
CDO pricing with nested Archimedean copulas

Marius Hofert und Matthias Scherer

Preprint Series: 2008-03

Fakultät für Mathematik und Wirtschaftswissenschaften

UNIVERSITÄT ULM
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Abstract

Companies in the same industry sector are usually stronger correlated than firms in

different sectors, as they are similarly affected by macroeconomic effects, political

decisions, and consumer trends. In spite of many stock return models taking account

of this fact there are only a few credit default models taking it into consideration.

In this paper we present a default model based on nested Archimedean copulas

which is able to capture hierarchical dependence structures among the obligors in

a credit portfolio. Nested Archimedean copulas have a surprisingly simple and

intuitive interpretation. The dependence among all companies in the same sector

is described by an inner copula; the sectors are then coupled via an outer copula.

Consequently, our model implies a larger default correlation for companies in the

same industry sector compared to companies in different sectors. A calibration to

CDO tranche spreads of the European iTraxx portfolio is performed to demonstrate

the fitting capability of our model. This portfolio consists of CDS on 125 companies

from six different industry sectors. It is therefore an excellent portfolio to compare

our generalized model to a traditional copula model of the same family, which does

not account for different sectors.

1 Introduction

The knowledge about the industry sector of the portfolio constituents is often neglected
in the modeling of credit portfolios. Not considering this information has the unrealistic
effect that default correlations do not explicitly change whether two companies are in
the same industry sector or not. Incorporating sector effects to existing credit-portfolio
models is straightforward in structural and factor models by introducing sector-specific
risk factors. Examples are Hull, Predescu, White (2006) or Kiesel, Scherer (2007) for
the former, and multi-sector generalizations of Kalemanova, Schmid, Werner (2007) for
the latter. In contrast, tractable portfolio models relying on copulas are usually based
on specific choices of exchangeable Archimedean copulas, as the sampling algorithm of
Marshall, Olkin (1988) allows to obtain an approximate loss distribution via a condition-
ally independent approach. As a drawback, homogeneous pairwise correlations among
obligors are inherited from the symmetry of exchangeable Archimedean copulas. In this
paper, we want to introduce an intuitive generalization which allows for asymmetry.
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2 The model

More generally, we introduce a hierarchical structure to the popular copula models of
Schönbucher, Schubert (2001) and Li (2000). Our generalization allows to classify the
firms in a credit portfolio according to some attribute, which is the industry sector in
our application. Alternative classification criteria, such as geographic regions or politi-
cal unions, can similarly be used. We achieve this segmentation by introducing nested
Archimedean copulas with two levels. This approach allows us to first couple the firms
of the same sector by some inner copula. Then, we combine these sectors by an outer
copula, both of the Archimedean class.

As a main application we shall treat the pricing of CDOs, for which we show that our
approach yields significant smaller pricing errors than the current standard approach
using exchangeable copulas. As our investigation involves several Archimedean copulas,
our results also indicate which class of Archimedean copulas might be preferable for the
modeling of CDOs. As benchmark for this calibration, we also include the Gauss copula
as market standard. Our simulation studies, in which we fit different families of copulas
to portfolio CDS and CDO quotes, are based on fast simulation algorithms for nested
Archimedean copulas. The resulting Monte Carlo engine is combined with an efficient
parameter optimizing algorithm, which allows to conduct a calibration of the model in
reasonable amounts of time on standard PCs.

The Archimedean copulas used in our model show different kinds of tail dependence
and several of our results can be linked to this property. For instance, it is known
that the limit of default correlations as maturity decreases to zero can be expressed
via the parameter of upper tail dependence of the specific copula, compare Chapter 10
of Schönbucher (2003). This result can be generalized in our nested framework to the
parameter of tail dependence of the respective sector or outer copula. The result is that
the limit of default correlations of companies within the same industry sector is larger
than of companies in different sectors.

The paper is organized as follows. In Section 2 we review the intensity-based approach to
derive marginal default probabilities and the concept how defaults are made dependent
via copulas. Section 3 then presents sampling algorithms for exchangeable and nested
Archimedean copulas and explains the implied default correlation generated by such
copulas. The payment streams of portfolio CDS and CDO contracts and the Monte-
Carlo pricing approach are presented in Section 4. In Section 5 we then show how our
model can be calibrated to market quotes. Finally, Section 6 concludes.

2 The model

We work on the probability space (Ω,F , P), where P is a pricing measure which is
calibrated to market quotes of portfolio derivatives in Section 5. The modeled portfolio
contains I credit-risky assets, whose payment streams dependent on the default status
of one of the I firms. These companies are assigned to one of S industry sectors, or
classified in one of S sectors according to some alternative attribute. The default times
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3 Exchangeable and nested Archimedean copulas

of these companies are denoted by τi. The default status of each company is modeled
via a simple intensity model, the intensity of company i ∈ {1, . . . , I} is assumed to be
a deterministic, nonnegative function, denoted by λi. The term structures of survival
probabilities pi(t) and default probabilities p̄i(t) of this company are then given by

pi(t) = exp(−
∫ t

0
λi(s)ds), p̄i(t) = 1− pi(t), (1)

respectively. At this point, let us remark that other models for the individual default
probabilities are also possible, as our model is purely designed to explain the dependence
among the firms. A classical result, compare Bielecki, Rutkowski (2002), page 183, or
Schönbucher (2003), page 122, allows the following canonical construction of τi, which
is extremely useful for simulating τi. Let Ui be uniformly distributed on [0, 1] and
independent of F , then

τi
d

= inf
{

t ≥ 0 : pi(t) ≤ Ui

}

. (2)

Hence, having drawn a random variate Ui, we simply have to compute τi = p−1
i (Ui).

The relevant quantity for pricing portfolio derivatives and for risk management purposes
is the portfolio-loss process. Given the default time, the recovery rate, and the nominal
of each firm, this stochastic process is easily derived. Undisputably, corporate defaults
are not mutually independent. In the considered model, dependence among the default
times is introduced by making the random variables Ui dependent. Therefore, we assume
the vector of trigger variables (U1, . . . , UI) to be jointly distributed according to some
copula C. In general, the distribution of the loss process is not analytically available. For
some exchangeable Archimedean copulas it is possible to approximate the portfolio-loss
distribution via a conditionally independent approach, compare Schönbucher (2003),
Chapter 10.8.2. Unfortunately, this does not easily generalize to nested Archimedean
copulas. However, as long as we can efficiently sample from the chosen copula C, it is
possible to simulate the loss process and to price portfolio derivatives such as CDOs.
Efficient sampling algorithms are known for several exchangeable Archimedean copulas
and have lately been suggested for some nested Archimedean copulas. These algorithms
are introduced in the following chapter. For a sampling algorithm of the Gauss copula,
see Embrechts, Lindskog, McNeil (2001).

3 Exchangeable and nested Archimedean copulas

We assume the reader to be familiar with bivariate Archimedean copulas, an excellent
introduction is provided by Nelson (1998). We will review basic facts about Archimedean
copulas, however, we focus on our multidimensional setting. In order to distinguish
between the standard symmetric Archimedean copulas and the nonsymmetric nested
ones, we refer to the former as exchangeable and to the latter as nested Archimedean
copulas.
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3.1 Sampling exchangeable Archimedean copulas

Archimedean copulas are convenient to work with as they are fully specified by some
generator function. Important for modeling dependent defaults is the property that
Archimedean copulas are able to capture different tail dependencies. In our model, com-
pany k (resp. l) defaults up to time t if and only if its trigger variable Uk (resp. Ul)
satisfies Uk ≥ pk(t) (resp. Ul ≥ pl(t)), i.e. if and only if it is close to one. Therefore, a
joint default occurs if both trigger variables are close to one simultaneously. Thus upper
tail dependence is an important property for the copulas used in our model. In a multidi-
mensional setting, the symmetry inherent in the class of Archimedean copulas is usually
a drawback. However, by nesting Archimedean copulas one can bring asymmetries into
play.

A multidimensional exchangeable Archimedean copula is given by

C(u) = C(u1, . . . , uI ;ϕ0) = ϕ−1
0 [ϕ0(u1) + · · ·+ ϕ0(uI)], u ∈ [0, 1]I , (3)

where the generator ϕ0 : [0, 1] 7→ [0,∞] is continuous and strictly decreasing, satisfying
ϕ0(1) = 0. The inverse ϕ−1

0 is assumed to be completely monotonic on [0,∞), i.e.

(−1)k dk

dtk
ϕ−1

0 (t) ≥ 0 for any t ∈ (0,∞) and k ∈ N0.

3.1 Sampling exchangeable Archimedean copulas

For the pricing of portfolio derivatives we have to rely on Monte Carlo techniques, as
closed-form expressions of the portfolio-loss distribution are not available in our hierar-
chical framework. The difficult step in the simulation of the portfolio-loss process is the
simulation of uniformly distributed random variables with some copula describing their
dependence structure. For exchangeable Archimedean copulas, Marshall, Olkin (1988)
present an algorithm which is especially efficient for large dimensions.

By Bernstein’s Theorem, see Feller (1971), page 439, ϕ−1
0 is the Laplace-Stieltjes trans-

form of a distribution function F0 concentrated on [0,∞), shortly ϕ−1
0 = LS(F0).

The following algorithm of Marshall, Olkin (1988) exploits this relation for sampling
(U1, . . . , UI) from a multidimensional exchangeable Archimedean copula, assuming F0 =
LS−1(ϕ−1

0 ) is known.

Algorithm 1 (Marshall, Olkin)
(1) Sample V0 ∼ F0.

(2) Sample i.i.d. realizations Xi ∼ U [0, 1], i ∈ {1, . . . , I}.
(3) Return (U1, . . . , UI), where Ui = ϕ−1

0 (− log(Xi)/V0), i ∈ {1, . . . , I}.

3.2 Sampling nested Archimedean copulas

Nested Archimedean copulas appear e.g. in Joe (1997), Whelan (2004), Savu, Trede
(2006), and McNeil (2007). The structures we are interested in are partially nested
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3.3 Default correlations in a nested framework

Archimedean copulas of the form

C(u) = C(C(u11, . . . , u1d1
;ϕ1), . . . , C(uS1, . . . , uSdS

;ϕs);ϕ0)

= ϕ−1
0 [ϕ0(ϕ

−1
1 [ϕ1(u11) + · · ·+ ϕ1(u1d1

)]) + . . .

+ ϕ0(ϕ
−1
S [ϕS(uS1) + · · · + ϕS(uSdS

)])]

= ϕ−1
0

[ S
∑

s=1

ϕ0

(

ϕ−1
s

[ ds
∑

l=1

ϕs(usl)

])]

, (4)

usl ∈ [0, 1], s ∈ {1, . . . , S}, l ∈ {1, . . . , ds}, where S is the number of sectors and
I =

∑S
s=1 ds is the dimension. This copula model comprises S + 1 different bivariate

margins and is hence much more flexible than (3). A sufficient condition for (4) being
a proper copula is that all involved nodes of the form ϕ0 ◦ ϕ−1

s for any s ∈ {1, . . . , S}
have completely monotonic derivatives, see McNeil (2007). For the nested Archimedean
copulas we address in this paper, this condition is equivalent to ϑ0 ≤ ϑs for any s ∈
{1, . . . , S}, where ϑk denotes the parameter corresponding to ϕk, k ∈ {0, . . . , S}. This
is often the case when generators belonging to the same Archimedean family are nested,
see Hofert (2007a).

The following algorithm is for sampling the partially nested Archimedean copula (4),
see McNeil (2007). The generator inverses exp(−vϕ0 ◦ϕ−1

s (t)) are denoted by ϕ−1
0,s(t; v),

s ∈ {1, . . . , S}. The involved outer and inner distribution functions FV are denoted by
F0 = LS−1(ϕ−1

0 ) and F0,s = LS−1(ϕ−1
0,s(t; v)), s ∈ {1, . . . , S}, respectively.

Algorithm 2 (McNeil)
(1) Sample V0 ∼ F0.

(2) For s ∈ {1, . . . , S}, sample (Xs1, . . . ,Xsds
) ∼ C(us1, . . . , usds

;ϕ0,s(·;V0)) using Al-
gorithm 1.

(3) Return the vector (U11, . . . , USdS
), where Usl = ϕ−1

0 (− log(Xsl)/V0), s ∈ {1, . . . , S},
l ∈ {1, . . . , ds}.

Table 1 lists the Archimedean families of Ali-Mikhail-Haq (A), Clayton (C), Frank (F),
Gumbel (G), Joe (J), and the outer power family based on Clayton’s generator, in
short outer power Clayton family (opC), together with lower and upper tail dependence
parameters. The algorithms for sampling these copulas and specific information about
the implementation are given in the Appendix.

3.3 Default correlations in a nested framework

As a risk measure for dependent defaults, the concept of default correlation is widely used
by risk managers, rating agencies, and regulators. In model (2), the default correlation
of two companies k and l up to time t is defined as

ρk,l(t) = Cor(1{τk≤t},1{τl≤t}).
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3.3 Default correlations in a nested framework

Family ϑ ϕ(t) ϕ−1(t) λL λU

A [0, 1) log 1−ϑ(1−t)
t

1−ϑ
et−ϑ 0 0

C (0,∞) t−ϑ − 1 (1 + t)−
1

ϑ 2−1/ϑ 0

opC (0,∞) (t−ϑc − 1)ϑ, ϑc > 0 (1 + t1/ϑ)−
1

ϑc 2−1/(ϑϑc) 2− 21/ϑ

F (0,∞) − log 1−e−ϑt

1−e−ϑ − 1
ϑ log(e−t(e−ϑ − 1) + 1) 0 0

G [1,∞) (− log t)ϑ e−t
1

ϑ 0 2− 21/ϑ

J [1,∞) − log(1− (1 − t)ϑ) 1− (1− e−t)
1

ϑ 0 2− 21/ϑ

Table 1 Parameter ranges, generators, corresponding inverses and tail dependence pa-
rameters for the used Archimedean families.

By assuming identical intensities, the following result was obtained by Schönbucher
(2003), page 348.

Theorem 3.1
Let C denote the copula of the default triggers (U1, . . . , UI). Marginal default probabilities
are specified by model (2) with identical intensities, i.e. λi(s) = λ(s), s ≥ 0, for every
i ∈ {1, . . . , I}.
(a) The default correlation ρ(t) between two companies k and l up to time t in (2) is

given by

ρ(t) =
Ck,l(p(t), p(t)) − p(t)2

p(t)(1 − p(t))
, t > 0,

where Ck,l denotes the (k, l)-th margin of C. For an Archimedean copula with gen-
erator ϕ, we have Ck,l(p(t), p(t)) = ϕ−1[2ϕ(p(t))].

(b) For copulas with existing upper tail dependence parameter λU , the limit of the default
correlation ρ(t) as t decreases to zero equals λU .

We notice that the original model with exchangeable Archimedean copulas implies identi-
cal pairwise default correlations for any two firms. In our framework, the pairwise default
correlation explicitly depends on whether or not two firms are in the same sector. More
precisely, we find the following result.

Theorem 3.2
(a) If C is the partially nested Archimedean copula (4), we have at most S + 1 different

default correlations, given by

ρ0(t) =
ϕ−1[2ϕ(p(t))] − p(t)2

p(t)(1− p(t))
, t > 0, ρs(t) =

ϕ−1
s [2ϕs(p(t))]− p(t)2

p(t)(1− p(t))
, t > 0,

depending on whether the two companies under consideration belong to different
sectors or the same sector s ∈ {1, . . . , S}, respectively.
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4 Portfolio CDS and CDOs

(b) For the partially nested Archimedean copula (4), we obtain

lim
tց0

ρ0(t) = λU , lim
tց0

ρs(t) = λU,s,

where the first limit corresponds to companies belonging to different and the second
corresponds to companies belonging to the same sector s ∈ {1, . . . , S}. In this
formula, λU,s denotes the upper tail dependence parameter of the Archimedean copula
generated by ϕs.

Proof
Note that Theorem 3.1 of Schönbucher (2003) only depends on the bivariate marginal
Archimedean copula. For nested Archimedean copulas, we have at most S + 1 different
bivariate margins, leading to the result as stated. �

Corollary 3.3
The copulas of the Archimedean families we nest are ordered in the concordance ordering.
This implies, that larger values of the outer parameter ϑ0 imply larger default correlations
between companies belonging to different sectors. Similarly, larger values of the inner
parameter ϑs lead to larger default correlations between companies belonging to the same
sector s. Further note that the restriction ϑ0 ≤ ϑs for any s ∈ {1, . . . , S} for the nested
Archimedean families we consider implies that a pair of random variables belonging to the
same sector is at least as concordant as a pair of random variables belonging to different
sectors. This implies ρ0(t) ≤ ρs(t) for any t > 0 and s ∈ {1, . . . , S}.

4 Portfolio CDS and CDOs

Portfolio-credit derivatives, such as portfolio CDS and CDOs, have shown an impressive
growth in terms of outstanding notional over the last decade. Especially CDOs have
attracted attention among researchers and practitioners as their prices are driven, to
large extend, by the dependence among the obligors in the considered portfolio. The
idea of CDOs is to pool credit risky assets and to resell the portfolio in slices with
different seniority, called the tranches of a CDO.

4.1 The payment streams

We assume a portfolio consisting of I obligors, each contributing 1/I to the unit nominal
of the portfolio. The time to maturity (in years) is denoted by T . As common for
spread products, we have to consider two payment streams, the premium and the default
leg. Premium payments are made at certain dates, the resulting payment schedule is
denoted by T = {t0 = 0 < t1 < · · · < tn = T}. Note that defaults may happen
anywhere in [0, T ], but to simplify the computation of the default leg, we defer all default
payments in between two premium payment dates to the next scheduled payment date.
For assessing accrued interest, i.e. the interest accumulated between a default and the
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4.1 The payment streams

last payment date, we assume that defaults happen at the midpoint of two payment
dates. Therefore, accrued interest for defaulted companies is considered by taking the
midpoint (tk + tk+1)/2 as reference for a default τi ∈ [tk, tk+1).

Portfolio CDS and the tranches of a CDO can both be interpreted as options on the
portfolio-loss process Lt. In what follows we assume an identical deterministic recovery
rate R for all companies, which simplifies the computation of Lt to

Lt =
1−R

I

I
∑

i=1

1{τi≤t}, t ∈ [0, T ].

Based on the overall portfolio loss, the loss affecting tranche j ∈ {1, . . . , J} of a CDO
contract is given by

Lt,j = min {max {0, Lt − lj} , uj − lj} , t ∈ [0, T ], (5)

where lj and uj, j ∈ {1, . . . , J}, denote the lower and upper attachment points for the
CDO tranches, respectively.

Given Lt, t ∈ [0, T ], the remaining nominal of the considered portfolio CDS is given by

Nt = 1− Lt

1−R
, t ∈ [0, T ],

i.e. the remaining nominal is reduced by 1/I after each default. For tranche j ∈
{1, . . . , J} of a CDO contract, the remaining nominal is determined by

Nt,j = (uj − lj − Lt,j) , t ∈ [0, T ]. (6)

Given the payment schedule T , the annualized portfolio-CDS spread spCDS
T (quoted

in bp), and the discount factors dtk corresponding to the time point tk, the expected
discounted premium and default leg of the portfolio CDS are given by

EDPLT = E

[

n
∑

k=1

dtkspCDS
T ∆tk

(

Ntk + (Ntk−1
−Ntk)/2

)

]

, (7)

EDDLT = E

[

n
∑

k=1

dtk(Ltk − Ltk−1
)
]

, (8)

where ∆tk = (tk − tk−1) and the summands dtkspCDS
T ∆tk(Ntk−1

− Ntk)/2 in Equation
(7) account for accrued interest.

For tranche j ∈ {1, . . . , J} of a CDO contract, the corresponding legs are given by

EDPLT,j = E

[

n
∑

k=1

dtksCDO
T,j ∆tk

(

Ntk,j + (Ntk−1,j −Ntk ,j)/2
)

]

, (9)

EDDLT,j = E

[

n
∑

k=1

dtk(Ltk ,j − Ltk−1,j
)
]

, (10)
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4.2 The pricing approach

where sCDO
T,j denotes the annualized spread of the respective tranche (quoted in bp for

all but the equity tranche). The fair spreads spCDS,f
T and sCDO,f

T,j of the portfolio CDS
and the tranches of the CDO, respectively, are computed by equating the respective
expected discounted premium and default leg and solving for the spread. It became
market standard to assume a running spread of 500 bp for the most subordinate tranche,
called equity tranche. Therefore, an upfront payment (quoted as a percentage of the
nominal of the equity tranche) is introduced to correct for this artificial spread. This
upfront payment, for simplicity denoted by sCDO

T,1 in the sequel, satisfies the relation

sCDO
T,1

(

u1 − l1
)

+ E

[

n
∑

k=1

dtk0.05∆tk(Ntk ,1 + (Ntk−1,1 −Ntk,1)/2)
]

= EDDLT,1. (11)

4.2 The pricing approach

This section presents the pricing algorithms used to calibrate the model. We begin with
the algorithm for pricing portfolio CDS. If deterministic discount factors are assumed,
Equations (7) and (8) only require the computation of the expected portfolio loss at the
premium-payment dates. Using linearity, this expectation is simply given as the mean of
individual default probabilities times the loss given default, which is easily computed in
our framework. The computation of the expected remaining nominal is done similarly.
Hence, the expected discounted premium and default legs can be evaluated for any
dependence structure between the companies. This allows us to find the fair spread for
a portfolio CDS via the following algorithm.

Algorithm 3 (The fair spread of a portfolio CDS)
(1) Setup. Specify the payment schedule T , the number of companies I, the intensity

function λi(t) of each firm, the recovery rate R, and the discount factors dtk .

(2) Expected discounted premium and default legs. Compute the expected dis-
counted premium leg with spCDS

T = 1 and the default leg from Equations (7) and (8),
respectively, by the argument explained above. Assess the fair spread by

spCDS,f
T =

EDDLT

EDPLT
.

Principally, the same argument applies to Equations (9) and (10) for the different CDO
tranches. However, as we observe from Equation (5), the loss affecting a certain tranche
is not a linear functional in the default indicators 1{τi≤t}, i ∈ {1, . . . , I}. Due to the
dependence structure of the trigger variables, it is therefore not straightforward to com-
pute the resulting expected loss of a certain tranche analytically. Therefore, we use the
following algorithm for pricing the tranches of a CDO, which is based on a Monte-Carlo
simulation.

Algorithm 4 (Pricing CDO tranches via Monte Carlo)
(1) Setup. Specify T , I, λi(t), R, and dtk as in Algorithm 3. Moreover, specify the

number of simulation runs N , the attachment points lj and uj of each tranche, and
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4.2 The pricing approach

a copula C for the default triggers (U1, . . . , UI). If C is the Gauss copula or an
exchangeable Archimedean copula as listed in Table 1, only one parameter ϑ0 has
to be chosen. However, if C is a nested Archimedean copula, the parameter vector
ϑ = (ϑ0, . . . , ϑS) has to be specified.

(2) Survival probabilities. Compute all pi(tk) as in Equation (1).

(3) Monte Carlo simulation. For each of the N runs, do:

(3.1) Sample (U1, . . . , UI) ∼ C according to Theorem A.1.

(3.2) Compute the corresponding default times via τi = p−1
i (Ui).

(3.3) Compute the loss process Ltk , tk ∈ T , of the current Monte Carlo run.

(3.4) For each tranche j ∈ {1, . . . , J} and each tk ∈ T , compute Ltk ,j and Ntk ,j via
Equations (5) and (6), respectively.

(4) Expected discounted premium and default legs. Based on Step (3), compute
for each tranche j ∈ {1, . . . , J} the N discounted premium and default legs of all
Monte Carlo runs and estimate the expectations in Equations (9) and (10) by their
sample means EDPLT,j and EDDLT,j, respectively. For assessing the fair spreads
of all tranches, compute the premium legs with spreads sCDO

T,j = 1, j ∈ {2, . . . , J},
and set

ŝCDO,f
T,j =

EDDLT,j

EDPLT,j

, j ∈ {2, . . . , J},

and determine ŝCDO,f
T,1 via Equation (11).

Estimating CDO spreads via Monte Carlo naturally invokes the question on confidence
intervals. Given the straightforward asymptotic confidence intervals for the expected
discounted premium and default legs, asymptotic confidence intervals for the tranche
spreads are easily found via the following lemma.

Lemma 4.1 (Asymptotic confidence intervals for CDO spreads)
Given a significance level α ∈ [0, 1] and a tranche j ∈ {1, . . . , J} of a CDO contract with
maturity T , asymptotic (1−α/2)-confidence intervals for the expected discounted default
and premium legs EDDLT,j and EDPLT,j are given by

[lEDDLT,j
, uEDDLT,j

] =
[

EDDLT,j −
q1−α/2√

N
sDDLT,j

, EDDLT,j +
q1−α/2√

N
sDDLT,j

]

,

[lEDPLT,j
, uEDPLT,j

] =
[

EDPLT,j −
q1−α/2√

N
sDPLT,j

, EDPLT,j +
q1−α/2√

N
sDPLT,j

]

,

respectively, where sDDLT,j
and sDPLT,j

denote the sample standard deviations for the
simulated discounted default and premium legs, respectively, and q1−α/2 denotes the 1−
α/2 quantile of the standard normal distribution. This implies that

[ lEDDLT,j

uEDPLT,j

,
uEDDLT,j

lEDPLT,j

]
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5 Calibration of the model

is an asymptotic (1−α)-confidence interval for the fair spread sCDO,f
T,j of the CDO tranche

j. For the upfront payment, an asymptotic (1− α)-confidence interval is given by

[

Ȳ − q1−α√
N

sY , Ȳ +
q1−α√

N
sY

]

,

where

Yl =
1

u1 − l1

n
∑

k=1

dtk(Ltk ,1 − Ltk−1,1 − 0.05∆tk(Ntk ,1 + (Ntk−1,1 −Ntk,1)/2)),

l ∈ {1, . . . , N}, and Ȳ and sY denote the sample mean and standard deviations of the
variates Yl, respectively.

Proof
All results are straightforward applications of the central limit theorem or involve only
basic calculations. �

5 Calibration of the model

One difficulty in calibrating a portfolio model to CDO quotes is that the upfront payment
of the equity tranche complicates the comparison of pricing errors in this tranche to
pricing errors in more senior tranches. By far the most spread is payed for the equity
tranche, we therefore calibrate our model to match the upfront payment (up to bid-ask
spreads reflected by εCDO) of the equity tranche and to minimize the distance of market
to model spreads over the remaining tranches. Hence, we aim for

D1 := |sCDO,f
T,1 − sCDO,m

T,1 | ≤ εCDO, D2 :=
J

∑

j=2

|sCDO,f
T,j − sCDO,m

T,j | → min, (12)

where the minimization is taken over the involved copula parameters.

5.1 Data and setup

We calibrate our model to portfolio CDS and CDO market quotes of the seventh iTraxx
Europe series, the former are denoted by spCDS,m

T , the latter by sCDO,m
T,j , j ∈ {1, . . . , J},

for the tranches of the CDO. Portfolio CDS spreads are available for contracts maturing
in three, five, seven, and ten years and spreads of the first five tranches of the CDO
are liquidly traded for the maturities five, seven, and ten years. All data was retrieved
from the Bloomberg database. We calibrated our model to five trading days, 2007-06-12,
2007-06-14, 2007-06-19, 2007-06-21, and 2007-06-26. The iTraxx Europe series implies a
quarter-yearly payment schedule T , i.e. n = 4T , where we chose T ∈ {5, 10}. Further,
the portfolio consists of I = 125 companies which are mapped to one of the six business
sectors: Auto (10), Consumer (30), Energy (20), Financials (25), Industrials (20), and
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5.2 Calibration of the individual default probabilities

TMT (20). For simplicity, we assume a homogeneous portfolio with piecewise constant
default intensities of the form

λ(t) = λi(t) = λ51[0,5](t) + λ101(5,10](t), t ∈ [0, 10],

for each i ∈ {1, . . . , I}, where in the sequel λ5 and λ10 are used to denote the constant
intensities on the intervals [0, 5] and (5, 10], respectively. The constant recovery rate is
chosen as R = 40% for all firms, a commonly accepted assumption. The attachment
points of the five traded tranches of the iTraxx Europe portfolio are given by [0%,3%],
[3%,6%], [6%,9%], [9%,12%], and [12%,22%]. The continuously compounded interest
rates are derived from par yields obtained from Bloomberg (ticker symbols C9603M,
C9601Y, . . . , C96010Y) by the standard bootstrap method, see Hull (2005), Chapter 4.
Interest rates corresponding to noninteger maturities were linearly interpolated.

5.2 Calibration of the individual default probabilities

One major advantage of our model is that default probabilities and dependence structure
are specified independent of each other. This allows to proceed in two steps, initially
fitting the default probabilities to portfolio CDS quotes via adjusting the default inten-
sities and then fitting the dependence structure to CDO quotes by appropriately setting
the parameters of the respective copula. The first step is done with Algorithm 5, the
second step with Algorithm 6.

Algorithm 5 (Fitting intensities via Algorithm 3)
(1) Setup. In our calibration, we specify the parameters as described in Section 5.1

according to the iTraxx Europe standards. Portfolio CDS market spreads are denoted
by spCDS,m

5 and spCDS,m
10 for maturities T = 5 and T = 10, respectively.

(2) Fitting λ5 and λ10. Use a numerical root-finding procedure to find λ̂5, such that
spCDS,f
5 = spCDS,m

5 . For this, the model spread spCDS,f
5 , which is an increasing func-

tion of λ5, is computed using Algorithm 3 with T = 5. Given λ̂5, use the numerical
root-finding procedure a second time to find λ̂10 satisfying spCDS,f

10 = spCDS,m
10 . For

this, the model spread spCDS,f
10 is computed as a function of λ10 with fixed λ5 = λ̂5

using Algorithm 3 with T = 10.

5.3 Calibration of the dependence structure

The dependence structure of our model is specified by the copula from which the default
triggers (U1, . . . , UI) are drawn. We used all Archimedean families listed in Table 1,
each in their exchangeable and nested version. For each family we further considered the
corresponding survival copulas. Given a sample (U1, . . . , UI) from a copula, a sample
from the corresponding survival copula is given by (1 − U1, . . . , 1 − UI). We hereby
excluded the case of Frank, as this copula is radially symmetric. The remaining freedom
of choice for the parameter ϑc of the outer power Clayton copula is used by setting

12



5.3 Calibration of the dependence structure

ϑc = 0.1. The reason for this choice is that we preferred a rather small value for ϑc in
order to be able to capture a large interval of possible upper tail dependence parameters
for the Clayton survival copula. As a benchmark for our studies, we also included the
Gauss copula. Overall, this results in a pool of eleven different copulas, being able to
capture different kinds of tail dependence.

For each family, our goals are two-fold. We first test if the exchangeable copula of the
family under consideration is able to produce sufficient dependence to match the upfront
payment of the equity tranche. If not, we feel that this family is not suitable for modeling
CDOs in the suggested framework. If so, we try to improve the fitting quality in a second
step by using the nested copula of the same family. To decrease the dimension of the
parameter space in the second step, we assume identical parameters ϑs = ϑ1 for all
sectors s ∈ {2, . . . , S}.
The objecting function for assessing the fitting quality of our model is stated in Equation
(12). As fair spreads are found by simulation we developed our own optimizer. This
routine exploits the specific structure of the problem to achieve the required precision in
relatively small amounts of time. The idea of our routine is to first choose the parameter
ϑ0 of the exchangeable Archimedean copula such that the upfront payment is matched,
this position is denoted by ϑ̂. Then, the second step starts from position (ϑ̂, ϑ̂) with
the nested Archimedean copula of the same class and follows the level curve satisfying
D1 = 0 on a fine two-dimensional grid. Important for tracking the level curve on which
the model matches the quoted upfront payment is the fact that the upfront payment
is decreasing in the dependence among the firms. Due to the concordance orderings of
both the outer and the inner Archimedean families of the nested Archimedean families we
consider, the level curve is a monotonically nonincreasing function in the (ϑ0, ϑ1) plane,
see Corollary 3.3 and Figure 2, which justifies and illustrates this algorithm, respectively.

Algorithm 6 (CDO calibration)
(1) Setup. In our calibration we use parameters as described in Section 5.1. In partic-

ular, CDO market spreads are denoted by sCDO,m
5 and sCDO,m

10 for maturities T = 5
and T = 10, respectively. We further have to specify a copula C for the default
triggers (U1, . . . , UI), which we assume to be one of the copulas mentioned above.
Denote by [ϑl, ϑu] the parameter space for the optimization of ϑ0, depending on the
chosen family. If C is a nested Archimedean copula, choose the number of sectors S
(e.g. 6) and the companies in each sector (d1, . . . , dS) (e.g. (10, 30, 20, 25, 20, 20)),
in correspondence to the iTraxx Europe specifications. Choose εCDO (e.g. 0.0004) as
pricing error for the upfront payment of the first tranche and choose the number N
(e.g. 500, 000) of simulation runs. Specify the number of subdivisions of each dimen-
sion for the 2d-optimizer m1 (e.g. 200, 300, or 400, depending on the length ϑu−ϑl

of the starting interval) and the number m2 (e.g. 3) of subdivisions for refinement.

(2) Fitting λ5 and λ10. Calibrate the model to match portfolio CDS spreads. For this,
use Algorithm 5 to obtain the fitted intensities λ̂5 and λ̂10.

13



5.4 Results of the calibration

(3) 1d-optimization. For the parameter ϑ0 ∈ [ϑl, ϑu] of the chosen copula C, find a
value ϑ̂ satisfying D1 < εCDO, compare Equation (12), by using a bisection. If there
is no such parameter, stop, and conclude that C is not adequate for our modeling
purpose.

(4) 2d-optimization. If C is a nested Archimedean copula use ϑ0 = (ϑ0, ϑ1) = (ϑ̂, ϑ̂)
from the 1d-optimization in Step (3) as initial vector for the minimization of D2

over all (ϑ0, ϑ1) ∈ [ϑl, ϑu]2 satisfying the constraint D1 < εCDO, compare Equation
(12). Note that being the result of the 1d-optimization, the vector (ϑ̂, ϑ̂) implies
D1 < εCDO. For the minimization of D2, define a fine grid on the parameter space
(ϑ0, ϑ1) ∈ [ϑl, ϑu]2 with mesh l = (ϑu − ϑl)/m1. Then repeat

(4.1) For each of the parameter constellations ϑ1 = (ϑ0− l, ϑ1), ϑ2 = (ϑ0− l, ϑ1+ l),
and ϑ3 = (ϑ0, ϑ1 + l) derive CDO tranche spreads with Algorithm 4.

(4.2) If the upfront payment of at least one of the parameter pairs ϑk, k ∈ {1, 2, 3},
is found to satisfy D1 < εCDO, set ϑ0 to ϑk.

(4.3) If none of the three search directions fulfills D1 < εCDO, consider the direction
ϑk minimizing D1 and subdivide the segment from ϑ0 to ϑk into m2 equally
spaced parts. Then, apply Algorithm 4 with the m2 copula parameters ϑl,
l ∈ {1, . . . ,m2} and set ϑ0 to argminl∈{0,...,m2}D1.

until ϑ0 /∈ [ϑl, ϑu]2, i.e. ϑ0 ≤ ϑl or ϑ1 ≥ ϑu. Given all visited pairs (ϑ0, ϑ1)
satisfying D1 < εCDO, choose (ϑ̂0, ϑ̂1) to be the minimizer of D2.

5.4 Results of the calibration

First of all, let us remark that the calibration results we obtained are similar for the
five considered trading days. Therefore, we only list the first trading day in detail, the
results for this day are listed in Tables 2 and 3 for maturities T = 5 and T = 10,
respectively. The average results for all trading days are presented in condensed form
in Table 4. In all tables, we identify exchangeable and nested Archimedean copulas
by using the leading characters “e” and “n”, respectively. Further, the survival copulas
for each family are denoted by a trailing “s”. The Gauss copula, abbreviated by “Ga”,
is used as a benchmark. In conjunction to the notation for Archimedean copulas, we
use “eGa” for the Gauss copula with homogeneous correlation and “nGa” for the Gauss
copula parametrized such that firms in the same sector have correlation ϑ1 and firms in
different sectors have correlation ϑ0.

The Gauss copula as market standard is outperformed by several exchangeable Archi-
medean families. Those which are able to capture upper tail dependence provided good
calibration results for all analyzed trading days and maturities. Our generalization to
nested Archimedean copulas reduced the pricing errors for all trading days and maturi-
ties, especially for the families which are upper tail dependent, the error was significantly
reduced. We emphasize that this improvement is already obtained by introducing a sin-
gle additional parameter. The outer power Clayton copula provided the most accurate
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5.4 Results of the calibration

fit to market quotes. For this copula, Table 5 lists computed 98% confidence intervals
for the upfront payment and fair spreads computed with 500,000 runs. The concern that
the generalization to nested Archimedean copulas is computationally too expensive is
not justified, as we may infer from mean computational times as listed in Table 4, where
κ̄ denotes mean runtimes for the optima taken over all five trading days.

2007-06-12 Dependence CDO upfront and spreads ŝCDO,f
5,j Error

Copula ϑ̂ ρ in % j = 1 j = 2 j = 3 j = 4 j = 5 D2

eA - - - - - - - -
nA - - - - - - - - - -

eAs 0.69 3.55 7.42 123.06 2.13 0.00 0.00 94.95
nAs 0.12 0.94 0.23 17.88 7.42 108.12 11.38 0.82 0.02 69.93

eC 1.94 3.32 7.40 98.67 19.27 3.84 0.26 64.21
nC 1.87 2.03 3.21 3.48 7.42 97.02 18.21 3.50 0.24 61.84

eCs 0.08 3.28 7.40 91.79 21.41 5.76 0.64 58.32
nCs 0.08 0.09 3.15 3.42 7.42 88.80 19.89 5.22 0.63 53.28

eopC 1.06 8.07 7.42 37.31 17.51 11.73 6.96 24.86
nopC 1.05 1.08 6.10 10.44 7.43 44.88 19.77 11.42 5.37 17.64

eopCs - - - - - - - -
nopCs - - - - - - - - - -

eF 2.77 3.28 7.44 92.97 22.34 5.98 0.64 60.65
nF 2.72 2.83 3.22 3.36 7.42 90.74 20.92 5.26 0.55 56.38

eG 1.06 8.19 7.42 35.94 17.58 11.62 6.81 26.04
nG 1.05 1.09 5.93 11.10 7.38 45.32 20.66 11.83 5.33 18.86

eGs 1.24 3.24 7.43 109.41 13.10 0.90 0.01 71.96
nGs 1.24 1.27 3.09 3.73 7.39 105.17 12.45 0.89 0.01 67.08

eJ 1.07 8.45 7.37 32.01 17.06 11.88 7.24 30.14
nJ 1.04 1.10 5.41 11.83 7.44 45.38 21.24 11.80 5.16 19.31

eJs - - - - - - - -
nJs - - - - - - - - - -

eGa 0.20 3.31 7.43 89.85 21.68 5.94 0.76 56.71
nGa 0.16 0.33 2.49 6.99 7.37 89.44 20.51 5.52 0.70 54.77

Market 7.40 45.12 11.84 5.18 2.14

Table 2 Simulation results for 2007-06-12 based on 500,000 runs.

Figure 1 shows the implied default correlations for all fitted copulas for the first day for
maturity T = 5. As interpretation we notice the large variety of implied term structures
of default correlations. Additionally considering the calibration results allows us to
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2007-06-12 Dependence CDO upfront and spreads ŝCDO,f
10,j Error

Copula ϑ̂ ρ in % j = 1 j = 2 j = 3 j = 4 j = 5 D2

eA 0.71 4.79 36.86 367.06 150.76 62.84 11.77 129.48
nA 0.70 0.73 4.72 4.92 36.87 365.35 149.86 62.57 11.58 126.81

eAs 0.27 2.41 36.88 536.29 108.22 4.04 0.01 286.13
nAs 0.01 0.83 0.06 19.59 36.91 427.53 150.32 41.73 2.99 178.79

eC 0.62 4.30 36.91 388.18 150.82 55.82 8.08 147.34
nC 0.62 0.62 4.29 4.30 36.85 386.60 150.09 55.77 8.19 144.88

eCs 0.07 4.07 36.87 390.46 146.77 54.33 8.59 143.58
nCs 0.07 0.09 3.87 4.84 36.92 389.40 145.19 53.45 8.47 140.16

eopC 1.10 12.58 36.86 279.29 89.68 47.39 24.35 57.10
nopC 1.05 1.16 6.68 17.92 36.92 315.12 115.26 57.25 19.13 44.13

eopCs - - - - - - - -
nopCs - - - - - - - - - -

eF 1.56 6.06 36.91 327.08 143.55 70.88 20.08 95.40
nF 1.55 1.56 6.02 6.10 36.85 325.38 141.58 69.84 19.66 90.28

eG 1.12 14.28 36.90 248.17 85.72 50.78 27.66 98.88
nG 1.05 1.20 6.65 21.06 36.92 296.78 115.70 61.22 20.70 68.46

eGs 1.10 2.97 36.89 466.13 146.36 22.38 0.40 235.38
nGs 1.09 1.19 2.58 5.67 36.92 451.47 147.39 29.54 1.03 213.95

eJ 1.17 16.56 36.89 213.34 76.36 50.83 30.52 145.99
nJ 1.02 1.29 2.66 25.72 36.89 313.24 133.75 70.58 17.17 75.86

eJs - - - - - - - -
nJs - - - - - - - - - -

eGa 0.13 4.36 36.89 381.96 146.96 57.13 10.02 136.62
nGa 0.13 0.16 4.15 5.43 36.87 381.17 146.16 56.53 10.01 134.45

Market 36.88 316.90 93.36 42.53 13.39

Table 3 Simulation results for 2007-06-12 based on 500,000 runs.
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T = 5 T = 10

Copula κ̄ in sec ρ̄ in % D̄2 κ̄ in sec ρ̄ in % D̄2

eA - - - 28.76 4.94 138.14
nA - - - 47.42 4.78 5.56 134.97

eAs 18.84 3.44 91.82 29.34 2.46 303.47
nAs 29.53 0.25 16.96 67.53 37.92 0.08 20.23 189.67

eC 30.19 3.18 59.35 40.81 4.50 158.12
nC 59.93 3.04 3.33 56.06 80.94 4.40 4.65 154.57

eCs 30.13 3.12 52.51 40.55 4.20 153.31
nCs 200.13 2.99 3.32 48.95 220.29 4.12 4.40 149.50

eopC 45.01 7.73 27.06 55.13 12.90 57.28
nopC 70.21 4.88 11.24 16.18 80.16 7.77 17.53 47.98

eF 23.86 3.14 54.71 34.23 6.30 101.86
nF 61.59 3.04 3.26 50.54 69.53 6.22 6.38 97.84

eG 34.14 7.83 29.18 44.34 14.63 99.35
nG 58.00 4.52 11.93 17.44 68.61 7.53 20.88 72.70

eGs 34.65 3.10 69.72 44.86 3.05 246.46
nGs 58.41 2.88 3.93 66.10 69.11 2.67 5.68 223.42

eJ 33.68 8.09 32.54 43.91 16.98 147.90
nJ 55.50 4.22 12.51 18.11 65.99 3.33 25.84 80.84

eGa 63.74 3.15 51.24 73.83 4.53 145.65
nGa 63.73 2.87 4.21 48.92 73.90 4.29 5.67 143.36

Table 4 Average calibration results based on 500,000 runs.

2007-06-12 Two-sided 98% confidence intervals for sCDO,f
T,j

Copula T j = 1 j = 2 j = 3 j = 4 j = 5

eopC 5 [7.33,7.51] [36.40,38.21] [16.85,18.17] [11.18,12.28] [6.55,7.37]
nopC 5 [7.34,7.52] [43.88,45.87] [19.07,20.46] [10.89,11.95] [5.02,5.72]

eopC 10 [36.76,36.95] [277.79,280.80] [88.72,90.65] [46.65,48.12] [23.83,24.87]
nopC 10 [36.82,37.02] [313.47,316.77] [114.16,116.35] [56.46,58.04] [18.71,19.56]

Table 5 Confidence intervals for the CDO upfront payment and spreads for the outer
power Clayton copula fitted to 2007-06-12 based on 500,000 runs.
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6 Conclusion

assign the families to three classes. The class that performed best consists of the outer
power Clayton copula family, the families of Gumbel and Joe, each of which is able to
capture upper tail dependence, a fact which is reflected in default correlations starting
above zero. The implied default correlations of these families are relatively constant
over time, which is obviously desirable if CDOs with nonstandard maturities, e.g. four
years, have to be priced. Also, the absolute level of implied default correlations, the
difference of intra- to inter-sector correlations and the improvement in fitting quality
of the nested compared to the exchangeable Archimedean families is similar for the
members of this class. The second class encompasses Ali-Mikhail-Haq’s family, Clayton’s
family and its corresponding survival copula family, the family of Frank, the survival
copula family based on Gumbel’s family, and the Gauss copula. Except for the Clayton
survival copula, these copula families are not able to capture upper tail dependence,
which implies vanishing default correlations at time zero and forces the term structure
of default correlations to increase over time. Although the Clayton survival copula is
theoretically able to capture upper tail dependence, the fitted parameters imply only a
negligible upper tail dependence. We may also infer from Tables 2, 3, and 4 that the
nested copulas of this second class perform only slightly better than their exchangeable
counterparts. Also, the difference of intra- to inter-sector correlations is relatively small.
The last class of copulas only consists of the Ali-Mikhail-Haq survival copula. As most
of the members of the second class, this copula also do not show upper tail dependence,
but the improvement in fitting quality, as well as the difference of intra- to inter-sector
correlations, is large.

Figure 2 illustrates the effectiveness of Algorithm 6 using the outer power Clayton copula
exemplarily. The relevant parameter space consists of all (ϑ0, ϑ1) satisfying ϑ0 ≤ ϑ1. At
first, a bisection is used to find the parameter ϑ̂ of the exchangeable copula for which
the upfront payment is matched. The points considered in this bisection are interpreted
as points on the diagonal ϑ0 = ϑ1 in the parameter space and displayed in Figure
2 in black color. Then, starting from this optimal point on the diagonal, the two-
dimensional optimizer follows the level curve on which the nested copula matches the
upfront payment. For all visited points on this level curve we compute the errors D1 and
D2, the former is illustrated by different plot symbols, the latter by different shades of
gray. The optima for the exchangeable and nested Archimedean copula are also reported.

6 Conclusion

We introduced the class of nested Archimedean copulas to the copula approach of Li
(2000) and Schönbucher, Schubert (2001) for the modeling of dependent defaults. This
class of copulas induces a hierarchical structure on the obligors in the considered credit
portfolio, which, depending on the classification criterion, allows for different economical
interpretations. To demonstrate the advantage of using nested Archimedean copulas over
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Figure 1 Default correlations for the fitted copulas for 2007-06-12 for maturity T = 5.
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A Algorithms for sampling Archimedean copulas

their exchangeable versions we calibrated the model to CDO tranche spreads of the Euro-
pean iTraxx portfolio. The hierarchical structure for this calibration was defined by the
original iTraxx industry sector segmentation. Our analysis includes several exchange-
able Archimedean families, some of which were newly applied within this framework,
and therefore indicates which copulas might be preferable for modeling CDOs. The cal-
ibration results show considerably reduced pricing errors by using nested Archimedean
families, even if we restrict our model to identical sector parameters. Moreover, our
results also indicate that copulas which are able to capture upper tail dependence gen-
erally provide the best fits, e.g. the families of Gumbel, Joe, and outer power Clayton
performed best. Technically, such a calibration requires fast simulation techniques and
an optimizer which exploits the specific structure of the problem, both were introduced
in this work. Further results address confidence intervals for CDO tranche spreads and
the implied term structure of default correlations of the model. We showed that firms in
the same sector have larger default correlations compared to firms in different sectors.

A Algorithms for sampling Archimedean copulas

The algorithms for sampling the exchangeable and nested Archimedean copulas listed
in Table 1 are summarized in the following theorem. The values ϑ0 and ϑs denote the
parameters of the involved generators. For Gumbel’s and partly for Clayton’s family,
these results can be found in McNeil (2007), the results for the other copulas were
obtained by Hofert (2007a) and Hofert (2007b).

Theorem A.1 (Sampling exchangeable and nested Archimedean copulas)
(a) For the family of Ali-Mikhail-Haq, F0 is a Geo(1−ϑ0), i.e. a geometric, distribution.

Further, F0,s, s ∈ {1, . . . , S}, is also discrete and can be sampled via the following
algorithm, where V0 denotes a sample from F0.

(1) Sample i.i.d. V0,s,i ∼ Geo( 1−ϑs

1−ϑ0
), i ∈ {1, . . . , V0}.

(2) Return V0,s =
∑V0

i=1 V0,s,i.

(b) For the family of Clayton, F0 is a Γ(1/ϑ0, 1), i.e. a Gamma, distribution with
density x1/ϑ0−1e−x/Γ(1/ϑ0), x ∈ [0,∞). Further, F0,s, s ∈ {1, . . . , S}, has Laplace-
Stieltjes transform ϕ−1

0,s(t;V0) = exp(−V0((1 + t)α − 1)) with α = ϑ0/ϑs and V0 ∼
F0. Therefore, F0,s has an exponentially tilted Stable density given by f0,s(x) =
eV0−xf(x), where f denotes the density of a S(α, 1, (cos(π

2 α)V0)
1/α, 0; 1) distribution,

see Nolan (2007) for the Stable parametrization. If ϑ0 is not too small, this density
can be efficiently sampled via the following rejection algorithm.

(1) For i ∈ {1, . . . , ⌈V0⌉}, sample V0,s,i from the distribution with Laplace-Stieltjes
transform ϕ−1

0,s(t;
V0

⌈V0⌉
). This can be achieved with a rejection algorithm with

envelope exp( V0

⌈V0⌉
)f(x).

(2) Return V0,s =
∑⌈V0⌉

i=1 V0,s,i.
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B A word concerning the implementation

Note that for a given V0, this algorithm for sampling F0,s has expected number of
iterations ⌈V0⌉ exp( V0

⌈V0⌉
). Using a rejection with envelope exp(V0)f(x) right from the

beginning, as proposed by McNeil (2007), will give an expected number of iterations
of exp(V0). For a given sample V0 from F0 we therefore use either of the algorithms,
depending on whether ⌈V0⌉ exp( V0

⌈V0⌉
) ≤ exp(V0) or not.

(c) For a generator ϕ0(t) = ϕ(t)ϑ0 of an outer power family with base generator ϕ,
the following algorithm samples from F0 = LS−1(ϕ0). For Clayton’s family, this
involves sampling a Gamma distribution, as stated in (b).

(1) Sample V ∼ F = LS−1(ϕ−1).

(2) Sample S ∼ S(1/ϑ0, 1, (cos(
π

2ϑ0
))ϑ0 , 0; 1).

(3) Return SV ϑ0.

Further, for step (2) of Algorithm 2 we may as well sample the copula corresponding
to the generator inverse exp(−tα), α = ϑ0/ϑs, and this generator inverse is the
Laplace-Stieltjes transform of a S(α, 1, (cos(π

2 α))1/α, 0; 1) distribution.

(d) For the family of Frank, F0 is a Log(1− exp(−ϑ0)), i.e. a logarithmic, distribution.
Further, F0,s, s ∈ {1, . . . , S}, is also discrete and can be sampled via the following
algorithm, where α = ϑ0/ϑs and V0 again denotes a sample from F0.

(1) Sample i.i.d. V0,s,i, i ∈ {1, . . . , V0}, with discrete probability density given by

yk =
(α

k

)

(−1)k−1 (1−e−ϑs )k

1−e−ϑ0
at k for k ∈ N.

(2) Return V0,s =
∑V0

i=1 V0,s,i.

(e) For the family of Gumbel, F0 is a S ∼ S(1/ϑ0, 1, (cos(
π

2ϑ0
))ϑ0 , 0; 1) distribution.

Further, for step (2) of Algorithm 2 we may as well sample the corresponding to the
generator inverse exp(−tα), α = ϑ0/ϑs, and this generator inverse is the Laplace-
Stieltjes transform of a S(α, 1, (cos(π

2 α))1/α, 0; 1) distribution.

(f) For the family of Joe, F0 is a discrete distribution given by yk =
(1/ϑ0

k

)

(−1)k−1 at k
for k ∈ N. Further, F0,s, s ∈ {1, . . . , S}, is also discrete and can be sampled via the
following algorithm, where α = ϑ0/ϑs and V0 denotes a sample from F0 as before.

(1) Sample i.i.d. V0,s,i, i ∈ {1, . . . , V0}, with discrete probability density given by
yk =

(α
k

)

(−1)k−1 at k for k ∈ N.

(2) Return V0,s =
∑V0

i=1 V0,s,i.

B A word concerning the implementation

All numerical experiments were run on a node containing two AMD Opteron 252 pro-
cessors (2.6 GHz) with 8 GB RAM as part of a Linux cluster. All algorithms were
implemented in C/C++ and compiled using the GCC, version 3.3.3 (SuSE Linux) with
option -O2 for code optimization. The command gettimeofday was used to measure
runtime as wall-clock time. For generating uniform random numbers we used an imple-
mentation of the Mersenne Twister by Wagner (2003).
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For sampling the exchangeable and nested Archimedean copulas of Frank and Joe in-
volved in Part (d) and (f) of Theorem A.1, we proceeded as follows. Given a set of pa-
rameters, we precomputed and stored the first couple of function values of both F0 and
F0,s, involving one computation for exchangeable Archimedean copulas and two compu-
tations for nested Archimedean copulas by our assumption ϑs = ϑ1 for all s ∈ {2, . . . , S}.
All distribution functions were precomputed until either the corresponding values were
greater than or equal to 1− 10−8 or until 500,000 values were computed. For a uniform
sample U greater than the maximal precomputed value of the distribution function, the
quantile corresponding to this maximal precomputed value was returned.
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