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ENERGY NORM BASED A POSTERIORI ERROR ESTIMATION

FOR BOUNDARY ELEMENT METHODS IN TWO DIMENSIONS

C. ERATH, S. FERRAZ-LEITE, S. FUNKEN, AND D. PRAETORIUS

Abstract. A posteriori error estimation is an important tool for reliable and efficient
Galerkin boundary element computations. We analyze the mathematical relation between
the h-h/2-error estimator from [8], the two-level error estimator from [15], and the averaging
error estimator from [3]. We essentially show that all of these are equivalent, and we
extend the analysis of [15] to cover adaptive mesh-refinement. Therefore, all error estimators
give lower bounds for the Galerkin error, whereas upper bounds depend crucially on the
saturation assumption. As model example serve first-kind integral equations in 2D with
weakly singular integral kernel.

Dedicated to Professor Ernst P. Stephan on the occasion of his 60th birthday

1. Introduction and Model Example

We consider Symm’s integral equation

V φ = f on Γ(1.1)

for a relatively open subset Γ ⊆ ∂Ω of the boundary of a bounded Lipschitz domain Ω ⊆ R2.
Here, V φ denotes the simple-layer potential which reads, e.g., for the Laplace operator

V φ(x) = − 1

2π

∫

Γ

log |x− y|φ(y) dsy for x ∈ Γ,(1.2)

where
∫
Γ
ds denotes the integration over the surface piece Γ. Provided diam(Ω) < 1, the

operator V : H̃−1/2(Γ) → H1/2(Γ) is a symmetric and elliptic isomorphism between the

fractional-order Sobolev space H := H̃−1/2(Γ) and its dual H∗ = H1/2(Γ). It thus provides
an equivalent scalar product 〈〈· , ·〉〉 on the energy space H defined by 〈〈φ, ψ〉〉 := 〈V φ, ψ〉,
where the duality brackets 〈· , ·〉 extend the L2(Γ)-scalar product. We denote by ||| · ||| the
induced energy norm.

Given f ∈ H∗, the unique solution φ ∈ H of (1.1) solves

〈〈φ, ψ〉〉 = 〈f , ψ〉 for all ψ ∈ H.(1.3)

Let Th = {T1, . . . , TN} be a triangulation of Γ (with local mesh-size h). Then, the lowest-
order Galerkin method is to find a Th-piecewise constant function φh ∈ Xh := P0(Th) which
solves

〈〈φh , ψh〉〉 = 〈f , ψh〉 for all ψh ∈ Xh.(1.4)

We stress the Galerkin orthogonality

〈〈φ− φh , ψh〉〉 = 0 for all ψh ∈ Xh,(1.5)
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which in fact characterizes the discrete solution φh ∈ Xh.
The goal of this work is to contribute to the simple and accurate a posteriori estimation

for the error |||φ− φh||| in the energy norm: An a posteriori error estimator is a computable
quantity η which does not depend on the (in general unknown) exact solution φ but on a
computed discrete solution φh and which estimates the error |||φ− φh||| in the energy norm.
We aim to provide estimates

C−1
eff η ≤ |||φ− φh||| ≤ Crel η(1.6)

which are referred to as efficiency (lower estimate) and reliability (upper estimate) of η,
respectively. The constants Ceff , Crel may not depend on φ or φh, but on the given right-
hand side f ∈ H∗ as well as weakly on Th, e.g., on the local mesh-ratio κ(Th). Moreover,
two error estimators η and µ are said to be equivalent provided that

C−1
low µ ≤ η ≤ Chigh µ(1.7)

with appropriate constants Clow, Chigh > 0 which only depend on κ(Th).
The content of the paper is organized as follows: The analysis of all error estimators

introduced below, is based on so-called localization techniques which allow to replace the
energy norm ||| · ||| by a weighted L2-norm ‖h1/2(·)‖L2(Γ). Notations, preliminaries, and the
localization arguments are collected in Section 2. Section 3 is concerned with error estima-
tion by space enrichment. In the simplest case, we are dealing with the h-h/2-based error
estimation [8]: Let φh/2 ∈ Xh/2 := P0(Th/2) be an improved Galerkin solution, where the
triangulation Th/2 is obtained from a uniform refinement of Th, i.e. Xh ⊂ Xh/2. Then,

ηSH = |||φh/2 − φh|||(1.8)

yields an efficient error estimator with efficiency constant Ceff = 1. Reliability of which
holds under the saturation assumption (3.3) discussed below. The localization techniques of
Section 2 provide an equivalent error estimator

µSH = ‖h1/2(φh/2 − φh)‖L2(Γ)(1.9)

which can be employed for an indicator-based adaptive mesh-refinement. Section 4 treats
the two-level error estimator introduced by Stephan and coworkers [15]: For an element
Tj ∈ Th, let χj denote the corresponding characteristic function. Choosing another function
ϕj ∈ Xh/2 which is orthogonal to χj in the L2-sense and which satisfies supp(ϕj) = Tj, we
obtain an L2-orthogonal basis of Xh/2. With the one-dimensional space Xh,j := span{ϕj}
and Gh,j the Galerkin projection onto Xh,j, the two-level error estimator reads

ηTH =
( ∑

Tj∈Th

η2
TH,j

)1/2

, where ηTH,j =
|〈f − V φh , ϕj〉|

|||ϕj|||
.(1.10)

With the help of the localization techniques of Section 2, we show equivalency of ηTH and
ηSH . Our proof generalizes the arguments of [15] from uniform to adaptively generated
meshes. Finally, Section 5 recalls the averaging-based error estimator

ηA = |||φh/2 −G
(1)
h φh/2|||(1.11)

from [3, 4], where G
(1)
h denotes the Galerkin projection onto the Th-piecewise affine but

discontinuous functions X
(1)
h := P1(Th). The localization techniques of Section 2 provide the
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equivalent error estimator

µ̃A = ‖h1/2(φh/2 −Π
(1)
h φh/2)‖L2(Γ),(1.12)

where Π
(1)
h is the L2-projection onto X

(1)
h . Again, this implementationally simple error

estimator can be used to steer an adaptive mesh-refining algorithm. Under rather strong
assumptions discussed below, ηA (and thus µ̃A) is a reliable and efficient error estimator for
the improved Galerkin error |||φ−φh/2|||. In this paper, we provide an elementary proof that ηA
is always equivalent to ηSH . This may be seen as a first step to weaken the assumptions of [3,
4] and to mathematically explain the good performance of ηA in numerical computations.
Numerical experiments in Section 6 conclude the work. As model examples serve the first-
kind integral equations with weakly singular kernel which arise from the Dirichlet problems
of the Laplace, the Lamé, and the Stokes problem, respectively.

2. Preliminaries and Localization of H̃−1/2-norm

The analysis below only makes use of the following assumptions: We assume that 〈〈· , ·〉〉 is

a given scalar product on H̃−1/2(Γ) which induces an equivalent norm ||| · ||| on H̃−1/2(Γ).
This situation is met for several first-kind integral equations, which arise from elliptic PDEs.
Other examples — besides the Laplace equation from the introduction — are given in the
numerical experiments below. We then consider a variational formulation (1.3) for given

data f ∈ H1/2(Γ). According to Riesz’ theorem, there is a unique solution φ ∈ H̃−1/2(Γ).

With a conforming discrete space Xh ⊂ H̃−1/2(Γ), we consider the Galerkin method (1.4).

2.1. Galerkin Discretization. The focus of this work is on the lowest-order Galerkin
scheme, where Xh denotes the space P0(Th) of all Th-piecewise constant functions, where Th
is a given triangulation Th of Γ. Here, triangulation means only that Th = {T1, . . . , TN} is a

finite set of connected and relatively open subsets of Γ such that Γ =
⋃N
j=1 T j . For the ease

of presentation, we assume that the elements Tj are affine boundary pieces. We define the
local mesh-width by

h ∈ L∞(Γ), h|Tj
:= hj := sup{|x− y| : x, y ∈ Tj}.(2.1)

Moreover, the local mesh-ratio is given by

κ(Th) := max{hj/hk : Tj , Tk ∈ Th with T j ∩ T k 6= ∅},(2.2)

i.e. by the maximal quotient of the elements-widths of two neighbouring elements. Refine-
ment of an element Tj ∈ Th means that Tj is split into two new elements of half length.
Since the error estimates below depend on κ(Th), our implementation always ensures that
κ(Th) ≤ 2, i.e. an element Tj is automatically marked for refinement provided that it has a
neighbour Tk with hj > 2hk.

2.2. Notational Conventions. If not stated otherwise, we use the following notation,

Xh := P0(Th), Xh/2 := P0(Th/2), and X
(1)
h := P1(Th),(2.3)

where the triangulation Th/2 is obtained from a uniform refinement of Th. Moreover, in
Section 3 and 4, we use

X̂h ∈ {Xh/2, X
(1)
h },(2.4)
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i.e. X̂h denotes either Xh/2 or X
(1)
h . The Galerkin solutions with respect to Xh, Xh/2,

X
(1)
h , and X̂h are denoted by φh, φh/2, φ

(1)
h , and φ̂h, respectively. Throughout, Galerkin and

L2-projections are denoted by

G and Π,(2.5)

respectively. The indices indicate the corresponding space, e.g. G
(1)
h denotes the Galerkin

projection onto X
(1)
h and Πh/2 denotes the L2-projection onto Xh/2.

Altogether, we shall introduce fourteen different error estimators below. Throughout, the
notation of the a posteriori error estimators

η, η̃, µ, and µ̃(2.6)

therefore uses the following convention: η denotes an error estimator which is based on the
energy norm, whereas µ denotes an error estimator which is based on an h1/2-weighted L2-
norm. Moreover, η and µ need the computation of a certain Galerkin projection G, whereas
η̃ and µ̃ are based on L2-projections Π, c.f. the definition of the averaging-based error
estimators ηA in (5.2), η̃A in (5.8), and µA as well as µ̃A in (5.9). The subscript indicates
the type of error estimator, e.g. ηA shows that this error estimator is based on averaging.

2.3. Localization of H̃−1/2H̃−1/2H̃−1/2-norm. The first lemma provides a localization of the energy

norm for discrete functions ψh ∈ L2(Γ). Since ||| · ||| is an equivalent norm on H̃−1/2(Γ),
this localization is naturally given in terms of a mesh-size weighted L2-norm. The inverse
estimate (2.7) is proven in [9]. The approximation estimates (2.8)–(2.9) are taken from [3].

Lemma 2.1. (i) For any discrete function ψh ∈ Pp(Th) holds the inverse estimate

‖h1/2ψh‖L2(Γ) ≤ C1|||ψh|||,(2.7)

where the constant C1 > 0 only depends on Γ, the polynomial degree p ≥ 0, and the local
mesh-ratio κ(Th).
(ii) Let Xh be a finite dimensional subspace of L2(Γ) which contains at least P0(Th), and let
Πh denote the L2-projection onto Xh. Then,

|||ψ − Πhψ||| ≤ C2 min
{
‖h1/2ψ‖L2(Γ), ‖h1/2(ψ −Πhψ)‖L2(Γ)

}
for all ψ ∈ L2(Γ),(2.8)

where the constant C2 > 0 only depends on Γ but not on the triangulation Th.
(iii) Under the assumptions of (ii), let Gh be the Galerkin projection onto Xh. Then,

|||ψ −Ghψ||| ≤ C2 min
{
‖h1/2ψ‖L2(Γ), ‖h1/2(ψ −Ghψ)‖L2(Γ)

}
for all ψ ∈ L2(Γ)(2.9)

with the constant C2 from (ii).

Sketch of Proof. The local inverse estimate (2.7) is proven in [9, Proposition 2.9] in the form

‖hαψh‖L2(Γ) ≤ C̃1‖ψh‖ eH−α(Γ) for all ψh ∈ Pp(Th),

where C̃1 depends only on α ≥ 0, p ≥ 0, and κ(Th). For α = 1/2, norm equivalence on

H̃−1/2(Γ) proves (2.7). The local approximation estimate from [3, Theorem 4.1] reads

‖ψ −Πhψ‖ eH−α(Γ) ≤ C̃2 ‖hαψ‖L2(Γ) for all ψ ∈ L2(Γ),
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where the constant C̃2 depends only on α ≥ 0. For α = 1/2, norm equivalence on H̃−1/2(Γ)
leads to

|||ψ −Πhψ||| ≤ C2‖h1/2ψ‖L2(Γ) for all ψ ∈ L2(Γ).(2.10)

The strengthened form (2.8) is obtained by simple postprocessing: Note that the projection
property Π2

h = Πh implies Ψ := (1 − Πh)ψ = (1 − Πh)
2ψ = (1 − Πh)Ψ for all ψ ∈ L2(Γ).

Applying (2.10) to Ψ ∈ L2(Γ), we obtain

|||ψ − Πhψ||| = |||Ψ− ΠhΨ||| ≤ C2‖h1/2Ψ‖L2(Γ) = C2‖h1/2(ψ − Πhψ)‖L2(Γ).(2.11)

The combination of (2.10)–(2.11) proves (2.8). To prove (2.9), note that the best approxi-
mation property of the Galerkin projection yields, for ψ ∈ L2(Γ),

|||ψ −Ghψ||| ≤ |||ψ −Πhψ||| ≤ C2‖h1/2ψ‖L2(Γ).(2.12)

By use of G2
h = Gh, we may apply the same arguments as for the L2-projection Πh, to

derive (2.9) from (2.12). �

3. Error Estimation by Space Enrichment

Let Xh and X̂h be discrete subspaces of H̃−1/2(Γ) with corresponding Galerkin solutions

φh ∈ Xh and φ̂h ∈ X̂h, respectively. We assume thatXh ⊂ X̂h. Then, the best approximation
property of the Galerkin solution with respect to the energy norm yields

|||φ− φ̂h||| ≤ |||φ− φh|||.(3.1)

We now use the difference of the two Galerkin solutions

ηS := |||φ̂h − φh|||(3.2)

to estimate the error |||φ− φh|||. The Galerkin orthogonality (1.5) for X̂h yields

|||φ− φh|||2 = |||φ− φ̂h|||2 + |||φ̂h − φh|||2 = |||φ− φ̂h|||2 + η2
S

and thus ηS ≤ |||φ − φh|||. This proves efficiency of ηS with Ceff = 1. The reliability of ηS
is usually proven with the help of the saturation assumption, which is a strengthened
version of (3.1) and reads

|||φ− φ̂h||| ≤ qS |||φ− φh||| with some uniform constant qS ∈ (0, 1).(3.3)

Under this assumption, we obtain |||φ−φh|||2 = |||φ− φ̂h|||2 + η2
S ≤ q2

S |||φ−φh|||2 + η2
S and thus

reliability

|||φ− φh||| ≤
1√

1− q2
S

ηS.(3.4)

We state these elementary observations in the following proposition.

Proposition 3.1. (i) The error estimator ηS is always efficient with Ceff = 1.

(ii) Under the saturation assumption (3.3), ηS is reliable with Crel = 1/
√

1− q2
S. �

Clearly, the space X̂h has to be sufficiently larger than Xh to allow and guarantee (3.3).

In the following, we consider two canonical choices for the enriched space X̂h: First, the
h-h/2-strategy which has been studied in [8]. Let Th = {T1, . . . , TN} be a triangulation of Γ
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and Th/2 be obtained from a uniform refinement of Th. We then may consider the discrete
spaces

Xh := P0(Th) and X̂h := P0(Th/2).(3.5)

Alternatively, we might use the analogous p-(p+ 1)-strategy, where

Xh := P0(Th) and X̂h := P1(Th).(3.6)

For either of the two choices, the error estimator ηS suffers from two things: First, the energy
norm ||| · ||| does not provide information, where the mesh Th should be refined to decrease the
error most efficiently. Second, we do not only have to compute the Galerkin approximation

φh with respect to Xh but even the computationally more expensive Galerkin solution φ̂h.

A numerical algorithm clearly returns φ̂h. According to (3.1), this is a better approximation
of the exact solution φ than φh.

A remedy for both is given by the following theorem which is proven in [8] for the h-h/2-
strategy (3.5). It essentially states the following: First, the nonlocal energy norm is replaced

by an h-weighted L2-norm. Second, we might replace φh by the L2-projection Πhφ̂h of the

more accurate Galerkin solution φ̂h. Instead of solving a linear system with dense Galerkin

matrix to obtain φh, we thus only compute Πhφ̂h, which is done in real linear complexity.

Theorem 3.2. Let Xh and X̂h be given by either (3.5) or (3.6). Besides the error estimator
ηS, we define

η̃S := |||φ̂h − Πhφ̂h|||(3.7)

as well as the h-weighted L2-norm based error estimators

µS := ‖h1/2(φ̂h − φh)‖L2(Γ) and µ̃S := ‖h1/2(φ̂h −Πhφ̂h)‖L2(Γ),(3.8)

where Πh denotes the L2-projection onto Xh. With the constants C1, C2 > 0 of Lemma 2.1,
there hold the estimates

µ̃S ≤ µS ≤
√

2C1ηS and ηS ≤ η̃S ≤ C2 µ̃S.(3.9)

Therefore, all error estimators are always efficient, and reliability holds under the saturation
assumption (3.3).

Proof. Let Gh denote the Galerkin projection onto Xh. Note that Ghφ̂h = φh according

to Xh ⊂ X̂h. Therefore the approximation property of the Galerkin projection and the
approximation estimate (2.8) prove ηS ≤ η̃S ≤ C2µ̃S. The estimate µS ≤

√
2C1ηS follows

from the inverse estimate (2.7) applied for X̂h, where the additional factor
√

2 arrises in case
of the h-h/2-strategy. Finally, recall that according to the choice of Xh, the L2-orthogonal
projection onto Xh is even the Th-elementwise orthogonal projection. This implies

hTj
‖φ̂h − Πhφ̂h‖2

L2(Tj)
≤ hTj

‖φ̂h −Ghφ̂h‖2
L2(Tj)

for all Tj ∈ Th.
Summing these estimates over all elements Tj ∈ Th, we conclude µ̃S ≤ µS. �

Remark 1. (i) The estimate ηS ≤ η̃S holds whenever Xh ⊆ X̂h ⊂ L2(Γ).

(ii) The estimate µS ≤
√

2C1ηS holds for any spaces Xh and X̂h as long as X̂h ⊆ Pp(Th) for
some polynomial degree p ≥ 0 and some triangulation Th. The constant C1 then depends on
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Element Tj Function ϕj for bXh = P
0(Th/2) Function ϕj for bXh = P

1(Th)

Figure 1. The space X̂h, which is either P0(Th/2) or P1(Th) is decomposed into the

L2-orthogonal sum of Xh,0 = Xh = P0(Th) and the one-dimensional spaces Xh,j :=
span{ϕj}. In either case, the function ϕj is orthogonal to the characteristic function

χTj and has local support supp(ϕj) ⊆ Tj, and we assume that ϕj has minimum −1 and

maximum +1.

the local mesh-ratio of Th.
(ii) The estimates ηS ≤ C2µS and η̃S ≤ C2µ̃S hold provided that P0(Th) ⊆ Xh.
(iii) Only the estimate µ̃S ≤ µS depends on the special choice of Xh. �

Remark 2. For the finite element method and the h-h/2-strategy (3.5), the saturation
assumption (3.3) can be proven under some mild conditions on the local mesh refinement [7].
However, we stress that the saturation assumption — although observed in praxis, cf. [8] —
has not been proven for the boundary element method, yet. �

The error estimator µ̃S can be written in the form

µ̃S =
( N∑

j=1

µ̃2
S,j

)1/2

,(3.10)

where the local refinement indicators µ̃S,j := h
1/2
Tj
‖φ̂h − Πhφ̂h‖L2(Tj) can be used for element

marking in the following adaptive mesh-refining algorithm.

Algorithm 3.3. Input: Initial mesh Th, tolerance τ > 0, adaptivity parameter 0 ≤ θ ≤ 1.

(i) Compute Galerkin solution φ̂h ∈ X̂h and L2-projection Πhφ̂h ∈ Xh.
(ii) Stop provided that η̃S ≤ τ .
(iii) Otherwise, compute refinement indicators µ̃S,j for all Tj ∈ Th = {T1, . . . , TN}.
(iv) Mark elements Tj ∈ Th with µ̃S,j ≥ θmax{µ̃S,k : k = 1, . . . , N} for refinement.
(v) Refine all marked elements, generate a new mesh Th (satisfying the K-mesh property

i.e. κ(Th) ≤ 2), and goto (i)

Output: Galerkin approximation φ̂h ∈ X̂h and error estimator η̃S, which is, however, sup-

posed to control only the Galerkin error |||φ− φh||| instead of |||φ− φ̂h|||. �

4. Two-Level Error Estimation

Let Th = {T1, . . . , TN} be a triangulation of Γ. Assume that the discrete spaces Xh and

X̂h are either given by (3.5) or by (3.6). Let φh ∈ Xh and φ̂h ∈ X̂h be the corresponding
Galerkin solutions.
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For each element Tj ∈ Th, we choose a function ϕj ∈ X̂h\{0} with supp(ϕj) ⊆ Tj and∫
Tj
ϕj ds = 0, cf. Figure 1. Let Xh,0 := Xh and Xh,j := span{ϕj} for j = 1, . . . , N . We

denote with Gh,j and Πh,j the Galerkin projection and L2-projection onto Xh,j, respectively.

Lemma 4.1. The spaces Xh,j are pairwise L2-orthogonal for all j = 0, . . . , N . In particular,

the L2-projection Π̂h onto X̂h can be decomposed as Π̂h =
∑N

j=0 Πh,j.

Proof. We consider B := {χT1, . . . , χTN
, ϕ1, . . . , ϕN}. For 1 ≤ j < k ≤ N , orthogonality of

ϕj and ϕk follows from supp(ϕℓ) ⊆ Tℓ. Moreover,
∫
Tℓ
ϕj ds = 0 proves that ϕj is orthogonal

to all characteristic functions χTℓ
. Therefore, B is an L2-orthogonal and hence linearly

independent subset of X̂h. Clearly, #B = 2N = dim X̂h and span(B) ⊆ X̂h. Altogether,

B thus is an L2-orthogonal basis of X̂h. The claims now follow from elementary Linear
Algebra. �

As a first consequence, we derive a representation of the error estimator µ̃S from the
previous section.

Proposition 4.2. With respect to the hierarchical basis, the error estimator µ̃S reads

µ̃S =
( N∑

j=1

hTj
‖Πh,jφ̂h‖2

L2(Tj)

)1/2

(4.1)

Moreover, there holds

‖Πh,jφ̂h‖L2(Tj) = ‖φ̂h − Πhφ̂h‖L2(Tj) =
|〈φ̂h , ϕj〉|
‖ϕj‖L2(Tj)

for all j = 1, . . . , N.(4.2)

Proof. Using the orthogonal decomposition of Π̂h from Lemma 4.1, we obtain

φ̂h −Πhφ̂h = Π̂h(φ̂h − Πhφ̂h) =

N∑

j=1

Πh,j(φ̂h −Πhφ̂h) =

N∑

j=1

Πh,jφ̂h,

where the term for j = 0 vanishes since Πh,0 = Πh. Together with supp(Πh,jφ̂h) ⊆ Tj , this
yields (4.1) as well as the first equality in (4.2). The second equality in (4.2) follows from
the fact that an orthogonal projection can explicitly be written in terms of an orthogonal
basis. In our case, the L2-projection Πh,j onto the one-dimensional space Xh,j = span{ϕj}
simply reads

Πh,jψ =
〈ψ , ϕj〉
‖ϕj‖2

L2(Tj)

ϕj for all ψ ∈ L2(Γ).

This concludes the proof. �

Lemma 4.3. For any function ψ̂h ∈ X̂h holds |||Πhψ̂h||| ≤ C3 |||ψ̂h|||, where the constant
C3 > 0 only depends on the constants C1, C2 > 0 of Lemma 2.1.

Proof. Note that |||(1 − Πh)ψ̂h||| ≤ C2‖h1/2ψ̂h‖L2(Γ) ≤
√

2C1C2|||ψ̂h|||, where the pessimistic

factor
√

2 arrises in case of the h-h/2-strategy (3.5). Therefore, the triangle inequality proves

|||Πhψ̂h||| ≤ (1 +
√

2C1C2)|||ψ̂h|||. �
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Lemma 4.4. For any functions ψj ∈ Xh,j holds

C−1
4

( N∑

j=1

|||ψj|||2
)1/2

≤
∣∣∣
∣∣∣
∣∣∣
N∑

j=1

ψj

∣∣∣
∣∣∣
∣∣∣ ≤ C5

( N∑

j=1

|||ψj|||2
)1/2

,(4.3)

where the constants C4, C5 > 0 only depend on the constants C1, C2 > 0 of Lemma 2.1.

Proof. Lemma 4.1 implies ψj = (1−Πh)ψj . With supp(ψj) ⊆ Tj , we thus infer

|||ψj||| = |||(1− Πh)ψj||| ≤ C2‖h1/2ψj‖L2(Γ) = C2‖h1/2ψj‖L2(Tj).

Summing these estimates over all j = 1, . . . , N , we obtain

N∑

j=1

|||ψj|||2 ≤ C2
2

N∑

j=1

‖h1/2ψj‖2
L2(Tj)

= C2
2

∥∥∥h1/2

N∑

j=1

ψj

∥∥∥
2

L2(Γ)
≤ 2C2

1C
2
2

∣∣∣
∣∣∣
∣∣∣
N∑

j=1

ψj

∣∣∣
∣∣∣
∣∣∣
2

,

where we have used the local inverse estimate for ψ̂h =
∑N

j=1 ψj ∈ X̂h in the final step.

The converse inequality follows from the same type of arguments: With
∑N

j=1 ψj = (1 −
Πh)

∑N
j=1 ψj , we estimate

∣∣∣
∣∣∣
∣∣∣
N∑

j=1

ψj

∣∣∣
∣∣∣
∣∣∣
2

≤ C2
2

∥∥∥h1/2

N∑

j=1

ψj

∥∥∥
2

L2(Γ)
= C2

2

N∑

j=1

‖h1/2ψj‖2
L2(Tj ) ≤ 2C2

1C
2
2

N∑

j=1

|||ψj|||2,

where we have used that the supports supp(ψj) ⊆ Tj are pairwise disjoint. �

Proposition 4.5. For any function ψ̂h ∈ X̂h holds

C−1
6 |||ψ̂h||| ≤

( N∑

j=0

|||Gh,jψ̂h|||2
)1/2

≤ C7 |||ψ̂h|||(4.4)

as well as

C−1
7 |||ψ̂h||| ≤

( N∑

j=0

|||Πh,jψ̂h|||2
)1/2

≤ C6 |||ψ̂h|||,(4.5)

where the constants C6, C7 > 0 only depend on the constants C3, C5 > 0 of Lemma 4.3 and
Lemma 4.4.

Proof. According to Lemma 4.1 holds ψ̂h =
∑N

j=0 Πh,jψ̂h. Therefore, the Cauchy inequality
yields

|||ψ̂h|||2 =

N∑

j=0

〈〈ψ̂h ,Πh,jψ̂h〉〉 =

N∑

j=0

〈〈Gh,jψ̂h ,Πh,jψ̂h〉〉

≤
( N∑

j=0

|||Gh,jψ̂h|||2
)1/2( N∑

j=0

|||Πh,jψ̂h|||2
)1/2

The latter estimate shows that the upper estimate in (4.4) provides the lower estimate in (4.5)
and vice versa. It thus only remains to prove the two upper bounds. We start with the upper
bound in (4.5): Note that the L2(Γ)-projection Πh,j onto Xh,j is local in the sense that it

9



is even the L2(Tj)-projection. Therefore, ‖h1/2Πh,jψ̂h‖L2(Tj) ≤ ‖h1/2ψ̂h‖L2(Tj). The same

arguments as in the proof of Lemma 4.4 now lead to
∑N

j=1 |||Πh,jψ̂h|||2 ≤ C2
5 |||ψ̂h|||2. Together

with Lemma 4.3, we thus obtain the upper bound

N∑

j=0

|||Πh,jψ̂h|||2 ≤ max{C3, C5}2 |||ψ̂h|||2

and consequently the lower bound |||ψ̂h|||2 ≤ max{C3, C5}2
∑N

j=0 |||Gh,jψ̂h|||2. It remains to

prove the upper bound in (4.4): A triangle inequality |||∑N
j=0 Gh,jψ̂h||| ≤ |||Gh,0ψ̂h|||+|||

∑N
j=1 Gh,jψ̂h||| ≤√

2
(
|||Gh,0ψ̂h|||2 + |||∑N

j=1 Gh,jψ̂h|||2
)1/2

and Lemma 4.4 prove

∣∣∣
∣∣∣
∣∣∣
N∑

j=0

Gh,jψ̂h

∣∣∣
∣∣∣
∣∣∣ ≤

√
2 max{1, C5}

( N∑

j=0

|||Gh,jψ̂h|||2
)1/2

.

Therefore, the symmetry of the Galerkin projection yields

N∑

j=0

|||Gh,jψ̂h|||2 =

N∑

j=0

〈〈Gh,jψ̂h , ψ̂h〉〉 ≤
∣∣∣
∣∣∣
∣∣∣
N∑

j=0

Gh,jψ̂h

∣∣∣
∣∣∣
∣∣∣|||ψ̂h|||.

The combination of the last two estimates proves the upper bound

N∑

j=0

|||Gh,jψ̂h|||2 ≤
√

2 max{1, C5}2 |||ψ̂h|||2

and consequently even the lower bound |||ψ̂h|||2 ≤
√

2 max{1, C5}2
∑N

j=0 |||Πh,jψ̂h|||2. �

The following theorem has been proven by Mund-Stephan-Weiße [15] for uniform
mesh-refinement in 2D and 3D. We now generalize their proof to the case of adaptive mesh-
refinement in 2D.

Theorem 4.6. With the constants C6, C7 > 0 of Proposition 4.5, there holds

C−1
6 ηS ≤

( N∑

j=1

|||Gh,j(φ̂h − φh)|||2
)1/2

≤ C7 ηS,(4.6)

where ηS denotes the error estimator from the previous section. In particular, with the refine-

ment indicators ηT,j := |||Gh,j(φ̂h − φh)|||, the two-level error estimator ηT :=
( ∑N

j=1 η
2
T,j

)1/2

is equivalent to ηS. Therefore, ηT is always efficient, and reliability of ηT holds under the
saturation assumption (3.3). Finally, ηT,j can be written as

ηT,j =
|〈〈φ̂h − φh , ϕj〉〉|

|||ϕj|||
=
|〈f − V φh , ϕj〉|

|||ϕj|||
for j = 1, . . . , N.(4.7)

Proof. We simply apply Proposition 4.5 for ψ̂h = φ̂h − φh ∈ X̂h, where the term for j = 0

vanishes due to Ghφ̂h = φh. This proves (4.6), and it remains to verify (4.7): The second

equality 〈〈φ̂h − φh , ϕj〉〉 = 〈f − V φh , ϕj〉 follows from the Galerkin equations (1.3) for X̂h

10



and the definition of the energy scalar product. The first equality in (4.7) follows from the
explicit representation of the orthogonal projection Gh,j which reads

Gh,jψ =
〈〈ψ , ϕj〉〉
|||ϕj|||2

ϕj for all ψ ∈ H−1/2(Γ).

This concludes the proof. �

The adaptive mesh-refining algorithm 3.3, is slightly modified and takes now the following
form:

Algorithm 4.7. Input: Initial mesh Th, tolerance τ > 0, adaptivity parameter 0 ≤ θ ≤ 1.

(i) Compute Galerkin solution φh ∈ Xh.
(ii) Compute refinement indicators ηT,j for all Tj ∈ Th = {T1, . . . , TN}.
(iii) Stop provided that ηT :=

(∑N
j=1 η

2
T,j

)1/2 ≤ τ .

(iv) Otherwise, mark all Tj ∈ Th with ηT,j ≥ θmax{ηT,k : k = 1, . . . , N} for refinement.
(v) Refine all marked elements, generate a new mesh Th (satisfying the K-mesh property

i.e. κ(Th) ≤ 2), and goto (i)

Output: Galerkin approximation φh ∈ Xh and error estimator ηT . �

Remark 3. Compared with the error estimators of the previous section, the two-level error
estimator ηT has two mayor advantages: First, there is no overshooting in the sense that we
compute and control the Galerkin approximation φh ∈ Xh. We do not have to compute the

improved Galerkin approximation φ̂h ∈ X̂h. Nevertheless, the computation of the refinement

indicators ηTj
enforces to build the Galerkin matrix with respect to X̂h. Second, in case of

X̂h = P0(Th/2), the refinement indicators ηT,j are natural in the sense that they control the
local Galerkin error and measure the improvement if we enrich Xh by the two-level basis

function ϕj ∈ X̂h. �

5. Averaging on Large Patches

One drawback of the error estimators of Section 3 and 4 is that we have to compute the

improved Galerkin solution φ̂h ∈ X̂h, whereas the error estimates only control with the
error |||φ − φh||| for the Galerkin solution φh ∈ Xh = P0(Th). This will be different for the

error estimator discussed in this section, where X̂h = P0(Th/2) and where we aim to control

|||φ−φ̂h|||: Let Th = {T1, . . . , TN} be a given triangulation of Γ and Th/2 obtained by a uniform
refinement of Th. We use the spaces

Xh/2 := P0(Th/2) and X
(1)
h := P1(Th)(5.1)

with corresponding Galerkin solutions φh/2 ∈ Xh/2 and φ
(1)
h ∈ X

(1)
h , respectively. In a first

step, we consider the error estimator

ηA := |||φh/2 −G
(1)
h φh/2|||,(5.2)

where G
(1)
h denotes the Galerkin projection onto X

(1)
h . We stress, however, that this error

estimator is computationally challenging because of the expensive Galerkin projection G
(1)
h .

The following theorem is proven in [3, 4].
11



Theorem 5.1. The error estimator ηA satisfies

ηA − |||φ− φ
(1)
h ||| ≤ |||φ− φh/2|||.(5.3)

Moreover, under the assumption

λA := max
ψ

(1)
h ∈X

(1)
h

min
ψh/2∈Xh/2

|||ψ(1)
h − ψh/2|||
|||ψ(1)

h |||
< 1(5.4)

holds the a posteriori error estimate

|||φ− φh/2||| ≤
1√

1− λ2
A

(
ηA + |||φ− φ

(1)
h |||

)
.(5.5)

Therefore, ηA is reliable and efficient with respect to |||φ − φh/2||| up to the higher-order

Galerkin error |||φ− φ
(1)
h |||. �

The following corollary is an immediate consequence:

Corollary 5.2. With qA := |||φ− φ
(1)
h |||/|||φ− φh/2|||, there holds efficiency

ηA ≤ (1 + qA) |||φ− φh/2|||.(5.6)

Provided that λ2
A + q2

A < 1, there even holds reliability

|||φ− φh/2||| ≤
1√

1− λ2
A − qA

ηA,(5.7)

where λA denotes the constant from (5.4).

Proof. It only remains to prove (5.7): Note that λ2
A + q2

A < 1 implies qA/
√

1− λ2
A < 1 as

well as
√

1− λ2
A − qA > 0. By definition of qA, (5.5) implies

(
1− qA√

1− λ2
A

)
|||φ− φh/2||| ≤

1√
1− λ2

A

ηA,

where the constant on the left-hand side may be written as (
√

1− λ2
A − qA)/

√
1− λ2

A. �

Remark 4. We stress that neither Assumption (5.4) nor the stronger version λ2
A+ q2

A < 1
can seriously be checked in praxis. Due to Lemma 2.1, however, there holds

min
ψH∈XH

|||ψ(1)
h − ψH ||| ≤ C2‖H1/2ψ

(1)
h ‖L2(Γ) ≤ C1C2‖H/h‖1/2

L∞(Γ)|||ψ
(1)
h ||| for all ψ

(1)
h ∈ X(1)

h

as long as P0(TH) ⊆ XH . If TH is obtained from ℓ ∈ N uniform refinements of Th, there
holds ‖H/h‖L∞(Γ) = 2−ℓ. In this case, we observe

max
ψ

(1)
h ∈X

(1)
h

min
ψH∈XH

|||ψ(1)
h − ψH |||
|||ψ(1)

h |||
≤ 2−ℓ/2C1C2 < 1

for ℓ sufficiently large. The numerical experiments in [3, 4] give experimental evidence that
ℓ = 1, i.e. H = h/2, might be sufficient. �

Remark 5. (i) For a Th-piecewise smooth exact solution φ ∈ H1+ε(Th) and uniform mesh-

refinement, the Galerkin error |||φ − φ
(1)
h ||| is of order O(h3/2+ε) and hence of higher order
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when compared to |||φ− φh/2||| = O(h3/2).
(ii) The numerical experiments of [3, 4], show that, even for a nonsmooth exact solution φ,
there holds qA < 1, i.e. it pays to use higher-order elements on a coarser mesh if compared to
lower-order elements on a finer mesh. Moreover, for adaptive mesh-refinement, one observes
convergence qA → 0.
(iii) In all numerical experiments from [3, 4], we observe efficiency and reliability of ηA. �

The same arguments as in the proof of Theorem 3.2 apply to the localization of the
averaging error estimator ηA. The following theorem is already stated in [4, Theorem 6.2].

Theorem 5.3. Besides the averaging error estimator ηA, we define

η̃A := |||φh/2 − Π
(1)
h φh/2|||(5.8)

as well as the h-weighted L2-norm based error estimators

µA := ‖h1/2(φh/2 −G
(1)
h φh/2)‖L2(Γ) and µ̃A := ‖h1/2(φh/2 − Π

(1)
h φh/2)‖L2(Γ),(5.9)

where Π
(1)
h denotes the L2-projection onto X

(1)
h . With the constants C1, C2 > 0 of Lemma 2.1,

there hold the estimates

µ̃A ≤ µA ≤
√

2C1ηA and ηA ≤ η̃A ≤ C2 µ̃A.(5.10)

and thus equivalency of the error estimators ηA, η̃A, µA, and µ̃A. �

As in Section 3, the error estimator µ̃A can be written in the form

µ̃A =
( N∑

j=1

µ̃2
A,j

)1/2

,(5.11)

where the local refinement indicators µ̃A,j := h
1/2
Tj
‖φh/2 − Π

(1)
h φh/2‖L2(Tj) can be used for

element marking in an adaptive mesh-refining strategy. The following adaptive algorithm is
proposed in [3] and performs well in practice.

Algorithm 5.4. Input: Initial mesh Th, tolerance τ > 0, adaptivity parameter 0 ≤ θ ≤ 1.

(i) Refine mesh Th uniformly to obtain Th/2.
(ii) Compute Galerkin solution φh/2 ∈ Xh/2 and L2-projection Π

(1)
h φh/2 ∈ X(1)

h .
(iii) Stop provided that η̃A ≤ τ .
(iv) Otherwise, compute refinement indicators µ̃A,j for all Tj ∈ Th = {T1, . . . , TN}.
(v) Mark elements Tj ∈ Th with µ̃A,j ≥ θmax{µ̃A,k : k = 1, . . . , N} for refinement.
(vi) Refine all marked elements, generate a new mesh Th (satisfying the K-mesh property

i.e. κ(Th) ≤ 2), and goto (i)

Output: Galerkin approximation φh/2 ∈ Xh/2 and error estimator η̃A, which is empirically
observed to control the Galerkin error |||φ− φh/2|||. �

So far, we have seen that ηA as well as its modifications η̃A, µA, and µ̃A might be expected to
be reliable and efficient error estimators with respect to the energy error |||φ−φh/2|||. However,
the mathematical justification of this is based on the strong assumption λ2

A + q2
A < 1. Since

the error estimator ηA performs well in practice, we try to understand ηA with respect to
13



the error estimation of |||φ− φh|||. The following theorem states that ηA is equivalent to the
h-h/2-based error estimators from Section 3.

Theorem 5.5. Let φh ∈ Xh := P0(Th) be the Galerkin solution with respect to Xh, and let
Πh denote the L2-projection onto Xh. Then, there holds

ηA ≤ ηSH := |||φh/2 − φh||| as well as 2 µ̃A = µ̃SH := ‖h1/2(φh/2 −Πhφh/2)‖L2(Γ)(5.12)

with the h-h/2-based error estimators ηSH and µ̃SH from Section 3. In particular, the aver-
aging error estimators from Theorem 5.3 and the h-h/2-error estimators from Theorem 3.2
are equivalent. In particular, the averaging error estimators are always efficient with respect
to |||φ − φh|||, and reliability holds under the saturation assumption for the spaces Xh and
Xh/2.

Proof. Let Gh denote the Galerkin projection onto Xh. With the inclusion Xh ⊆ X
(1)
h , the

Pythagoras theorem implies, for ψ ∈ H̃−1/2(Γ),

|||ψ −G
(1)
h ψ|||2 + |||G(1)

h ψ −Ghψ|||2 = |||ψ −Ghψ|||2.
For ψ = φh/2, this equality reads η2

A + |||G(1)
h φh/2 − φh|||2 = η2

SH , and we obtain the first
estimate in (5.12). To prove 2 µ̃A = µ̃SH , it remains to prove that, for all elements Tj ∈ Th,

4 ‖φh/2 −Π
(1)
h φh/2‖2

L2(Tj)
= ‖φh/2 − Πhφh/2‖2

L2(Tj)

Since Πh and Π
(1)
h are even the elementwise L2-projections, the Pythagoras theorem proves

‖ψ − Π
(1)
h ψ‖2

L2(Tj)
+ ‖Π(1)

h ψ − Πhψ‖2
L2(Tj)

= ‖ψ −Πhψ‖2
L2(Tj)

,(5.13)

for all ψ ∈ L2(Γ). To compute the L2-norms, let ϕj ∈ Xh/2 and ϕ
(1)
j ∈ X(1)

h be the two-level

basis functions from Figure 1. Note that L2-orthogonality of χTj
and ϕ

(1)
j yields

‖Π(1)
h ψ −Πhψ‖2

L2(Tj)
=

〈ψ , ϕ(1)
j 〉2

‖ϕ(1)
j ‖2

L2(Tj)

.

Moreover, L2-orthogonality of χTj
and ϕj proves, for ψ ∈ P0(Th/2),

‖ψ − Πhψ‖2
L2(Tj)

=
〈ψ , ϕj〉2
‖ϕj‖2

L2(Tj)

.

With the arc-length parametrization of Tj , we may assume that Tj is just the real interval
[0, hj]. If ψ = φh/2 takes the values x on the interval [0, hj/2] and y on the interval [hj/2, hj],
elementary calculations prove

〈ψ , ϕj〉 =
hj
2

(y − x), ‖ϕj‖2
L2(Tj)

= hj and 〈ψ , ϕ(1)
j 〉 =

hj
4

(y − x), ‖ϕ(1)
j ‖2

L2(Tj)
=
hj
3
.

We therefore obtain
3

4
‖ψ − Πhψ‖2

L2(Tj)
=

3 hj
16

(y − x)2 = ‖Π(1)
h ψ − Πhψ‖2

L2(Tj)
.

Consequently, (5.13) implies

‖ψ −Π
(1)
h ψ‖2

L2(Tj)
=

1

4
‖ψ − Πhψ‖2

L2(Tj)
,
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from which we finally conclude µ̃A = µ̃SH/2. �

6. Numerical experiments

We consider three numerical examples, namely the Galerkin boundary element method for
the weakly singular integral equation for the Laplace, the Lamé, and the Stokes problem. In
all examples, we choose the interval Γ = (0, 1), the right hand side f = 1 resp. f = (1, 1)⊤,
and lowest-order boundary elements, namely P0(Th) resp. P0(Th)2. We compare uniform
mesh-refinement with an indicator-based adaptive mesh-refinement. For adaptive mesh-
refinement, we use the local contributions of the introduced µ-estimators as well as of the
two-level error estimators ηTH and ηTP . The respective adaptive strategies are stated above
in Algorithm 3.3, Algorithm 4.7, and Algorithm 5.4, respectively. The subsequent section
provides a short overview on the error estimators introduced in Section 3–5.

6.1. Overview on Introduced Error Estimators. Let Th = {T1, . . . , TN} be a given
triangulation of Γ and Th/2 be a uniform refinement of Th. Together with the spaces

Xh = P0(Th), Xh/2 = P0(Th/2), and X
(1)
h = P1(Th)

and corresponding Galerkin solutions φh, φh/2, and φ
(1)
h , respectively, we consider the follow-

ing fourteen error estimators introduced above:

• the h-h/2-based error estimators

ηSH = |||φh/2 − φh|||, µSH = ‖h1/2(φh/2 − φh)‖L2(Γ),

η̃SH = |||φh/2 − Πhφh/2|||, µ̃SH = ‖h1/2(φh/2 −Πhφh/2)‖L2(Γ),

• the h-h/2-based two-level error estimator

ηTH =
( ∑

T∈Th

η2
TH,j

)1/2

with ηTH,j = |〈f − V φh , ϕj〉|/|||ϕj|||,

• the averaging-based error estimators

ηA = |||φh/2 −G
(1)
h φh/2|||, µA = ‖h1/2(φh/2 −G

(1)
h φh/2)‖L2(Γ),

η̃A = |||φh/2 − Π
(1)
h φh/2|||, µ̃A = ‖h1/2(φh/2 −Π

(1)
h φh/2)‖L2(Γ),

• the p-(p+ 1)-based error estimators

ηSP = |||φ(1)
h − φh|||, µSP = ‖h1/2(φ

(1)
h − φh)‖L2(Γ),

η̃SP = |||φ(1)
h − Πhφ

(1)
h |||, µ̃SP = ‖h1/2(φ

(1)
h − Πhφ

(1)
h )‖L2(Γ),

• the p-(p+ 1)-based two-level error estimator

ηTP =
( ∑

T∈Th

η2
TP,j

)1/2

with ηTP,j = |〈f − V φh , ϕ
(1)
j 〉|/|||ϕ(1)

j |||.

Here, Πh denotes the L2-projection onto Xh, and Π
(1)
h and G

(1)
h denote the L2-projection

and Galerkin projection onto X
(1)
h , respectively. The two-level basis functions ϕj ∈ Xh/2

and ϕ
(1)
j ∈ X

(1)
h are shown in Figure 1 above. Note that the six global error estimators

ηSH , η̃SH , ηA, η̃A, ηSP , and η̃SP can only be employed for error estimation, whereas the local
15



contributions of the remaining eight error estimators are used for the marking step of the
adaptive mesh-refining algorithms.

We recall the equivalency of the five h-h/2-based and the four averaging based error
estimators. In particular, we have the following estimates with known constant 1,

ηA ≤ ηSH ≤ η̃SH , ηA ≤ η̃A, µ̃A/2 = µ̃SH ≤ µSH, µ̃A ≤ µA,

where the µ-estimates even hold Th-elementwise. The remaining equivalency estimates de-
pend on the inverse estimate (2.7) or the approximation estimates (2.8)–(2.9), and so does the
equivalency with ηTH . According to theory, these estimators are always efficient, whereas re-
liability holds provided that the saturation constant satisfies qSH := |||φ−φh/2|||/|||φ−φh||| < 1.
In particular, we then have the following estimate

ηA ≤ ηSH ≤ |||φ− φh||| ≤
1√

1− q2
SH

ηSH .

The analogous results for the p-(p+1)-based error estimators read as follows: All five error
estimators are equivalent and always efficient. We stress the estimates with known constant
1, namely

ηSP ≤ η̃SP and µ̃SP ≤ µSP ,

whereas the remaining equivalency estimates again depend on (2.7)–(2.9). The error estima-
tors are always efficient and moreover reliable provided that the saturation constant satisfies

qSP := |||φ− φ
(1)
h |||/|||φ− φh||| < 1, namely

ηSP ≤ |||φ− φh||| ≤
1√

1− q2
SP

ηSP .

Note that proper mesh-gradient should lead to convergence qSP → 0, since then |||φ− φh||| =
O(N−3/2) and |||φ−φ(1)

h ||| = O(N−5/2) with respect to the number N of elements. Therefore,
we expect ηSP to be asymptotically exact in case of adaptive mesh-refinement.

Finally, we stress that ηA additionally satisfies

1

1 + qA
ηA ≤ |||φ− φh/2||| ≤

1√
1− λ2

A − qA
ηA

provided that λ2
A + q2

A < 1, where qA := qSP/qSH and where λ2
A is defined in (5.4). Under

this assumption, ηA thus is a reliable and efficient estimator for the improved Galerkin error
|||φ− φh/2|||.

6.2. Numerical Aspects. The entries of the Galerkin matrices are essentially of the type
Ijk =

∫
Tj

∫
Tk

log |x − y| dsx dsy, for two elements Tj , Tk ∈ Th. We stress that these entries

can be computed analytically [1, 14]. However, we found that is an issue of stability to use
numerical quadrature for certain farfield entries. To be more precise, let mj , mk ∈ R2 be
the midpoints of the elements Tj and Tk and hj , hk > 0 the corresponding element-widths.
Provided |mj −mk| > 16 min{hj, hk}, we computed Ijk by a 16× 16 point tensorial Gauss
quadrature. Otherwise, we used the analytic formulae of [14].

Throughout, the Galerkin errors |||φ− φh||| are computed by use of the Galerkin orthogo-
nality

|||φ− φh|||2 = |||φ|||2 − |||φh|||2.
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Figure 2. Errors |||φ − φh||| and |||φ − φh/2||| in Laplace Problem 6.3 as well as the six

global error estimators for a sequence of µSH-adaptively generated meshes: We observe an

optimal grading of the mesh in the sense that the optimal order O(N−3/2) of convergence

is observed for the Galerkin error |||φ−φh|||. Moreover, we stress that |||φ−φh||| is accurately

estimated by ηSH , η̃SH , ηSP , and η̃SP , whereas ηA and η̃A are asymptotically accurate to

estimate |||φ− φh/2|||.

The squared energy norm of the discrete solution φh reads |||φh|||2 = Ax ·x with the Galerkin
matrix A and the coefficient vector x corresponding to φh. In all experiments, the exact

solution φ ∈ H̃−1/2(Γ) is unknown. To compute the energy |||φ|||2, we therefore use Aitkin’s

∆2-extrapolation as follows: For a sequence T (k)
h of uniformly refined meshes, we compute the

sequence of energies Ek = |||φ(k)
h |||2, where φ

(k)
h denotes the discrete solution corresponding to

the triangulation T (k)
h . Extrapolation of the sequence Ek then yields a good approximation

of |||φ|||2.
In particular, this allows to compute the experimental saturation constants

qSH := |||φ− φh/2|||/|||φ− φh||| and qSP := |||φ− φ
(1)
h |||/|||φ− φh|||

as well as

qA := |||φ− φ
(1)
h |||/|||φ− φh/2||| = qSP/qSH.
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Figure 3. Errors |||φ − φh||| and |||φ − φh/2||| in Laplace Problem 6.3 as well as various

local error estimators for a sequence of µSH-adaptively generated meshes: We observe an

optimal grading of the mesh in the sense that the optimal order O(N−3/2) of convergence

is observed for the Galerkin error |||φ− φh|||.

The computation of the constant λA from (5.4) leads to a generalized eigenvalue problem:
Note that

λ2
A = max

ψ
(1)
h ∈X

(1)
h

|||ψ(1)
h −Gh/2ψ

(1)
h |||2

|||ψ(1)
h |||2

= max
ψ

(1)
h ∈X

(1)
h

|||ψ(1)
h |||2 − |||Gh/2ψ

(1)
h |||2

|||ψ(1)
h |||2

For Th = {T1, . . . , TN}, there holds dimX
(1)
h = dimXh/2 = 2N . Let {φ1, . . . φ2N} be a basis

of X
(1)
h and {χ1, . . . , χ2N} be a basis of Xh/2. For arbitrary ψ

(1)
h ∈ X(1)

h , we consider the basis
representations

ψ
(1)
h =

2N∑

k=1

xkφk as well as Gh/2ψ
(1)
h =

2N∑

k=1

ykχk

with coefficient vectors x,y ∈ R2N . We define the matrices A,B ∈ R2N×2N
sym and C ∈ R2N×2N

Ajk := 〈〈φk , φj〉〉 Bjk := 〈〈χk , χj〉〉 Cjk := 〈〈φk , χj〉〉.
Clearly, A and B are positive definit, and there holds

|||ψ(1)
h |||2 = Ax · x as well as |||Gh/2ψ

(1)
h |||2 = By · y.

18
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Figure 4. Experimental efficiency constants Ceff of error estimators for µSH-adaptive

mesh-refinement in Laplace Problem 6.3: Note that the intervals indicate the range of the

efficiency constant Ceff , whereas the red circle indicates the precise value of Ceff in the final

step of the adaptive computation. For the h-h/2-based and p-(p+1)-based error estimators

we consider the ratio of error estimator and |||φ− φh|||, e.g., Ceff = ηSH/|||φ− φh|||. Since

the averaging error estimators are expected to estimate |||φ− φh/2|||, we consider the ratio

of estimator and |||φ− φh/2||| instead, e.g., Ceff = ηA/|||φ− φh/2|||.

Moreover, the coefficient vector y is obtained by solving the linear system

By = Cx.

Plugging everything together, we thus obtain

|||ψ(1)
h |||2 − |||Gh/2ψ

(1)
h |||2

|||ψ(1)
h |||2

=
Ax · x−By · y

Ax · x =
(A−CTB−1C)x · x

Ax · x ,

which results in the generalized Rayleigh quotient

λ2
A = max

x∈R2N

Mx · x
Ax · x

with the positive semi-definit matrix M := A − CTB−1C ∈ R2N×2N
sym . Therefore, λ2

A is
the largest generalized eigenvalue µ > 0 of the system Mx = µAx. For the numerical
experiments provided below, we computed λ2

A by use of the Matlab function eig.

6.3. Laplace Problem. In our first experiment, we consider

V φ = 1 on Γ = (0, 1),(6.1)

where V denotes the simple-layer potential (1.2) of the Laplace equation. Aitkin’s ∆2-method
yields |||φ|||2 = 4.53236014183015. The initial mesh consists of four intervals with uniform
mesh-size 0.25. For uniform mesh-refinement, we experimentally observe a suboptimal order
of convergence |||φ− φh||| = O(h1/2) which is far from being optimal. However, all proposed
adaptive strategies recover the optimal order of convergence. To keep the presentation short,
Figure 2–3 only show the numerical outcome in case of µSH-adaptive mesh-refinement: We

use Algorithm 3.3 with refinement indicators µSH,j = h
1/2
j ‖φh/2 − φh‖L2(Tj) and marking

parameter θ = 0.5 to create a sequence of adaptively refined meshes. The computed values
19
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Figure 5. All experimental saturation constants in Laplace Problem 6.3 are uniformly

bounded < 1, which yields reliability of all error estimators. We stress that all constants

appear to depend on the smoothness of the unknown solution φ in the sense that they are

improved in case of µSH-adaptive mesh-refinement.
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Figure 6. Adaptive mesh-refinement in Laplace Problem 6.3: The exact solution as well

as the meshes appear to be symmetric with respect to the slit’s midpoint, so that we

only show the generated elements on the left half (0, 1/2) of the slit. We consider an

µSH-adaptively generated mesh with N = 354 elements after 24 steps of our adaptive

algorithm. We number the elements from left to right. For each element Tj , we then plot

its refinement level 1/(4hj), i.e. the quotient of initial mesh-width 1/4 and the element-

width hj , over the number j of the element.

of the Galerkin errors |||φ− φh||| and |||φ− φh/2||| as well as of all error estimators are plotted
over the number N of elements. The logarithmic scaling of both axes yields that an algebraic
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Figure 7. Galerkin errors as well as global error estimators in Lamé Problem 6.4:

The µSH-adaptive mesh-refinements leads to the optimal order O(N−3/2) of convergence.

Moreover, |||φ− φh||| is accurately estimated by ηSH , η̃SH , ηSP , and η̃SP , whereas ηA and

η̃A are asymptotically accurate estimators for |||φ− φh/2|||.

dependence O(N−α) for some α > 0 results in a straight line with slope −α. Note that the
experimentally observed slope α = 3/2 corresponds to the optimal order of convergence.
All curves appear to be parallel, which corresponds to the fact that all error estimators are
observed to be reliable and efficient.

Moreover, Figure 2 shows that the energy norm based (and non-local) error estimators
ηSH , η̃SH , ηSP , and η̃SP are very accurate error estimators for |||φ−φh|||. The averaging-based
error estimators ηA and η̃A appear to be asymptotically accurate for the estimation of the
improved Galerkin error |||φ− φh/2|||.

Figure 4 visualizes the experimental efficiency constants. For h-h/2-based and p-(p + 1)-
based error estimators, e.g. ηSH , we visualize the range of Ceff = ηSH/|||φ−φh||| as well as the
precise value in the final step of our adaptive computation. For the averaging-based error
estimators, e.g. ηA, which are expected to estimate the improved Galerkin error |||φ− φh/2|||,
we visualize Ceff = ηA/|||φ−φh/2||| instead. For all error estimators, the experimental efficiency
constant Ceff varies in a range between 3/10 and 5. For the error estimators ηSH , η̃SH ,
ηSP , and η̃SP , we observe that Ceff is improved by adaptive mesh-refinement and seems to
converge to 1, which corresponds to asymptotically exact error estimation. As expected, the
best coincidence of error |||φ− φh||| and error estimator is observed in case of ηSP .

Whereas efficiency of the introduced error estimators is predicted by theory, the reliability
depends on certain saturation assumptions, namely qSH < 1 in case of h-h/2-based error
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Figure 8. Galerkin errors and various local error estimators in Lamé Problem 6.4 for

µSH-adaptive mesh-refinement.
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Figure 9. Experimental efficiency constants Ceff for µSH-adaptive mesh-refinement in

Lamé Problem 6.4: The intervals indicate the range Ceff , whereas the red circle indicates

the precise value of Ceff in the final step of the adaptive computation. For the h-h/2-
based and p-(p + 1)-based error estimators, we compute Ceff with respect to |||φ − φh|||,
e.g., Ceff = ηSH/|||φ − φh|||. For the averaging error estimators, we consider the ratio of

estimator and |||φ− φh/2||| instead, e.g., Ceff = ηA/|||φ− φh/2|||.

estimation, qSP < 1 in case of p-(p + 1)-based error estimation, and q2
A + λ2

A < 1 in case of
averaging-based error estimation, respectively. Figure 5 plots these three constants over the
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Figure 10. All experimental saturation constants in Lamé Problem 6.4 are uniformly

bounded < 1. We expect dependence on the smoothness of the unknown solution φ in the

sense that the constants are improved in case of µSH-adaptive mesh-refinement.

number of elements in case of uniform and adaptive mesh-refinement. In any case, we observe
that all constants are uniformly bounded away from 1. This empirically proves reliability of
the error estimators. We stress that all constants appear to depend on the smoothness of
the unknown solution φ in the sense that they are improved in case of the adaptive mesh-
refining strategy. Moreover, this explains that the observation that the accuracy of the error
estimation, e.g. for ηSH , is improved by adaptive mesh-refinement.

The computed discrete solutions as well as the adaptively generated meshes appear to be
symmetric with respect to the slit’s midpoint (1/2, 0). Figure 6 visualizes the refinement
for an adaptively generated mesh with N = 354 elements after 24 steps of our adaptive
algorithm. We observe a very strong refinement towards the left and right endpoints of the
slit.

6.4. Lamé problem. The exterior Navier-Lamé problem consists of the equation

−∆∗u := −µ∆u− (λ+ µ)grad div u = 0 in R
2 \ Γ, Γ = (0, 1)(6.2)

and a radiation condition of the form [10, 11]

Dα(u− a)(x) = O(|x|−1−α) for |x| → ∞ and α = 0, 1,
23
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Figure 11. Galerkin errors and global error estimators for Stokes Problem 6.5 and µSH-

adaptive mesh-refinement: We observe the optimal order O(N−3/2) of convergence. More-

over, |||φ − φh||| is accurately estimated by ηSH , η̃SH , ηSP , and η̃SP , whereas ηA and η̃A
are asymptotically accurate to estimate |||φ− φh/2|||.

where D1 denotes the Jacobian and where a ∈ R2 is a given constant vector. The conormal
derivative related to the Lamé operator ∆∗ reads

T (u) := 2µ∂nu+ λn div u+ µn× curl u

with the normal derivative ∂n. The fundamental solution E(x, y) of the Lamé operator,
called Kelvin-matrix, is given by

E(x, y) =
λ+ 3µ

4πµ(λ+ 2µ)

{
log

1

|x− y| · III +
λ+ µ

λ+ 3µ

(x− y)(x− y)T

|x− y| 2
}
,

where III is the 2 × 2 unit matrix [13]. Since E is analytic in R2 × R2 without the diagonal
we may define its traction

T (x, y) := Ty(E(x, y))T , x 6= y.

As it is derived, e.g., in [10, 11, 13], there holds the Betti representation formula for x ∈ Ω

u(x) = 〈T (x, ·) , v〉 − 〈E(x, ·) , φ〉+ a(6.3)

for all u ∈
{
w ∈ (H1

loc(Ω))2 : there exists a constant a s.t. w satisfies (6.2) and (6.3)
}

with
v = u|Γ, φ = T (u)|Γ. The second term defines the simple-layer potential

(V φ)(x) = 〈E(x, ·) , φ〉 (x ∈ Γ).

for the Lamé operator. For properties of the simple-layer potential we refer to [5, 6].
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Figure 12. Galerkin errors and further error estimators in Stokes Problem 6.5 for µSH-

adaptive mesh-refinement.
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Figure 13. Experimental efficiency constants Ceff for µSH-adaptive mesh-refinement in

Stokes Problem 6.5: The intervals indicate the range Ceff , whereas the red circles indicate

the precise values of Ceff in the final steps of the adaptive computation. For the h-h/2-
based and p-(p + 1)-based error estimators, we compute Ceff with respect to |||φ − φh|||,
e.g., Ceff = ηSH/|||φ − φh|||. For the averaging error estimators, we consider the ratio of

estimator and |||φ− φh/2||| instead, e.g., Ceff = ηA/|||φ− φh/2|||.

For the numerical experiment, we consider an infinite elastic plane of steel (E = 105[N/mm2],
ν = 1/3) with a crack at Γ = (0, 1). The Lamé coefficients are given by the relations
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Figure 14. All experimental saturation constants in Stokes Problem 6.5 are uniformly

bounded < 1 and improved for µSH-adaptive mesh-refinement.

λ = E ν
(1−2ν)(1+ν)

= 75.000 and µ = E
2(1+ν)

= 37.500. We aim to approximate the exact solution

φ ∈ (H̃−1/2(Γ))2 of

V φ = (1, 1)⊤ on Γ

and stress that the exact solution is unknown. Extrapolation, however, provides the squared
energy |||φ|||2 = 461737.806798923.

Note that the ellipticity and continuity of the simple-layer potential V strongly depend
on the Lamé coefficient µ. This results in a relatively small quotient of energy norm ||| · |||
and weighted L2-norm ‖h1/2(·)‖L2(Γ). As in [2], we therefore scale the L2-norm based error
estimators by a factor 1/

√
µ, e.g.,

µ̃A :=
1√
µ
‖h1/2(φh/2 − Π

(1)
h φh/2)‖L2(Γ).(6.4)

Figure 8 gives empirical evidence that this is the right scaling in the sense that it leads to
almost the same results as for the Laplace Problem 6.3.

For the numerical computations, we used an initial mesh consisting of four equally sized
intervals. As for the Laplace Problem 6.3, uniform mesh-refinement leads to a suboptimal
order of convergence |||φ− φh||| ≈ O(N−1/2). Instead, all proposed adaptive strategies show
the optimal convergence rate O(N−3/2). The outcome of an µSH-adaptive computation is
visualized in Figure 7–10. For more details about the figures, the reader is referred to the
corresponding descriptions for the Laplace Problem 6.3.
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6.5. Stokes problem. The exterior Stokes problem reads

div (2µε(u)− p · III) = 0
div u = 0

}
in R

2 \ (0, 1)

with the symmetric Green tensor ε(·) := (∇+∇⊤)/2 and a radiation condition

u(x) = O(1) (|x| → ∞),

cf. [10, 11]. According to [12], the simple-layer potential V for the Stokes operator is defined
by

(V φ)(x) := 〈E(x, ·) , φ〉 (x ∈ Γ) ,

where

E(x, y) =
1

4πµ

{
log

1

|x− y| · III +
(x− y)(x− y)T

|x− y| 2
}
,

In the following we consider the problem: Find φ ∈ (H̃−1/2(Γ))2 s.t.

V φ = (1, 1)⊤ on Γ = (0, 1) .

The viscosity is chosen µ = 1.57 [Ns/m2], which corresponds to glycerin. For this setting,
the extrapolated squared energy reads |||φ|||2 = 22.0694024958539.

The outcome of an µSH-adaptive computation is visualized in Figure 11–14. As for the
Lamé Problem 6.4, we scale the L2-norm based error estimators by 1/

√
µ, cf. (6.4).

7. Conclusion

In this paper, we studied three classes of a posteriori error estimators for the Galerkin
boundary element method. This includes error estimators derived from space enrichment,
e.g., the h-h/2-based error estimators introduced by Ferraz-Leite and Praetorius [8],
the two-level error estimator introduced by Mund, Stephan, and Weisse [15], and the
averaging estimators introduced by Carstensen and Praetorius [3]. Throughout, we

focused on the lowest-order P0-Galerkin scheme for H̃−1/2-elliptic integral operators. An
overview on the studied error estimators is given in Section 6.1 above. All of these estimators
can be covered within one analytical framework which is essentially based on a local inverse

estimate and a local first-oder approximation estimate for the H̃−1/2-norm. The analysis

therefore applies for all elliptic pseudodifferential operators A : H̃−1/2 → H1/2 of negative
order α = −1.

7.1. Analytical Results. First, the numerical analysis of the pioneering work [15] is
restricted to the case of uniform mesh-refinement. However, the numerical experiments
of [15] indicated that the two-level error estimation technique is even capable to steer an
adaptive anisotropic mesh-refinement in 3D. One aim of this paper was the generalization
of the analysis of [15] to the case of adaptively generated meshes. Our proof justifies the
numerical results of [15] for the 2D Galerkin BEM. In particular, our analysis is optimal in
the sense that, besides the K-mesh property, there is almost no restriction on the adaptive
meshes used.

Second, the averaging error estimators of [3] are so far only proven to be reliable and
efficient under rather strong assumptions, which are discussed above. It came to a surprise
of us that the averaging error estimators are equivalent to the h-h/2-error estimators as well
as to the two-level error estimator of [15]. In fact, we prove that all error estimators are
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equivalent. In particular, we thus obtain that all of the error estimators are always efficient,
whereas reliability holds under the saturation assumption.

7.2. Numerical Results. Besides the well studied simple-layer potential of the Laplace
problem, cf. e.g. [15, 3, 4, 8], we considered the simple-layer potentials of the Lamé and the
Stokes problem. The conclusions in the three examples are analogous and can be described
as follows. The h-adaptive BEM refines the mesh towards the singularity. Note carefully,
that only the endpoints are singular points. So far the meshes indicate that the h-adaptive
scheme mimics a geometric mesh grading which is regarded as an optimal strategy.

The plots in Figure 2, 3, 7, 8, 11, and 12 represent the relative errors in the energy norm
as a function of degrees of freedom for various experiments connected by straight lines. Note
the logarithmic scaling on both axes so that an algebraic convergence results in a straight
line with a slope which is the experimental convergence rate. For uniform mesh-refinement,
one observes convergence rates which are poor according to the singularity (see [16] for a
proof of that). This proves numerically, that our h-adaptive BEM is of optimal convergence
rate and hence a powerful tool in the efficient treatment of integral equations of the first
kind.

Finally, the error estimation of the global error estimators is very accurate in the sense
that the values of, e.g., the h-h/2-error estimator ηH and the corresponding Galerkin error
|||φ− φh||| almost coincide. To keep the implementational overhead as small as possible and
according to Remark 3, we therefore propose to use the local contributions of the two-level
error estimator ηTH to steer the adaptive mesh-refinement and to use ηH to estimate the
(unknown) Galerkin error.

7.3. Extensions and Future Work. The numerical experiments of Section 6 show that
the involved saturation assumptions are satisfied in praxis. Thus, it has to be a mayor goal
of our future research to prove the saturation assumption mathematically.

Our analytical results can be extended in the following ways: First, local inverse estimates
and local first-approximation approximation results are even available for the H̃1/2-norm.
Therefore, analogous results can be achieved for the hypersingular integral operators A :

H̃1/2 → H−1/2 in 2D Galerkin BEM. Details are postponed to a forthcoming paper.
An extension of the results to the 3D Galerkin BEM is, so far, only possible for shape-

regular triangulations. The experiments of [15, 8] however indicate that all error estimators
perform well even in case of anisotropic mesh-refinement.
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