω and use
these values in the online stage in combination with different µ. This is possible if
the online required stochastic parameters can be fixed a-priori, for example using
(Quasi) Monte Carlo methods. Then αLB(µ, ω) can be evaluated very fast in the
online stage.
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5.2. Online Procedure. We first summarize the run-time complexity to solve a
reduced system and evaluate the corresponding outputs and bounds. Assuming the
availability of all necessary terms, the complexity is the same for all primal and
dual problems. For notational compactness, we do not distinguish between Qb, Kb,
Kb

max for b ∈ {a, f, `}, but just use Q, K and Kmax, respectively. In the same way,

we just use N instead of N , Ñ (1), Ñ (2) and Ñ (3).
The complexity to assemble a reduced systems for a new parameter pair reads

O(QKN2), the solution is then obtained in O(N3) operations. For the output
evaluation, we need to assemble some additional matrices and vectors — again
with complexity O(QKN2) — to evaluate the residuals. The actual evaluation is
then of complexity O(N2). For the error bounds, we first evaluate the coercivity
lower bound. The complexity depends on the chosen method, optimally O(Q). For
the ∆KL- and ∆RB-error bounds, we use the previously evaluated and stored Riesz
representator inner products and compute the bounds in O(Q2(Kmax−K)2N2) and
O(Q2K2N2), respectively. For the δKL-error bounds, we just need O(Q(Kmax−K))
matrix-vector and vector-vector multiplications, the total complexity is therefore
O(Q(Kmax −K)N2).

Suppose we use M random realizations to evaluate the Monte Carlo estimates
for any given deterministic parameter, the overall run-time complexity for the com-
putation of M1,NK and M2,NK is given by O(M(N3 +Q2K2

maxN
2)), including the

complexity for the evaluation of the error bounds.
If we are interested in both second moment and variance, the online procedure

works as follows. We solve the primal and first dual problem for M realizations
and some fixed µ. For all realizations, we store sN,K that is later used to solve
the second and third dual problem (3.21) and (4.30). For the quadratic output

evaluations, we additionally store rRB(p
(1)
N,K) as well as the primal solutions uN,K

that is needed for the computation of the respective last terms in (3.24) and (4.32).
Furthermore, for the corresponding error bounds (3.25) and (4.35), we store ∆ and
∆s. Hence, the overall storage complexity is O((N + 4)M).

If M is large and storage is limited, it is possible to store only expectations

and recompute the quantities uN,K , sN,K , rRB(p
(1)
N,K), ∆ and ∆s when needed.

The storage complexity can thus be reduced to O(1). However, the run-time will
considerably increase.

Alternatively, using the the less precise variance error bound

|V− VNK | ≤ ∆M2 + ∆M2
1 ,

it is also possible to solve all problems without any recomputations and a storage
complexity of only O(1), independent of N and M . The basic concept is to use

just one additional dual space X̃
(2)
N and solve the additional dual problem (4.36)

at the same time as the primal and first dual problem (2.15) and (2.16). It is clear

that the evaluation of s
[2]
N,K in (3.24) and the second moment M2,NK = E[s

[2]
N,K ]

as well as its error bounds ∆s2 from (3.25) and ∆M2 = E[∆s2 ] can be obtained
with storage complexity O(1). As a consequence of the use of (4.36), we have

E[rRB(p
(3)
N,K)] = M1,NKE[rRB(p

(4)
N,K)] and the evaluation of M[2]

1,NK in (4.32) is of

storage complexity O(1), too, and hence the evaluation of VNK = M2,NK−M[2]
1,NK .

It remains to show that the storage complexity to evaluate ∆M2
1 in (4.33) is constant.

We therefore have to separate M1,NK-dependent and p
(4)
N,K-dependent terms. It is
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clear that δKL(p
(3)
N,K) = |M1,NK | · δKL(p

(4)
N,K) and consequently E[δKL(p

(3)
N,K)] =

|M1,NK | · E[δKL(p
(4)
N,K)]. Since r̃

(3)
RB(v) = M1,NK · aK(v, p(4) − p(4)

N,K), we also have

∆̃
(3)
RB = |M1,NK |·αLB

−1 supv∈X
(
aK(v, p(4)−p(4)

N,K)/‖v‖X
)

and analogously ∆̃
(3)
KL :=

|M1,NK |·αLB
−1 supv∈X

(
δ̃

(4)
KL(v)/‖v‖X

)
. Hence. E[αLB∆∆̃(3)] can be separated and

the storage complexity for the evaluation is O(1).

5.3. Greedy basis selection. To generate the bases of the reduced spaces, we
perform a Greedy algorithm as it is well known in the RB context, [20, 15]. For
a training parameter set Ξtrain ⊂ M and some initial basis, given by an arbitrary
single snapshot, we solve the reduced primal and dual problems (2.15), (2.16),
(3.21), (4.30) and evaluate the error bounds for the desired outputs. For each
problem, we select the parameter pair for which the RB error part of the desired
output error bound is maximal and add the corresponding solution of the unreduced
problem to the respective basis. We iterate the procedure until the error bounds
fall below an intended tolerance for all training parameters.

Next, we are going to describe how to specify the KL truncation, precisely the
numbers of affine terms used for the approximation, Kb, b ∈ {a, f, `}, and the num-
ber of terms used to estimate the truncation error, Kb

max, b ∈ {a, f, `}. We integrate
the specification into the Greedy algorithm. For different truncation lengths and
very large Kmax values, we solve the reduced system and evaluate the KL error
bounds for all training parameters. Kb, b ∈ {a, f, `}, are chosen as the minimal
numbers such that the KL error bounds do not exceed a given tolerance, respec-
tively. This tolerance should be rather small compared to the allowed output errors.
Similarly, we adjust Kb

max, b ∈ {a, f, `}, as small as possible such that we underes-
timate the KL error bounds only negligible small. Since the KL truncation errors
do not depend on the dimension of the RB spaces, Kb and Kb

max, b ∈ {a, f, `},
are likely to be appropriate for all reduced spaces and can be fixed for all further
computations. However, it would also be possible to do further adjustments during
the Greedy algorithm.

Suppose that Ξtrain consists of ntrain deterministic parameters andMtrain random
realizations for each of the parameters. Then, the Greedy complexity is O(Nntrain)
times the online complexity to find the “optimal” parameters in each iteration,
i.e. O(NntrainMtrain(N3 +Q2K2

maxN
2)), plus O(QKmaxNN ) to solve for the cor-

responding true solutions. Furthermore, the construction of the reduced system
matrices and vectors is of complexity O(QKmaxN

2N ) and the evaluation of the
used Riesz representators and the pairwise inner products O(Q2K2

maxN
2N ).

We store these RB system matrices and vectors as well as the Riesz representator
inner products that are used to construct the ∆KL- and ∆RB-error bounds. Hence
the total storage complexity is O(Q2K2

maxN
2).

6. Numerical Realization and Experiments

In this section, an example of a two-dimensional porous medium is chosen to
illustrate the different aspects of the proposed methods. We consider heat trans-
fer in a wet sandstone with porosity modeled by a random function κ(x;ω) that
represents the rate of pore space within some control volume and is assumed to be
smooth in space. Furthermore, our model depends on a deterministic parameter
µ ∈ D = [0.01, 1] that denotes the global water saturation in the pores. Hence,
the proportion of air in the pores is given by (1 − µ). Let cs = 2.40 be the heat
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Sample 1 Sample 2 Sample 3 Sample 4

Figure 6.1. Four random realizations of κ

First Mode Second Mode Third Mode Fourth Mode

Figure 6.2. First four modes of κ̃

conductivity constant of pure (theoretically imporous) sandstone and cw = 0.60,
ca = 0.03 the respective heat conductivity constants of water and air. With these
notations, the total heat conductivity of a wet sandstone is assumed to be

c(x;µ, ω) = cs · (1− κ(x;ω)) + (µcw + (1− µ)ca)κ(x;ω)

= cs + (−cs + µcw + (1− µ)ca)κ(x;ω).
(6.1)

We consider a domain D = [0, 1]2 and impose homogeneous Dirichlet boundary
conditions on some boundary part ΓD and non-homogeneous Neumann boundary
conditions on the opposite “output” boundary Γout, where the right-hand side of
the boundary condition is a random function g(ω) : [0, 1] → R, representing some
random loss of heat at the output boundary. On the other boundaries, we impose
homogeneous Neumann conditions, representing isolated parts of the sandstone.
For a given µ ∈ D and some random realization of κ, we are interested in the
average temperature at the “output” boundary Γout, denoted by s(µ, ω).

Now, the PDE reads as follows: for given (µ, ω) ∈M, find u(µ, ω) such that




−∇ ·
(
c(µ, ω) ∇u(µ, ω)

)
= 0 in D,

u(µ, ω) = 0 on ΓD,

n ·
(
c(µ, ω) ∇u(µ, ω)

)
= 0 on ΓN,

n ·
(
c(µ, ω) ∇u(µ, ω)

)
= g(ω) on Γout.

(6.2)

In the weak form, we compute u(µ, ω) ∈ X such that a(u(µ, ω), v;µ, ω) = f(v;ω)
for all v ∈ X, where a(w, v;µ, ω) =

∫
D
c(µ, ω)∇w · ∇v and f(v;ω) =

∫
Γout

g(ω)v.

For the functional `(v) =
∫

Γout
v, the non-compliant output is given by s(µ, ω) :=

`(u(µ, ω)).
The affine decomposition of the bilinear form a in µ is straightforward. Let

κ̄(x) denote the mean of κ(x; ·) and κ̃(x;ω) := κ(x;ω) − κ̄(x) its stochastic part
with zero mean. We define θ1(µ) :≡ cs and θ2(µ) := −cs + µcw + (1 − µ)ca.
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Then, using the notation of (2.2), ā1(w, v) =
∫
D
∇w · ∇v whereas a1(w, v;ω) ≡

0 vanishes. For the second affine term, we have ā2(w, v) =
∫
D
κ̄∇w · ∇v and

a2(w, v;ω) =
∫
D
κ̃(ω)∇w · ∇v. In the same way, we denote by ḡ(x) the mean

of g(x; ·) and g̃(x;ω) its stochastic part and define f̄1(v) =
∫

Γout
ḡv as well as

f1(v;ω) =
∫

Γout
g̃(ω)v, where θf1 = 1. Using KL expansions of κ̃ and g̃, we directly

obtain affine decompositions of a2 and f1 in ω, respectively. Since ` is independent
of µ and ω, we put all forms into the framework of (2.11) with Qa = 2, Qf = 1 and
Q` = 1, where ξa1,k(ω) = 0 for all k ≥ 1 and therefore Ka

1 = 0 in (2.12).
Figure 6.1 shows four random realizations of κ and Figure 6.2 the first four

eigenmodes of the KL expansion of κ̃. Its eigenvalues are provided in Figure 6.5(a).
The expectation of κ is supposed to be constant in space, κ̄(x) ≡ 0.33. We assume
the random coeffiients ξa2,k(ω) to be standard normally distributed. Since κ(x;ω)

is restricted to [0, 1] whereas ξa2,k(ω) are unbounded, we dismiss realizations that
do not satisfy the physical constraints. However, this can be done easiliy online
and this happens with a probability of less than 2.5 · 10−6 in our model. Then,
c(x;µ, ω) > µcw+(1−µ)ca > 0.0357 > 0 and the PDE is uniformly coercive. Figure
6.3 shows four random realizations of g and Figure 6.4 the first four eigenmodes
of the KL expansion of g̃. Its eigenvalues are provided in Figure 6.5(b). The

expectation of g is constant in space, ḡ(x) = 1. The random coefficients ξf1,k(ω)
are assumed to be standard normally distributed. Here, we do not restrict g to a
certain interval. However, negative values of g are very unlikely.

For the “truth” approximations, we choose a finite element (FE) space X with
linear Lagrange elements and N = 4841 degrees of freedom. Furthermore, we

use Ka
truth = 78 and Kf

truth = 18 terms to assemble the “true” forms a and f ,
respectively. These numbers of terms are already precise enough compared to the
FE error.
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Figure 6.6. Greedy error decay

The bilinear form a with the affine decomposition introduced before is not para-
metrically coercive since θa2(µ) < 0. However, since ā2(·) = 0.33 · ā1(·), resorting
the affine terms to

a(·;µ, ω) = θa1(µ)
(
ā1(·)− ā2(·)− a2(·;ω)

)
+ (θa1(µ) + θa2(µ))

(
ā2(·) + a2(·;ω)

)

leads to a decomposition that fulfills the requirements of the proposed method to
evaluate coercivity lower bounds.

Using the initial basis of the Greedy algorithm, we specify the KL truncation as
described in Section 5.3. For a relative error tolerance tol = 10−3, we choose a Ka

and Kf such that the truncation errors, especially the δKL-parts, do not exceed
0.2tol. This leads to Ka = 30, Ka

max = 47, Kf = 11 and Kf
max = 15, as marked

in Figures 6.5(a) and 6.5(b). For the KL error bounds, we use the upper bound
ξUB := 5.2 such that |ξq,k| > ξUB with a probability of less than 2.5 · 10−7.

As mentioned, we use the same space for the second and third dual space, X̃
(2)
N =

X̃
(3)
N , and solve only the additional dual problem (4.36). Figure 6.6(a) shows the

decay of the maximal relative error bounds of the primal and dual solutions u and
p(1), and of the difference of the additional dual solutions p(2)−p(3) that is used for
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the construction of the variance. In Figure 6.6(b) we provide the decay of the error
bounds of the desired outputs. We omit the δKL-parts since they do not decrease
with the number of basis functions and could therefore have a negative effect on
the basis selection procedure. It turns out that (N, Ñ (1), Ñ (2)) = (16, 10, 16) is
sufficient for relative error below the tolerance for all outputs.

On our reference system, a 3.06 GHz Intel Core 2 Duo processor, 4 GB RAM,
we used Matlab 7.8.0 (R2009a) to implement and run both the truth and reduced
model. Solving the truth with N = 4841 degrees of freedom, we needed about
0.132 seconds per sample on average whereas the reduced problem could be solved
in about 0.0105 second per sample, including the solution of all primal and dual
problems and the evaluation of all outputs and error bounds. Hence, we gain a
speedup by a factor greater than 12. To show that the number of reduced basis
functions is independent of the degrees of freedom of the truth, we started another
Greedy algorithm using N = 19121. Again, the error bounds fell below the desired
error tolerance for (N, Ñ (1), Ñ (2)) = (16, 10, 16). On average, the computation
of the larger truth needed about 0.594 seconds per sample. Since the size of the
reduced system did not change, we gain a speedup by a factor greater than 56.

The result of the reduced computation ist shown in Figure 6.7. For each pa-
rameter of a test set of 30 logarithmically distributed values of µ, we evaluated the
output s, its mean, and the variance V using 10000 random samples. In Figure 6.7,
we plotted the mean and standard deviation of sN,K as well as 100 random samples
for each parameter of the test set.

In Figure 6.8, we show the errors and error bounds for the output s for two
values of µ and 200 random samples each. The samples are sorted according to ∆s.
We see that the error bound is effective. The average effectivity ∆s/|s − sN,K | is
about 100. We furthermore separated the error bound in its different parts. One
can see that the δKL-part does hardly varies since it is not directly dependent on
the current random realization. While for µ = 0.01, αLB∆∆̃(1) contributes most to
∆s, the δKL-parts contribute most for µ = 1.00. Hence, adaptive choices of Ka and
Kf could improve the error bounds and reduce the run-time and will be a part of
future work.



22 BERNARD HAASDONK, KARSTEN URBAN, AND BERNHARD WIELAND∗

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

E
ff
ec
ti
v
it
y
o
f
er
ro
r
b
o
u
n
d
∆

s
(µ

,ω
)

 

 

∆s

αLB∆∆̃(1)

δKL(pNK) + δfKL(pNK)

|s − sNK |

(a) 200 random samples for µ = 0.01

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

E
ff
ec
ti
v
it
y
o
f
er
ro
r
b
o
u
n
d
∆

s
(µ

,ω
)

 

 

∆s

αLB∆∆̃(1)

δKL(pNK) + δfKL(pNK)

|s − sNK |

(b) 200 random samples for µ = 1.00

Figure 6.8. Error bound ∆s, splitted in its δKL- and ∆-part, and
true error of output s for 200 random samples and two values of µ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−4

10
−3

10
−2

10
−1

µ

R
el
a
ti
v
e
v
a
ri
a
n
ce

er
ro
r
b
o
u
n
d

 

 

direct

sophisticated

RB

Figure 6.9. Different relative error bounds for variance V(µ)

In Figure 6.9 we compare our variance evaluation method and corresponding
error bounds with two other evaluation procedures based upon the use of the sample
variance E[(sN,K)2]−(ENK)2. For the “direct” bound, we follow (3.19) and replace
s by (s − sN,K) + sN,K which can be estimated by ∆s + |sN,K |. Analogously, we
obtain |M1| ≤ ∆M1 + |M1,NK | which leads us to the “direct” variance error bound

|V− VNK | ≤ E[∆s(∆s + 2|sN,K |)] + ∆M1(∆M1 + 2|M1,NK |).

For the “sophisticated” bound, we refer to [3]. We see that our variance approx-
imations and the corresponding error estimates give in fact sharper bounds. The
direct error bound is about 30 times larger, the sophisticated error bound still is
about three times larger in average.

Compared to the deterministic problems, the effectivity bound η(µ, ω) from
(3.12) contains an additional factor of the form (1 + c)/(1 − c), where c is given
by (3.13). Figure 6.10 shows the average factor, its standard deviation, and 100
random samples for each parameter of the test set. We can see that the additional
factor takes an average value of about 1.3. Hence, compared to the deterministic
case, the effectivity upper bound increases only moderately.
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[4] S. Boyaval and T. Lelièvre. A variance reduction method for parametrized stochastic dif-

ferential equations using the reduced basis paradigm. Commun. Math. Sci., 8(3):735–762,
2010.

[5] P. Frauenfelder, C. Schwab, and R. A. Todor. Finite elements for elliptic problems with

stochastic coefficients. Comput. Methods Appl. Mech. Engrg., 194(2-5):205–228, 2005.
[6] R. G. Ghanem and P. D. Spanos. Stochastic finite elements: a spectral approach. Springer-

Verlag, New York, 1991.
[7] M. A. Grepl and A. T. Patera. A posteriori error bounds for reduced-bias approximations

of parametrized parabolic partial differential equations. M2AN Math. Model. Numer. Anal.,
39(1):157–181, 2005.

[8] H. Harbrecht. A finite element method for elliptic problems with stochastic input data. Appl.

Numer. Math., 60(3):227–244, 2010.

[9] D. B. P. Huynh and A. T. Patera. Reduced basis approximation and a posteriori error estima-
tion for stress intensity factors. International Journal for Numerical Methods in Engineering,

2006.
[10] D. B. P. Huynh, J. Peraire, A. T. Patera, and G. R. Liu. Real-time reliable prediction of linear-

elastic mode-i stress intensity factors for failure analysis. High Performance Computation for

Engineered Systems (HPCES), 2006.

[11] D. B. P. Huynh, G. Rozza, S. Sen, and A. T. Patera. A successive constraint linear opti-
mization method for lower bounds of parametric coercivity and inf-sup stability constants.

Comptes Rendus Mathematique, 345(8):473 – 478, 2007.
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