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A STURMIAN SEPARATION THEOREM
FOR SYMPLECTIC DIFFERENCE SYSTEMS

ONDŘEJ DOŠLÝ AND WERNER KRATZ

Abstract. We establish a Sturmian separation theorem for conjoined bases
of 2n-dimensional symplectic difference systems. In particular, we show that
the existence of a conjoined basis without focal points in a discrete interval
(0, N + 1] implies that any other conjoined basis has at most n focal points
(counting multiplicities) in this interval.

1. Introduction

In this paper we deal with the symplectic difference system

xk+1 = Akxk + Bkuk, uk+1 = Ckxk +Dkuk.(1)

for k = 0, . . . , N, where Ak,Bk, Ck,Dk are real n × n matrices, xk, uk ∈ Rn, and
N ∈ N. It is supposed that the 2n× 2n matrices

Sk :=

(Ak Bk

Ck Dk

)

are symplectic, i.e.,

ST
k JSk = J with J =

(
0 I

−I 0

)
,

where I is the n×n identity matrix. Symplecticity of Sk in terms of the matrices
A,B, C,D reads

AT
k Ck = CT

k Ak, BT
kDk = DT

k Bk, AT
kDk − CT

k Bk = I.

The symplectic difference system (1) is closely related to the discrete quadratic
functional

F(x, u) =
N∑

k=0

{
xT

kAT
k Ckxk + 2xT

k CT
k Bkuk + uT

kDT
k Bkuk

}
.(2)
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2 DOŠLÝ AND KRATZ

A pair of n-dimensional sequences z = (zk)
N+1
k=0 = (xk, uk)

N+1
k=0 is said to be ad-

missible for F if it satisfies the first equation in (1), the so-called equation of
motion

xk+1 = Akxk + Bkuk for k = 0, . . . , N.(3)

We will use the following notation. By M † we denote the Moore-Penrose inverse
of a matrix M (cf. [5]). For a real and symmetric matrix P we write P ≥ 0 if P
is nonnegative definite and ind P denotes its index, i.e., the number of negative
eigenvalues (including multiplicities) of P . By Ker M , Im M , rank M , MT , and
M−1 we denote the kernel, image, rank, transpose, and inverse of a matrix M ,
respectively.

Together with (1) we will consider its matrix version (labeled again by (1))

Xk+1 = AkXk + BkUk, Uk+1 = CkXk +DkUk,

where X, U are real n× n matrices. A matrix solution (X,U) of (1) is said to be
a conjoined basis if

rank (XT
k , UT

k ) = n and XT
k Uk = UT

k Xk for k = 0, . . . , N + 1.(4)

The principal solution at k = 0 is the conjoined basis (X,U) which satisfies the
initial condition X0 = 0, U0 = I.

The following matrices were introduced in [18]




Mk = (I −Xk+1X
†
k+1)Bk,

Tk = I −M †
kMk

Pk = T T
k XkX

†
k+1BkTk,

(5)

for k ∈ {0, . . . , N}. Then obviously MkTk = 0 and it can be shown (see, e.g., [18])
that the matrix Pk is symmetric.

We say that a conjoined basis (X,U) has no focal point in the interval (k, k+1]
if

Ker Xk+1 ⊆ Ker Xk and XkX
†
k+1Bk ≥ 0(6)

holds. Note that if the first condition in (6) holds then the matrix XkX
†
k+1Bk is

really symmetric, (cf. [8]), and it equals the matrix Pk given by (5) since Tk = I
in this case (cf. [18]). The multiplicity of a focal point in the interval (k, k + 1] is
defined as the number (cf. [18])

rank Mk + ind Pk.

Now we are in a position to formulate the main result of our paper, its proof
is postponed to Section 3.

Theorem 1. Suppose that there exists a conjoined basis of (1) with no focal
point in (0, N + 1]. Then any other conjoined basis of this system has at most n
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focal points in (0, N + 1], each focal point counted a number of times equal to its
multiplicity.

Remark 1. (i) The previous statement can be regarded as a discrete version of
[19, Lemma 7.1, p. 357] which concerns the linear Hamiltonian differential system

ẋ = A(t)x + B(t)u, u̇ = C(t)x− AT (t)u,(7)

where A,B,C are real n×n matrices, B, C are symmetric, and B is nonnegative
definite. It is supposed that (7) is identically normal on the interval [a, b], i.e.,
if (x, u) is a solution of this system such that x(t) = 0 on a nondegenerate
subinterval of [a, b] then (x, u) ≡ (0, 0) on [a, b]. The above mentioned Lemma
7.1 of [19] claims: If (7) is disconjugate on [a, b] then the matrix X(t) of any
conjoined basis (X,U) of (7) is noninvertible for at most n points t ∈ (a, b].
Recall that the conjoined basis of (7) is defined in the same way as in (4) (only
with (X(t), U(t)) instead of (Xk, Uk)). Note also that under the assumption of
identical normality, the disconjugacy of (7) in [a, b] is equivalent to the existence
of a conjoined basis (X̃, Ũ) of this system with X̃(t) invertible for t ∈ (a, b].

(ii) The basic facts of the oscillation theory of (1) (especially, the concept of a
focal point of a conjoined basis defined by (6)) were established in the paper [8]
which appeared in 1997. Since that time, a relatively great effort has been made
to define the multiplicity of a focal point (which plays a crucial role in Theorem
1). This problem was successfully solved in the recent paper [18] and this enabled
to formulate Theorem 1 in the form presented here.

(iii) Symplectic difference systems cover a large variety of difference equations
and systems. Let us recall at least the linear Hamiltonian difference system

∆xk = Akxk+1 + Bkuk, ∆uk = Ckuk+1 − AT
k uk,(8)

where ∆xk = xk+1 − xk is the usual forward difference, A,B, C are real n × n
matrices, B, C are symmetric and I − A is invertible, the 2nth order Sturm-
Liouville difference equation

n∑
ν=0

(−1)ν∆ν
(
r
[ν]
k ∆νyk+n−ν

)
= 0, ∆ν = ∆(∆ν−1), r

[n]
k 6= 0,(9)

(which can be written in the form (8), see, e.g., [1]), and the special case n = 1
in (9) – the classical second order Sturm-Liouville difference equation

∆(rk∆yk) + pkyk+1 = 0.(10)

While the Sturmian theory is deeply developed for (10) and the separation the-
orem is well known (see, e.g., [2, 13, 16]), the statement presented in Theorem 1
is new even for the special cases of symplectic systems (8) and (9). Finally note
that a kind of separation theorem for conjoined bases of (8) is given in [7] but
this statement does not consider multiplicities of focal points. It claims that if
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there exists a conjoined basis of (8) without focal points in (0, N + 1] then the
principal solution of this system in k = 0 has no focal point in (0, N + 1] as well.

2. Preliminaries

In this preparatory section we collect basic facts concerning relationships be-
tween the symplectic difference system (1) and the discrete quadratic functional
(2) which we will need in the proof of our main result.

We start with a statement proved in [8, Theorem 1], which relates oscillatory
properties of (1) (which are defined via (non)existence of focal points) to the
positivity of the discrete quadratic functional (2). We formulate this statement
in a slightly modified form here, we consider any conjoined basis instead of the
principal solution at k = 0 (as formulated in [8]), but the proof of this modified
statement is the same as that given in [8].

Recall that the functional F is said to be positive if F(x, u) ≥ 0 for every
admissible (x, u) with x0 = 0 = xN+1, and equality F (x, u) = 0 happens if and
only if x ≡ 0 (i.e., xk = 0, k = 0, . . . , N + 1).

Proposition 1. The functional F is positive if and only there exists a conjoined
basis of (1) which has no focal point in (0, N + 1].

In the next statement (which can be found e.g. in [10] or [12]) we recall the
construction of an admissible pair for which the functional (2) is nonpositive
when the principal solution of (1) does have a focal point in (0, N + 1].

Proposition 2. Let (X,U) be a conjoined basis of (1).

(i) If there exists m ∈ {0, . . . , N} such that Ker Xm+1 6⊆ Ker Xm, i.e., there
exists α ∈ Ker Xm+1 \Ker Xm, then the pair (x, u) defined by

xk =

{
Xkα 0 ≤ k ≤ m,

0 m + 1 ≤ k ≤ N + 1,

uk =

{
Ukα 0 ≤ k ≤ m,

0 m + 1 ≤ k ≤ N + 1,

is admissible, and we have F(x, u) = −αT X0U0α.

(ii) If there exists m ∈ {0, . . . , N} such that Pm 6≥ 0, i.e., there exists c ∈ Rn

such that cT Pmc < 0, then the pair (x, u) defined by

xk =

{
Xkd 0 ≤ k ≤ m,

0 m + 1 ≤ k ≤ N + 1,

uk =





Ukd 0 ≤ k ≤ m− 1,

Ukd− Tkc k = m,

0 m + 1 ≤ k ≤ N + 1,
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where d = X†
m+1BmTmc, is admissible, and we have F(x, u) = −αT X0U0α+

cT Pmc.

(iii) In particular, if (X,U) is the principal solution at k = 0, it holds F(x, u) =
0 in case (i) and F(x, u) < 0 in case (ii).

Next we recall the concept of the bilinear form associated with (2).

Lemma 1. Let ẑ = (x̂, û), z̃ = (x̃, ũ) be two admissible pairs for F . Then we
have

F(ẑ; z̃) :=
N∑

k=0

{
x̂T

kAT
k Ckx̃k + x̂T

k CT
k Bkũk + ûT

kBT
k Ckx̃k + ûT

kDT
k Bkũk

}

= x̂T
k ũk

∣∣N+1

0
+

N∑

k=0

x̂T
k+1 {Ckx̃k +Dkũk − ũk+1}

= x̃T
k ûk

∣∣N+1

0
+

N∑

k=0

x̃T
k+1 {Ckx̂k +Dkûk − ûk+1} .

In particular, if one of ẑ = (x̂, û), z̃ = (x̃, ũ) is a solution of (1) satisfying
x̂0 = 0 = x̂N+1 or x̃0 = 0 = x̃N+1, then F(ẑ; z̃) = 0.

In the proof of the last two auxiliary results of this section we will need the
following consequence of Lemma 3.1.5 and Lemma 3.1.6 of [17], see also [18, p.
142].

Lemma 2. Let (X,U) be a conjoined basis of (1), Mk be given by (5), and
k ∈ {0, . . . , N}. Then there exists an n× n matrix Sk such that

rank Sk = rank Mk, Xk+1Sk = 0, Ker Xk ∩ Im Sk = {0}.(11)

In the next two lemmas, the matrices Mk, Pk, Tk are defined by (5).

Lemma 3. Let rank Mk = p. Then there exist linearly independent vectors
α1, . . . , αp ∈ Rn such that

Xk+1αj = 0, Xkαj 6= 0, j = 1, . . . , p.

Proof. Let Sk be the n×n matrix for which (11) hold, and let α1, . . . , αp be a basis
of Im Sk. Then Im Sk ⊆ Ker Xk+1 implies Xj+1αj = 0 and Ker Xk ∩ Im Sk = {0}
implies Xjαj 6= 0, j = 1, . . . , p. ¤

Lemma 4. Let (k, k + 1] contain a focal point of multiplicity p + q ≤ n of a
conjoined basis (X,U) of (1), p = rank Mk, q = ind Pk. Further, let α1, . . . , αp be
the same as in the Lemma 3 and β1, . . . , βq be orthogonal vectors corresponding
to the negative eigenvalues of Pk, i.e., βT

j Pkβj < 0, j = 1, . . . , q. Denote γj =

X†
k+1BkTkβj. Then the vectors α1, . . . αp, γ1, . . . , γq are linearly independent.
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Proof. First we prove that γ1, . . . , γq are linearly independent. Suppose that this
is not the case, i.e., there exists a nontrivial linear combination

∑q
j=1 µjγj = 0,

and let β =
∑q

j=1 µjβj. Then

0 > βT Pkβ = βT T T
k Xk

(
q∑

j=1

µjX
†
k+1BkTkβj

)
= βT T T

k Xk

(
q∑

j=1

µjγj

)
= 0,

a contradiction. Now suppose that γ =
∑q

j=1 µjγj =
∑p

j=1 λjαj 6= 0, and let

β =
∑q

j=1 µjβj be as before. Then

0 > βT Pkβ = βT T T
k XkX

†
k+1BkTkβ = βT T T

k XkX
†
k+1Xk+1γ = 0,

a contradiction. ¤

3. Proof of Theorem 1

The proof of Theorem 1 is based on the following idea. By Proposition 1, the
existence of a conjoined basis of (1) without focal points in (0, N + 1] implies
positivity of F . Now, by contradiction, if we assume that there exists another
conjoined basis with more than n focal points in (0, N + 1] (counting multiplic-
ities), we are able to construct an admissible pair (x, u) with x 6= 0 for which
F(x, u) ≤ 0 which contradicts the positivity of F .

Before starting the proof, we slightly specify the terminology concerning the
multiplicity of a focal point. If (k, k + 1] contains a focal point of multiplicity
p + q, where p = rank Mk, q = ind Pk, we say that p focal points are at k + 1 and
q focal points are in the open interval (k, k + 1).

Proof of Theorem 1. Let (X, U) be a conjoined basis of (1) and let the intervals

(ki, ki + 1] ⊆ (0, N + 1], i = 1, . . . , l, 0 ≤ k1 < k2 < · · · < kl ≤ N,

contain focal points of (X,U) of multiplicities mi, i = 1, . . . , l. Let mi = pi +
qi, where pi = rank Mki

, qi = ind Pki
. For each interval (ki, ki + 1] define the

admissible pairs as follows. For j = 1, . . . , pi we set

x
[i,j]
k =

{
Xkα

[i]
j 0 ≤ k ≤ ki,

0 ki + 1 ≤ k ≤ N + 1,

u
[i,j]
k =

{
Ukα

[i]
j 0 ≤ k ≤ ki,

0 ki + 1 ≤ k ≤ N + 1,

(12)
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where α
[i]
j ∈ Ker Xki+1 \ Ker Xki

are linearly independent n-dimensional vectors
(see Lemma 4). For j = pi + 1, . . . , pi + qi we define

x
[i,j]
k =

{
Xkγ

[i]
j 0 ≤ k ≤ ki,

0 ki + 1 ≤ k ≤ N + 1,

u
[i,j]
k =





Ukγ
[i]
j 0 ≤ k ≤ ki − 1,

Ukγ
[i]
j − Tkβ

[i]
j k = ki,

0 ki + 1 ≤ k ≤ N + 1,

(13)

where β
[i]
j , j = 1, . . . , qi, are orthogonal eigenvectors corresponding to the negative

eigenvalues of the matrix Pki
, and γ

[i]
j = X†

ki+1Bki
β

[i]
j . By Proposition 2 we have

for any i ∈ {1, . . . , l}

F(x[i,j], u[i,j]) = (x
[i,j]
0 )T u

[i,j]
0 , j = 1, . . . , pi,

F(x[i,j], u[i,j]) = (x
[i,j]
0 )T u

[i,j]
0 + (β

[i]
j )T Pk1β

[i]
j , j = pi + 1, . . . , pi + qi.

To simplify some of the next computations, we relabel occasionally the quan-

tities x[i,j], u[i,j], α
[i]
j , . . . as follows. We introduce the index ` ∈ {1, . . . , ∑l

i=1 mi}
by [i, j] 7−→ ` =

∑i−1
s=0 ms + j, m0 := 0.

Now suppose, by contradiction, that the number of focal points of (X,U) in

(0, N + 1] exceeds n, i.e., m :=
∑l

i=1 mi > n. In order to make the idea of the
proof more understandable, we will first suppose that qi = 0, i = 1, . . . , l, i.e., all
focal points are at ki + 1 (the kernel condition is violated but all Pki

≥ 0). Since∑l
i=1 mi =

∑l
i=1 pi = m > n, there exists a nontrivial linear combination

m∑

`=1

µ`x
[`]
0 = 0,(14)

i.e., the admissible pair (x, u) given by

xk =
m∑

`=1

µ`x
[`]
k , uk =

m∑

`=1

µ`u
[`]
k , k = 1, . . . , N + 1,(15)

satisfies x0 = 0 = xN+1. Moreover, the Nn-dimensional vector x = {xk}N
k=1 is

nonzero. Indeed, consider first the largest focal point kl+1 in (0, N+1]. According
to the construction of x[i,j] (we return to the original labeling at this moment),
we have

x
[i,j]
kl

= 0, i = 1, . . . , l − 1, j = 1, . . . , pi,
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so if x = 0, i.e., in particular, xkl
= 0, we have

pl∑
j=1

µl,jx
[l,j]
kl

=

pl∑
j=1

µl,jXkl
α

[l]
j = Xkl

(
pl∑

j=1

µl,jα
[l]
j

)
= 0.(16)

Since the vectors α
[l]
j , j = 1, . . . , pl, form the basis of the space Im Skl

, where Skl

is the same as Sk in the proof of Lemma 3 (here with k = kl), and at the same
time by (16)

pl∑
j=1

µl,jα
[l]
j ∈ Ker Xkl

,

we have
∑pl

j=1 µl,jα
[l]
j = 0 because of Lemma 2, which means that that µl,j =

0, j = 1, . . . , pl, since the vectors α
[l]
j are linearly independent. Repeating the

previous argument for k = kl−1, . . . , k = k1, we find that µi,j = 0, i = 1, . . . , l,
j = 1, . . . , pi, which contradicts our assumption that the linear combination (14)
is nontrivial. Therefore, x 6= 0 in the admissible pair given by (15).

Now, let z[κ] = (x[κ], u[κ]), z[`] = (x[`], u[`]), κ, ` ∈ {1, . . . ,m}, be two admissible
pairs constructed by (12). Then substituting into the formula in Lemma 1 we
find that

F(z[κ], z[`]) =

{
0, κ 6= `,

(x
[`]
0 )T u

[`]
0 , κ = `.

(17)

Consequently, for z = (x, u) given by (15)

F(z) = F( m∑

`=1

µlz
[`]

)
=

m∑

κ,`=1

µκµ`F(z[κ]; z[`])

=

(
m∑

`=1

µ`x
[`]
0

)T (
m∑

`=1

µ`u
[`]
0

)
= xT

0 u0 = 0,

since x0 = 0 by (14). This contradicts the positivity of F .
Suppose now that at least one of the qi, i = i, . . . , l, is positive. Then we have

for this index
F(x[i,j], u[i,j]) = (x

[i,j]
0 )T u

[i,j]
0 + (β

[i]
j )T Pki

β
[i]
j ,

j = 1, . . . , pi, and we have admissible pairs defined both by (12) and (13). In the
previous part of the proof we have already computed F(z[κ]; z[`]) for admissible
pairs given by (12). It remains to compute this bilinear form if one or both
admissible pairs are of the form (13). We will perform the computation in the
latter case. In the former case (i.e., one of the admissible pairs is given by (12) and
the second one by (13)), substituting into the formula in Lemma 1 we get again
(17). So, let z[κ], z[`] be two admissible pairs given (13). If they are associated
with the different focal intervals (i.e., the integers ki in (13) are different for z[κ],
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z[`]), using Lemma 1 we find again that (17) holds. Therefore, suppose finally
that z[κ], z[`] correspond to the same focal interval (ki, ki + 1). Then

F(z[κ]; z[`]) = (x
[κ]
0 )T u

[`]
0 + (x

[κ]
ki

)T{Cki−1x
[`]
ki−1 +Dki−1u

[`]
ki−1 − u

[`]
ki
}

= (x
[κ]
0 )T u

[`]
0 + (γ[κ])T Xki

Tki
β[`]

= (x
[κ]
0 )T u

[`]
0 + (β[κ])T Pki

β[`].

If κ 6= `, the vectors β[κ], β[`] are orthogonal eigenvectors of the matrix Pki
and

thus (β[κ])T Pki
β[`] = 0.

Summarizing our previous computations, for z = (x, u) given by (15) (i.e.,
x0 = 0 by (14)), we have (again with the two-indices labeling)

F(x, u) =
l∑

i=1

qi∑
j=1

(β
[i]
j )T Pki

β
[i]
j < 0,

which again contradicts the positivity of F . Note that x = {xk}N
k=1 is again non-

trivial, since for each i = 1, . . . , l the vectors α
[i]
j , γ

[i]
s , j = 1, . . . , pi, s = 1, . . . , qi,

are linearly independent (Lemma 4) and one can repeat the same argument as
used in that part of the proof where we supposed that qi = 0, i = 1, . . . , l. ¤

4. Remarks

In this last section we collect various remarks, comments and open problems
related to the results presented in the previous part of the paper.

(i) In [19, Section VII.7], one can also find a more general separation theorem
for focal points of conjoined bases of the linear Hamiltonian differential system
(7) than that mentioned in Remark 1. Namely, under the assumption of identical
normality, the numbers of focal points of two conjoined bases in any interval differ
by at most n. This statement is based on the concept of broken extremals and its
proof substantially uses the assumption of identical normality. Since we impose
no normality assumption on the symplectic difference system (1), we were able
to prove a separation theorem only in the (weaker) form presented here.

(ii) The quadratic functional F is a “normal” quadratic form which has its
index and nullity on the finitedimensional space of admissible (x, u) (more pre-
cisely, one can speak about admissible x only since the value of the functional F
actually does not depend on u which appears in the equation of motion (3), see
e.g. [15]). A natural question is what is the relationship between this index and
nullity of the quadratic form F and the number of focal points of a suitably cho-
sen conjoined basis (depending on the boundary condition for admissible pairs).

(iii) In [8, Theorem 1, (iv) and (ix)], it is claimed that the principal solution of
(1) at k = 0 has no focal point in (0, N +1] if and only if the principal solution of
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this system at k = N + 1 (i.e., the solution given by XN+1 = 0, UN+1 = −I) has
no focal point in [0, N + 1), where the “no focal point” of the principal solution
at N + 1 is defined by

Ker Xk ⊆ Ker Xk+1 and Xk+1X
†
kBT

k ≥ 0 for k = 0, . . . , N.

A natural question is whether it can be formulated some statement about the
number of focal points of the principal solutions at k = 0 and k = N + 1. A
statement of this kind would be a discrete analogue of the statement for (7) that
the number of focal points in (a, b] of the conjoined basis given by X(a) = 0,
U(a) = I is the same as the number of focal points in [a, b) of the basis given by
X(b) = 0, U(b) = −I.

(iv) The separation theorem for (7) mentioned in the part (i) has a nice geomet-
rical interpretation using the concepts of trigonometric system and trigonometric
transformation of Hamiltonian differential systems, see [4, 14, 11]. The discrete
trigonometric symplectic systems were introduced in [3] and the discrete trigono-
metric transformation (i.e., a possibility to transform any symplectic difference
system (1) into a trigonometric difference system by a transformation preserving
focal points) was established in [9]. A subject of the present investigation is to
find a geometric interpretation of the concept of the focal point of (1) in terms of
the eigenvalues of certain unitary matrices, similarly as it is done for (7) in the
above mentioned papers.
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