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OPTIMAL CONTROL OF PARAMETER-DEPENDENT
CONVECTION-DIFFUSION PROBLEMS AROUND RIGID

BODIES

TIMO TONN, KARSTEN URBAN, AND STEFAN VOLKWEIN

Abstract. This paper is concerned with optimal control problems of par-
tial differential equations. In particular, parameterized convection-diffusion
problems are considered, where the parameter appears in the coefficients of
the partial differential equation. Moreover, the presence of one or more rigid
bodies is assumed inside the domain. Both the theory (existence, differentia-
bility, optimality criteria) is investigated and the numerical solution (projected
gradient scheme) of such problems is carried out. Finally, it is shown that op-
timizing the efficiency of a rotating propeller fits into the presented framework
and results of corresponding numerical experiments are given.

1. Introduction

This research has been motivated by an industrial optimization problem, namely
the optimization of the hydromechanics of the Voith Schneider Propeller (VSP)1,
a ship propulsion and steering system. As we show in Section 6 this optimization
problem involving moving domains can be reduced to an optimization problem
with a partial differential equation (pde) having parameter-dependent non-constant
coefficients. Moreover, the blades of the propeller are rigid bodies that are present
in the flow domain. In the full VSP problem [5], the pde models a turbulent
incompressible flow, i.e., typically the time-dependent Navier-Stokes equations are
used. Here, we restrict ourselves to stationary, linear convection-diffusion problems
as a first step.

The particular interest in this application also leads to a specific form of the
cost functional. One important target is of course to optimize the efficiency of
the propeller. The efficiency is the ratio of the generated thrust and the required
energy, which in turns reduces to the ratio of normal and tangential components
of the force on the boundary of the blades. Hence, the cost functional is not of
the classical type but involves surface integrals. To the best of our knowledge, not
much seems to be known in the literature for such optimal control problems.
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Casas [3] considered the optimal control in coefficients of elliptic equations (even
with inequality constraints) for the cost functional

J(α) = 1
2

∫
Ω

(uα − u◦)2 dx + κ

2

∫
Ω
α2 dx,

where α : Ω → R is a suitable control coefficient and uα is the solution of an elliptic
Dirichlet problem with coefficient α. Finally, u◦ is a nominal state. In [8, 12]
parabolic problems are addressed, even in general Hilbert spaces, but both results
and techniques are quite particular for parabolic problems. In [1, 7], a variational
inequality with controls in the coefficients is considered.

Even though the motivation for this research stems from an industrial applica-
tion, we find several aspects also interesting from a pure academic point of view.
The particular form of the cost functional has already been mentioned. The second
issue is the lack of regularity due to the presence of the obstacles (i.e., the rigid
bodies). In fact, this framework usually prohibits optimal regularity. Hence, we
have to take into account that the state may not be in H2. These two facts require
a new mathematical investigation both for the existence of an optimal solution and
corresponding first-order necessary optimality conditions. We also study the influ-
ence of these effects to the performance of the numerical scheme by corresponding
numerical experiments.

This paper is organized as follows. In Section 2, we formulate the optimal control
problem under consideration and collect all required facts and notation. Section 3 is
devoted to the theoretical investigation, in particular we show existence of optimal
solutions. In Section 4, we present first-order necessary conditions utilizing the
Lagrangian approach and in Section 5, a projected gradient method is introduced.
It is shown in Section 6 that the problem of determining a hydrodynamic control
for optimizing the efficiency of the VSP can be reduced to the problem under
consideration. Corresponding numerical results are presented in Section 7.

2. Problem formulation

In this section, we fix the notation for the optimal control problem under con-
sideration and collect preliminary facts.

2.1. Preliminaries and notation. We consider a parameter-dependent convec-
tion-diffusion problem on an open domain Ω ⊂ R2. In Ω, one or more rigid bodies
are present that can be seen as obstacles. The position of these obstacles is fixed
and is assumed to be represented by a closed subset B. We write B ⋐ Ω. Then, we
define ΩB := Ω \ B which is an open, but not convex set in R2. We are interested
in weak solutions of a partial differential equation on ΩB . Therefore, we introduce
the Hilbert space V := H1(ΩB) endowed with the H1-inner product

〈u, v〉V =
∫

ΩB

(
∇u(x) · ∇v(x) + u(x) v(x)

)
dx, u, v ∈ V,

and its induced norm ‖u‖V =
√〈u, u〉V for u ∈ V .

Let us denote the outer boundary by Γ := ∂Ω and we consider a decomposition
of Γ into a part ΓD ⊂ Γ, where we will enforce Dirichlet boundary conditions,
as well as a part ΓN ⊂ Γ, where Neumann conditions are imposed. Moreover,
the set ΓD ∩ ΓN has zero Lebesgue measure. For the derivation of the variational
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formulation, we define the two subspaces

VD := {v ∈ V : v = 0 on ΓD} and V0 := {v ∈ VD : v = 0 on ∂B} ,

both endowed with the topology in V .

2.2. The state equation. We consider a convection-diffusion problem of the fol-
lowing form

−∇ · (A(x, µ)∇u(x)
)

+ b(x, µ) · ∇u(x) = f(x), f.a.a. x ∈ ΩB ,(2.1a)
u(x) = 0, f.a.a. x ∈ ∂B,(2.1b)
u(x) = 0, f.a.a. x ∈ ΓD,(2.1c)

n(x) · (A(x, µ)∇u(x)
)

= g(x), f.a.a. x ∈ ΓN.(2.1d)

Here, µ ∈ Dad ⊂ RN =: D is a parameter and Dad serves as the set of admissible
parameters. Moreover, A : ΩB ×Dad → R2×2, b : ΩB ×Dad → R2, f : ΩB → R,
g : ΓN → R are given data functions and n = n(x) stands for the outward normal
at x ∈ Γ. Finally, we write ‘f.a.a.’ for ‘for almost all’. This means that we consider
a state equation, where the parameter µ appears in the coefficients of the partial
differential equation.

We call u a weak solution to (2.1) if u ∈ V0 holds and if u satisfies

(2.2) a(u, ϕ;µ) = 〈f, ϕ〉L2(ΩB) + 〈g, ϕ〉L2(ΓN) for all ϕ ∈ V0,

where for µ ∈ D the parameter-dependent and bounded bilinear form a(· , · ;µ) :
V × V → R is defined as

a(ϕ,ψ;µ) =
∫

ΩB

((
A(x, µ)∇ϕ(x)

) · ∇ψ(x) +
(
b(x, µ) · ∇ϕ(x)

)
ψ(x)

)
dx,

for ϕ,ψ ∈ V . We start by investigating the well-posedness of (2.1).

Proposition 2.1. Suppose that A ∈ L∞(ΩB × D; R2×2) satisfying A(x, µ) =
A(x, µ)T f.a.a. x ∈ ΩB and all µ ∈ Dad. Moreover, assume that for given µ ∈ Dad
there exists a constant cµ > 0 such that

(2.3) a(ϕ,ϕ;µ) ≥ cµ ‖ϕ‖2
V for all ϕ ∈ V0.

Then, (2.1) possesses a unique weak solution u ∈ V0 satisfying

(2.4) ‖u‖2
V ≤ ηµ

(
‖f‖2

L2(ΩB) + ‖g‖2
L2(ΓN)

)
with a constant ηµ > 0 depending on µ.

Proof. Existence of a unique solution u ∈ V0 follows from the Lax-Milgram theorem,
see e.g. [4, p. 297]. From the trace theorem (e.g. [4, p. 258]) it follows that there
exists a constant γµ > 0 such that

(2.5) ‖u‖L2(ΓN) ≤ γµ ‖u‖V for u ∈ V0.
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Taking ϕ = u ∈ V0 in (2.2), utilizing (2.3), (2.5) and Young’s inequality twice we
arrive at

cµ ‖u‖2
V ≤ a(u, u;µ) =

∫
ΩB

f(x)u(x) dx +
∫

ΓN

g(x)u(x) dx

≤ 1
cµ
‖f‖2

L2(ΩB) + cµ
4 ‖u‖2

L2(ΩB) + γµ ‖g‖L2(ΓN)‖u‖V

≤ 1
cµ
‖f‖2

L2(ΩB) +
γ2

µ

cµ
‖g‖2

L2(ΓN) + cµ
2 ‖u‖2

V

which proves (2.4) with ηµ = 2
c2

µ
max{1, γ2

µ} > 0. �

It will be convenient to collect all our assumptions as follows.
Assumption 1. We assume the following conditions:

1) For the data we have f ∈ L2(ΩB) and g ∈ L2(ΓN).
2) The admissible set Dad ⊂ D of parameters is nonempty, bounded, closed

and convex.
3) We have A ∈ C(Ω̄B ×Dad; R2×2) and b ∈ C(ΩB ×Dad; R2). Moreover, we

assume that A(x, µ) = A(x, µ)T f.a.a. x ∈ ΩB and all µ ∈ Dad.
4) There exist a constant c > 0 independent of µ such that

a(ϕ,ϕ;µ) ≥ c ‖ϕ‖2
V for all ϕ ∈ VD and µ ∈ Dad.

5) There exists a constant η > 0 independent of µ satisfying

‖u‖2
V ≤ η

(
‖f‖2

L2(ΩB) + ‖g‖2
L2(ΓN)

)
for all µ ∈ Dad.

Remark 2.2. 1) Existence of a unique solution can also be ensured by using
Fredholm theory [4, p. 640-644]. If there does not exist a unique solution
v 6= 0 of the homogeneous problem
−∇ · (A(x, µ)∇v(x)

)
+ b(x, µ) · ∇v(x) = 0, f.a.a. x ∈ ΩB ,

v(x) = 0, f.a.a. x ∈ ∂B,
v(x) = 0, f.a.a. x ∈ ΓD,

n(x) · (A(x, µ)∇v(x)
)

= 0, f.a.a. x ∈ ΓN,

then (2.1) possesses a unique weak solution u ∈ V0.
2) Compared to (2.3) the constant c in Assumption 1, part 4) does not depend

on µ.
3) Following the lines of the proof of Proposition 2.1 shows the existence of

a constant η > 0 as in Assumption 1, part 5) independent of µ provided
Assumption 1, part 4) holds and the trace constant γµ in (2.5) does not
depend on µ. ♦

2.3. The optimal control problem. In order to formulate the optimal control
problem under consideration, we set

X := V0 × RN , Xad := V0 ×Dad ⊂ X,

where the Hilbert space X is endowed with the common product topology. Let
J : Xad → R+

0 be given as

(2.6) J(u, µ) := 1
2

(∫
∂B

∣∣F (n(x) · (A(x, µ)∇u(x))
)∣∣2 dx + κ |µ− µ◦|22

)
,
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where F : H−1/2(∂B) → L2(∂B) is a continuously Fréchet-differentiable mapping,
| · |2 denotes the Euclidean norm in RN , κ ≥ 0 is a regularization parameter and
µ◦ is a given nominal vector in D.

Remark 2.3. From u ∈ V we obtain ∂u
∂n ∈ H−1/2(∂B). Thus, the function F

can be interpreted as a smoothing operator which will be useful for the analysis
and the numerical realization of the norm of ∂u

∂n on ∂B. The role of F will also be
investigated by our numerical experiments. ♦

Then, our optimization problem reads

(Pµ) min J(u, µ) subject to (s.t.) (u, µ) ∈ V0 ×Dad = Xad satisfies (2.2).

It will be convenient to reformulate this problem in an abstract setting. In order
to do so, let us introduce the nonlinear operator e : Xad → V ′D by

〈e(u, µ), ϕ〉V ′D,VD
= a(u, ϕ;µ)− 〈n · (A(·, µ)∇u), ϕ〉H−1/2(∂B),H1/2(∂B)

− 〈f, ϕ〉L2(ΩB) − 〈g, ϕ〉L2(ΓN) for all ϕ ∈ VD

and for (u, µ) ∈ Xad. With this definition at hand, we can express (Pµ) equivalently
as the following abstract constrained optimal control problem

(Pµ) min J(u, µ) s.t. (u, µ) ∈ Xad and e(u, µ) = 0 in V ′D,

which can be seen as follows.

Lemma 2.4. For (u, µ) ∈ Xad, the operator equation e(u, µ) = 0 in V ′D is equivalent
to

(2.7)
a(u, ϕ;µ) =

∫
Ω

((
A(x , µ)∇u(x)

) · ∇ϕ(x) +
(
b(x, µ) · ∇u(x)

)
ϕ(x)

)
dx

= 〈n · (A(· , µ)∇u, ϕ〉H−1/2(∂B),H1/2(∂B) + 〈f, ϕ〉L2(ΩB)

+ 〈g, ϕ〉L2(ΓN) for all ϕ ∈ VD.

Proof. Choosing test functions ϕ ∈ H1
0 (ΩB) ⊂ V0 ⊂ VD we infer from (2.7) and

integration by parts that〈−∇ · (A(· , µ)∇u)+ b(· , µ) · ∇u, ϕ〉
H−1(ΩB),H1

0 (ΩB) = 〈f, ϕ〉L2(ΩB).

In other words, we have

(2.8a) −∇ · (A(· , µ)∇u)+ b(· , µ) · ∇u = f in H−1(ΩB).

Combining (2.7) and (2.8a) we obtain

〈n · (A(· , µ)∇u, ϕ〉H−1/2(ΓN),H1/2(ΓN) = 〈g, ϕ〉L2(ΓN) for all ϕ ∈ VD,

which gives

(2.8b) n · (A(· , µ)∇u) = g in H−1/2(ΓN).

Finally, u ∈ V0 implies

(2.8c) u = 0 in H1/2(ΓD ∪ ∂B).

It follows from (2.8) that u is a weak solution to the state equation (2.1). �
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3. Existence of optimal solutions

In this section, we present sufficient conditions ensuring the existence of at least
one optimal solution to our optimization problem (Pµ). Under Assumption 1 there
exists a unique solution uµ ∈ V0 to (2.2) for any µ ∈ Dad. In particular, we have
e(uµ, µ) = 0 in V ′D. Therefore, we can also introduce the reduced cost functional
J red : Dad → R+

0 by

(3.1) J red(µ) := J(uµ, µ) for µ ∈ Dad.

Then, (Pµ) can be equivalently expressed as

(Pred
µ ) min J red(µ) s.t. µ ∈ Dad.

In contrast to (Pµ), problem (Pred
µ ) has no explicit equality constraints, since they

are included in the reduced cost functional. In our numerical solution algorithm we
apply a projected gradient method to (Pred

µ ).

Theorem 3.1. Let Assumption 1 hold. Suppose that the mapping

(3.2) v 7→
∫

∂B

∣∣F (v(x))
∣∣2 dx for v ∈ H−1/2(∂B)

is weakly lower semi-continuous. Then (Pµ) has at least one optimal solution
x∗ = (u∗, µ∗) ∈ Xad.

Proof. By Assumption 1, part 2), the admissible set Dad is nonempty. Given µ ∈
Dad, Assumption 1, parts 3)–5), ensure existence of a unique solution u = uµ ∈ V0
to (2.2). Hence,

(3.3) F(Pµ) =
{

(u, µ) ∈ Xad
∣∣ e(u, µ) = 0 in V ′D

} 6= ∅.
Let {(un, µn)}n∈N be a minimizing sequence in F(Pµ) satisfying

(3.4) lim
n→∞ J(un, µn) = inf

{
J(u, µ)

∣∣ (u, µ) ∈ F(Pµ)
} ≥ 0.

Due to Assumption 1, part 2), the sequence {µn}n∈N is bounded. Since Dad is
supposed to be closed and convex, there is an element µ∗ ∈ Dad and a subsequence
{µnk}k∈N such that

(3.5) µnk → µ∗ as k →∞.

Note that un solves (2.2) for the corresponding parameter µ = µn, i.e., un = uµn .
From Assumption 1, part 5), it follows that the sequence {un}n∈N is uniformly
bounded in V0. Thus, there is an element u∗ ∈ V0 and a subsequence {unk}k∈N
such that

(3.6) unk ⇀ u∗ in V0 as k →∞.

From (3.6) we infer that
(3.7)

lim
k→∞

∫
ΩB

(∇unk −∇u∗) · χdx = 0 for all χ ∈ L2(ΩB)2 := L2(ΩB)× L2(ΩB).

Hence, the sequence {∇unk}k∈N is uniformly bounded in L2(ΩB)2. Thus, there
exists a constant C > 0 such that

(3.8) ‖∇unk‖L2(ΩB)2 ≤ C for all k ∈ N.
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It is easily seen that

(3.9)
A(· , µnk)∇unk −A(· , µ∗)∇u∗

=
(
A(· , µnk)−A(· , µ∗))∇unk +A(· , µ∗)(∇unk −∇u∗),

and we recall that by Assumption 1, part 3), the mapping µ 7→ A(· , µ) is continuous
in ΩB . For the first term, (3.5) and (3.8) imply for all ϕ ∈ V

(3.10)

∫
ΩB

((
A(· , µnk)−A(· , µ∗))∇unk

)
· ∇ϕdx

≤ ‖A(· , µnk)−A(· , µ∗)‖L∞(ΩB)‖∇unk‖L2(ΩB)2‖∇ϕ‖L2(ΩB)2
k→∞−→ 0.

From A(· , µ∗) ∈ C(Ω̄B ; R2×2) we infer that A(· , µ∗)∇ϕ ∈ L2(ΩB ; R2) for ϕ ∈ V .
Consequently, (3.7) and the symmetry of A imply that

(3.11)

∫
ΩB

A(· , µ∗)(∇unk −∇u∗) · ∇ϕdx

=
∫

ΩB

(∇unk −∇u∗) · (A(· , µ∗)∇ϕ) dx k→∞−→ 0 for all ϕ ∈ VD.

Combining (3.9), (3.10) and (3.11), we find

(3.12) lim
k→∞

∫
ΩB

(
A(· , µnk)∇unk −A(· , µ∗)∇u∗) · ∇ϕdx = 0 for all ϕ ∈ VD.

In a completely analogous way, we get

(3.13) lim
k→∞

∫
ΩB

(b(· , µnk) · ∇unk − b(· , µ∗) · ∇u∗)ϕdx = 0 for all ϕ ∈ VD,

and

(3.14) lim
k→∞

〈
n · (A(· , µnk)∇unk −A(· , µ∗)∇u∗), φ〉

H−1/2(∂B),H1/2(∂B)
= 0

for all φ ∈ H1/2(∂B). From (3.12)-(3.14) and (unk , µnk) ∈ F(Pµ) for all k ∈ N we
infer that

0 = lim
k→∞

e(unk , µnk) = e(u∗, µ∗) in V ′D.

Due to (3.2) the cost functional is weakly lower semi-continuous so that we conclude
from (3.4) and (3.14)

J(u∗, µ∗) ≤ lim
k→∞

J(unk , µnk) = inf
{
J(u, µ)

∣∣ (u, µ) ∈ F(Pµ)
} ≤ J(u∗, µ∗)

so that (u∗, µ∗) is a solution to (Pµ). �

4. First-order necessary optimality conditions

Problem (Pµ) is a non-convex programming problem so that different local min-
ima might occur. A numerical method will produce a local minimum close to its
starting value. Hence, we do not restrict our investigations to global solutions of
(Pµ). We will assume that a fixed reference solution x∗ = (u∗, µ∗) ∈ F(Pµ) is given
satisfying certain optimality conditions (ensuring local optimality of the solution).
In this section, we study first-order necessary optimality conditions for (Pµ).
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4.1. Differentiability properties. We begin by proving that both the cost func-
tional J and the constraint function e are Fréchet-differentiable. For that purpose,
differentiability properties of the coefficient functions A and b are required that are
stronger then the continuity conditions in Assumption 1, part 3). The following
assumptions are definitely satisfied in the applications we have in mind.

Assumption 2. We assume:
1) The functions µ 7→ A(x, µ), x ∈ Ω̄B, and µ 7→ b(x, µ), x ∈ ΩB, are

continuously differentiable and their partial derivatives Aµ(· , µ), bµ(· , µ)
with respect to µ are bounded for all µ ∈ Dad.

2) The function F is continuously Fréchet-differentiable from H−1/2(∂B) to
L2(∂B).

Lemma 4.1. Let Assumptions 1 and 2 be satisfied. Then, for every (u, µ) ∈ Xad,
the cost functional J is Fréchet-differentiable.

Proof. The partial directional derivative Jµ(u, µ) of J at (u, µ) ∈ Xad in any direc-
tion µδ ∈ D is given by

(4.1)

Jµ(u, µ)µδ =
∫

∂B

F ′(v)
(
n · ((Aµ(· , µ)µδ)∇u)

)
F (v) dx + κ

(
µ− µ◦

)T
µδ

=
〈
F ′(v)

(
n · ((Aµ(· , µ)µδ)∇u)

)
, F (v)

〉
L2(∂B) + κ

(
µ− µ◦

)T
µδ

=
〈
n · ((Aµ(· , µ)µδ)∇u), F ′(v)⋆ F (v)

〉
H−1/2(∂B),H1/2(∂B)

+ κ
(
µ− µ◦

)T
µδ,

where we set v := n · (A(· , µ)∇u) ∈ H−1/2(∂B), F ′(v) : H−1/2(∂B) → L2(∂B)
denotes the Fréchet-derivative of F at v, and F ′(v)⋆ : L2(∂B) → H1/2(∂B) is the
adjoint of F ′(v) satisfying
(4.2) 〈F ′(v)w,ψ〉L2(∂B) = 〈w,F ′(v)⋆ ψ〉H−1/2(∂B),H1/2(∂B)

for all (w,ψ) ∈ H−1/2(∂B)×L2(∂B). Let vδ := n · (A(· , µ+µδ)∇u) ∈ H−1/2(∂B).
To prove that Jµ(u, µ) is the partial Fréchet-derivative of J with respect to µ, we
estimate

(4.3)

∣∣J(u, µ+ µδ)− J(u, µ)− Jµ(u, µ)µδ

∣∣
≤ 1

2

∣∣∣∥∥F (vδ)
∥∥2

L2(∂B) −
∥∥F (v)

∥∥2
L2(∂B)

− 2
〈
F ′(v)

(
n · ((Aµ(· , µ)µδ)∇u)

)
, F (v)

〉
L2(∂B)

∣∣∣
+ κ

2

∣∣∣|µ+ µδ − µ◦|22 − |µ− µ◦|22 − 2
(
µ− µ◦

)T
µδ

∣∣∣ .
By Assumption 2, the mapping µ 7→ A(· , µ) is continuously differentiable and
φ 7→ F (φ) is continuously Fréchet-differentiable. Thus,

(4.4)

∣∣∣∥∥F (vδ)
∥∥2

L2(∂B) −
∥∥F (v)

∥∥2
L2(∂B)

− 2
〈
F ′(v)

(
n · ((Aµ(· , µ)µδ)∇u)

)
, F (v)

〉
L2(∂B)

∣∣∣ = o
(|µδ|2

)
for |µδ|2 → 0.

Combining (4.3) and (4.4) we arrive at∣∣J(u, µ+ µδ)− J(u, µ)− Jµ(u, µ)µδ

∣∣ ≤ o
(|µδ|2

)
+ κ

2 |µδ|22 = o
(|µδ|2

)
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for |µδ|2 → 0. Hence, Jµ(u, µ) is the partial Fréchet-derivative of J at (u, µ) ∈ Xad
with respect to µ.

The directional derivative Ju(u, µ) of J at (u, µ) ∈ Xad with respect to u is given
by

Ju(u, µ)uδ =
∫

∂B

(
F ′(v)vδ

)
F (v) dx for uδ ∈ V0,

with v := n · (A(· , u)∇u) and vδ := n · (A(· , u)∇uδ). From Assumption 2 we
infer that the mapping G : H−1/2(∂B) → L1(∂B) with φ 7→ G(φ) = 1

2 |F (φ)|2 is
Fréchet-differentiable and its derivative is given by G′(φ)φδ = (F ′(φ)φδ)F (φ) in
any direction φδ ∈ H−1/2(∂B). To prove that this directional derivative is already
the Fréchet-derivative, we estimate

∣∣J(u+ uδ, µ)− J(u, µ)− Ju(u, µ)uδ

∣∣ =
∣∣∣∣ ∫

∂B

G(v + vδ)−G(v)−G′(v)vδ dx
∣∣∣∣

≤ ∥∥G(v + vδ)−G(v)−G′(v)vδ

∥∥
L1(∂B) = o

(‖vδ‖H−1/2(∂B)
)

= o
(‖n · ∇uδ‖H−1/2(∂B)

)
.

If ‖uδ‖V0 → 0 holds, then it follows that ‖n · ∇uδ‖H−1/2(∂B) → 0. This gives the
claims. �

Next we investigate the differentiability of the constraint operator e.

Lemma 4.2. The operator e : Xad → V ′D is Fréchet-differentiable.

Proof. The directional derivative eµ(u, µ) of e at (u, µ) ∈ Xad in an arbitrary di-
rection µδ ∈ D is given by

〈eµ(u, µ)µδ, ϕ〉V ′D,VD
=
∫

ΩB

((
Aµ(· , µ)µδ

)∇u) · ∇ϕ+
((
bµ(· , µ)µδ

) · ∇u)ϕdx

−
〈
n · ((Aµ(· , µ)µδ

)∇u), ϕ〉
H−1/2(∂B),H1/2(∂B)

for ϕ ∈ VD. Since A and b are differentiable, we have

‖A(· , µ+ µδ)−A(· , µ)−Aµ(· , µ)µδ‖L∞(ΩB) = o
(|µδ|2

)
,

‖b(· , µ+ µδ)− b(· , µ)− bµ(· , µ)µδ‖L∞(ΩB) = o
(|µδ|2

)
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for |µδ|2 → 0. Hence, we estimate∥∥e(u, µ+ µδ)− e(u, µ)− eµ(u, µ)µδ

∥∥
V ′D

= sup
‖ϕ‖V =1

∣∣〈e(u, µ+ µδ)− e(u, µ)− eµ(u, µ)µδ, ϕ〉V ′D,VD

∣∣
= sup

‖ϕ‖V =1

{∫
ΩB

[([
A(· , µ+ µδ)−A(· , µ)−Aµ(· , µ)µδ

]∇u) · ∇ϕ
+
([
b(· , µ+ µδ)− b(· , µ)− bµ(· , µ)µδ

]∇u)ϕ]dx

−
〈
n · [A(· , µ+ µδ)−A(· , µ)

−Aµ(· , µ)µδ

]∇u, ϕ〉
H−1/2(∂B),H1/2(∂B)

}
≤ ‖A(· , µ+ µδ)−A(· , µ)−Aµ(· , µ)µδ‖L∞(ΩB)‖u‖V

+ ‖b(· , µ+ µδ)− b(· , µ)− bµ(· , µ)µδ‖L∞(ΩB)‖u‖V

+ ‖A(· , µ+ µδ)−A(· , µ)−Aµ(· , µ)µδ‖L∞(ΓD)
∥∥ ∂u

∂n

∥∥
H−1/2(∂B)

= o
(|µδ|2

)
,

so that eµ(u, µ) is the partial Fréchet-derivative of e at (u, µ) with respect to µ.
The directional derivative eu(u, µ) of e at (u, µ) with respect to u in any direction
uδ ∈ V0 reads

〈eu(u, µ)uδ, ϕ〉V ′D,VD
=
∫

ΩB

[(
A(· , µ)∇uδ

) · ∇ϕ+
(
b(· , µ) · ∇uδ

)
ϕ

]
dx

−
〈
n · (A(· , µ)∇uδ

)
, ϕ
〉

H−1/2(∂B),H1/2(∂B)

for all ϕ ∈ VD. Since u 7→ e(u, µ) is linear and bounded for any µ ∈ Dad, the
directional derivative eu(u, µ) is the partial Fréchet-derivative of e at (u, µ) with
respect to u. �

Finally, we investigate the differentiability of the bilinear form a(·, ·;µ) with
respect to the parameter µ ∈ Dad, since such derivatives may occur in optimization
schemes, where µ is the parameter. To this end, consider the mapping

R : Dad → V0, R(µ) := u(µ) ∈ V0 for µ ∈ Dad,

where u(µ) denotes the unique solution of (3.6). Then, we have

Theorem 4.3. Let Assumption 2 hold. The mapping R is C1. Moreover, for any
µ ∈ Dad and every µδ ∈ Dad the function z := R′(µ)µδ ∈ V0 is the unique solution
of the following boundary value problem

a(z, v;µ) = − ∂

∂µ
a(u(µ), v;µδ) for all ϕ ∈ V0.

Proof. The proof is very much similar to the proof of [3, Theorem 1]. Consider the
mapping H : D × V → V ′ defined by

〈H(µ, u), ϕ〉V ′,V = a(u, ϕ;µ)− 〈f, ϕ〉L2(ΩB) − 〈g, ϕ〉L2(ΓN) for all ϕ ∈ V0,

which is of class C1 in view of Assumption 2. Moreover H(µ, u(µ)) = 0 in V ′ and
the partial derivative Hu(µ, u) = a(u, ·;µ) is isomorphism from V to V ′ for every
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fixed µ ∈ Dad. Then, the implicit function theorem [11, p. 366] implies that R is
of class C1 and that

Hu(µ, u(µ))z = −Hµ(µ, u(µ))(µδ).

Finally, it follows immediately from the definition of H that

〈Hu(µ, u(µ))z, ϕ〉V ′,V = a(z, ϕ;µ) for all ϕ ∈ V0,

〈Hµ(µ, u(µ))µδ, ϕ〉V ′,V = ∂

∂µ
a(u(µ), ϕ;µδ) for all ϕ ∈ V0,

which proves the claim. �

4.2. Regular point condition. To ensure the existence of Lagrange multipliers,
a constraint qualification has to be satisfied at a local solution x∗ = (u∗, µ∗) ∈ Xad.
We make use of the following regular point condition.

Definition 4.4. A point x◦ ∈ F(Pµ) is said to be a regular point for (Pµ) provided
the linearization ∇e(x◦) = (eu, eµ)(x◦) : X → V ′D of the operator e is onto.

Lemma 4.5. Let Assumption 1 be satisfied. Then, for every x◦ ∈ F(Pµ) the
operator eu(x∗) is bijective.

Proof. It follows from the proof of Lemma 4.2 that the operator eu(x∗) is bijective
if for every P ∈ V ′D there exists a unique uδ ∈ V0 satisfying uδ = 0 in H1/2(ΓD∪∂B)
and

(4.5)

∫
ΩB

[(
A(· , µ)∇uδ

) · ∇ϕ+
(
b(· , µ) · ∇uδ

)]
ϕdx

− 〈n · (A(· , µ)∇uδ

)
, ϕ
〉

H−1/2(∂B),H1/2(∂B) = 〈P,ϕ〉V ′D,VD
for all ϕ ∈ VD.

Choosing ϕ ∈ H−1(ΩB) ⊂ VD we infer from (4.5) that uδ is the weak solution of

(4.6a) −∇ · (A(· , µ)∇uδ

)
+ b(· , µ) · ∇uδ = P in V ′D ⊂ H−1(ΩB).

Combining (4.5), (4.6a) and using integration by parts we obtain〈
n · (A(· , µ)∇uδ

)
, ϕ
〉

H−1/2(ΓN),H1/2(ΓN) = 0 for all ϕ ∈ VD.

Thus,

(4.6b) n · (A(· , µ)∇uδ

)
= 0 in H−1/2(ΓN).

From the Lax-Milgram theorem [4, p. 297] and Assumption 1, part 4), it follows
that there exists a unique solution uδ ∈ V0 to (4.6). This gives the claim. �

Remark 4.6. We infer from Lemma 4.5 that for every x◦ ∈ F(Pµ) the linear
operator∇e(x◦) : X → V ′D is surjective provided Assumption 1 holds. Definition 4.4
implies that any feasible point is regular for (Pµ). ♦
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4.3. Optimality condition. Let x∗ = (u∗, µ∗) be a local optimal solution to (Pµ).
To characterize x∗ via optimality conditions we introduce the Lagrange functional
L : X × VD → R for x = (u, µ) ∈ Xad and p ∈ VD by

L(x, p) := J(x) + 〈e(u, µ), p〉V ′D,VD

= 1
2

(∫
∂B

∣∣F (n · (A(· , µ)∇u)
)∣∣2 dx + κ |µ− µ◦|22

)
+
∫

ΩB

[
A(· , µ)∇u · ∇p+

(
b(· , µ) · ∇u− f

)
p
]

dx−
∫

ΓN

g pdx

− 〈n · (A(u, µ)∇u), p〉
H−1/2(∂B),H1/2(∂B).

Let Assumptions 1 and 2 hold. Due to Lemmas 4.1 and 4.2, the Lagrange func-
tional is Fréchet-differentiable. Moreover, Remark 4.6 and [9] imply that there
exists a unique Lagrange multiplier p∗ ∈ VD satisfying with x∗ the first-order nec-
essary optimality conditions

Lµ(x∗, p∗)(µ− µ∗) ≥ 0 for all µ ∈ Dad,(4.7a)
Lu(x∗, p∗)u = 0 for all u ∈ V0,(4.7b)
Lp(x∗, p∗)p = 0 for all p ∈ VD.(4.7c)

Notice that (4.7c) implies e(x∗) = 0 in VD. Thus, x∗ satisfies the state equation
(2.1), see also Lemma 2.4. Next we investigate (4.7b). For any direction u ∈ V0 we
find

(4.8)

Lu(x∗, p∗)u =
∫

∂B

(
F ′(v∗)

(
n · (A(· , µ∗)∇u)))F (v∗) dx

− 〈n · (A(· , µ∗)∇u), p∗〉
H−1/2(∂B),H1/2(∂B)

+
∫

ΩB

(
A(· , µ∗)∇u) · ∇p∗ +

(
b(· , µ∗) · ∇u) p∗ dx

with v∗ = n · (A(· , µ∗)∇u∗). Choosing u ∈ H1
0 (ΩB) ⊂ V0 ⊂ VD, using integration

by parts and (4.7b) we find〈−∇ · (A(· , µ∗)T∇p∗ + b(· , µ∗)p∗), u〉
H−1(ΩB),H1

0 (ΩB) = 0 for all u ∈ H1
0 (ΩB).

Thus, p∗ ∈ VD satisfies the differential equation
(4.9) −∇ · (A(· , µ∗)T∇p∗ + b(· , µ∗)p∗) = 0 in V ′D ⊂ H−1(ΩB).

Combining (4.7b), (4.8), (4.9) and using u = 0 in H1/2(ΓD ∪ ∂B), we have

(4.10)

0 =
∫

∂B

(
F ′(v∗)

(
n · (A(· , µ∗)∇u)))F (v∗) dx

− 〈n · (A(· , µ∗)∇u), p∗〉
H−1/2(∂B),H1/2(∂B)

+
〈
n · (A(· , µ∗)T∇p∗ + b(· , µ∗)p∗), u〉

H−1/2(ΓN),H1/2(ΓN)

for all u ∈ V0. We choose u ∈ V0 satisfying n · (A(· , µ∗)∇u) = 0 in H−1/2(∂B).
Then, it follows from (4.10) that〈

n · (A(· , µ∗)T∇p∗ + b(· , µ∗)p∗), u〉
H−1/2(ΓN),H1/2(ΓN) = 0.

Consequently, p∗ satisfies
(4.11) n · (A(· , µ∗)T∇p∗ + b(· , µ∗)p∗) = 0 in H−1/2(ΓN).
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Recall that ∫
∂B

(
F ′(v∗)

(
n · (A(· , µ∗)∇u)))F (v∗) dx

=
(
F ′(v∗)

(
n · (A(· , µ∗)∇u)), F (v∗)

)
L2(ΩB)

=
〈
n · (A(· , µ∗)∇u), F ′(v∗)⋆ F (v∗)

〉
H−1/2(∂B),H1/2(∂B) ,

so that (4.10) and (4.11) give〈
n · (A(· , µ∗)∇u), F ′(v∗)⋆ F (v∗)− p∗

〉
H−1/2(∂B),H1/2(∂B) = 0.

Therefore,

(4.12) p∗ = F ′(v∗)⋆ F (v∗) in H1/2(∂B).

From (4.9), (4.11), (4.12), and p∗ ∈ VD we derive the following theorem.

Theorem 4.7. Assume that a fixed reference solution x∗ = (u∗, µ∗) ∈ Xad to
(Pµ) is given. Let Assumptions 1 and 2 hold. Then there exists a unique Lagrange
multiplier p∗ satisfying the adjoint system

−∇ · (A(· , µ∗)T∇p∗ + b(· , µ∗)p∗) = 0 in ΩB ,(4.13a)
n · (A(· , µ∗)T∇p∗ + b(· , µ∗)p∗) = 0 on ΓN,(4.13b)

p∗ = F ′(v∗)⋆ F (v∗) on ∂B,(4.13c)
p∗ = 0 on ΓD.(4.13d) �

Next we turn to the variational inequality (4.7a), which is equivalent with

(4.14)

Lµ(x∗, p∗)(µ− µ∗)

=
〈
n ·
((
Aµ(· , µ∗)(µ− µ∗)

)∇u∗), F ′(v∗)⋆ F (v∗)
〉

H−1/2(∂B),H1/2(∂B)

+ κ
(
µ∗ − µ◦

)T (
µ− µ∗

)
+
∫

ΩB

((
Aµ(· , µ∗)(µ− µ∗)

)∇u∗) · ∇p∗ dx

+
∫

ΩB

((
bµ(· , µ∗)(µ− µ∗)

) · ∇u∗) p∗ dx

−
〈
n ·
((
Aµ(· , µ∗)(µ− µ∗)

)∇u∗), p∗〉
H−1/2(∂B),H1/2(∂B)

≥ 0

for all µ ∈ Dad, where v∗ = n · (A(· , µ∗)∇u∗) ∈ H−1/2(∂B). Since A(x, µ∗) belongs
to R2×2 for all x ∈ Ω̄B , we infer that Aµ(x, µ∗) is a tensor in R2×2×N . In particular,
Aµ(x, µ∗)(µ− µ∗) ∈ R2×2 holds for all x ∈ Ω̄B and

(Aµ(x, µ∗)(µ− µ∗))ij =
N∑

k=1
(Aµ(x, µ∗))ijk (µk − µ∗k),
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where µk and µ∗k denote the k-th component of the vectors µ and µ∗, respectively.
Therefore,

(4.15)

((
Aµ(· , µ∗)(µ− µ∗)

)∇u∗) · ∇p∗
=

2∑
i=1

∂p∗

∂xi

( 2∑
j=1

( N∑
k=1

(Aµ(x, µ∗))ijk (µk − µ∗k)
)
∂u∗

∂xj

)

=
N∑

k=1
(µk − µ∗k)

( 2∑
i=1

∂p∗

∂xi

2∑
j=1

(
(Aµ(x, µ∗))ijk

)
∂u∗

∂xj

)

=
N∑

k=1
(µk − µ∗k)

( 2∑
i=1

∂p∗

∂xi

2∑
j=1

(
Ak

)
ij

∂u∗

∂xj

)

=
N∑

k=1
(µk − µ∗k)

((
Ak∇u∗

) · ∇p∗),
where for 1 ≤ k ≤ N we introduce the matrices

Ak =
((
Ak

)
ij

)
∈ R2×2 with

(
Ak

)
ij

= (Aµ(x, µ∗))ijk for 1 ≤ i, j ≤ 2.

Analogously, bµ(x, µ∗) is a matrix in R2×N f.a.a. x ∈ ΩB and

(4.16)
((
bµ(· , µ∗)(µ− µ∗)

) · ∇u∗) p∗ =
N∑

k=1
(µk − µ∗k)

((
bk · ∇u∗

)
p∗
)
,

where for 1 ≤ k ≤ N we introduce the vectors

bk =
((
bk
)
i

) ∈ R2 with
(
bk
)
i

= (bµ(x, µ∗))ik for 1 ≤ i ≤ 2.

Combining (4.14)–(4.16) and (4.13c) we obtain the following result

Theorem 4.8. Assume that a fixed reference solution x∗ = (u∗, µ∗) ∈ Xad to (Pµ)
is given. Let Assumptions 1 and 2 hold and let p∗ denote the unique Lagrange
multiplier satisfying (4.13). Then, the variational inequality

N∑
k=1

(µk − µ∗k) ·
(
κ
(
µ∗k − µ◦k

)
+
∫

ΩB

(
Ak∇u∗

) · ∇p∗ +
(
bk · ∇u∗

)
p∗ dx

)
≥ 0

holds for all µ ∈ Dad. �

4.4. The reduced gradient. In Section 3 we have introduced the reduced cost
functional J red : Dad → [0,∞) by

J red(µ) = J(uµ, µ) for µ ∈ Dad,

where uµ ∈ V0 satisfies e(uµ, µ) = 0 in V ′D.
Let Assumptions 1 and 2 hold. From Lemmas 4.1 and 4.2 it follows that J red is

differentiable and its derivative ∇J red(µ) ∈ RN at a given µ ∈ Dad satisfies

(4.17) ∇J red(µ)Tµδ = 〈Ju(uµ, µ), u′µµδ〉V ′0 ,V0
+ Jµ(uµ, µ)µδ

for any direction µδ ∈ D. From e(uµ, µ) = 0 and Lemma 4.2 we conclude that

(4.18) eu(uµ, µ)u′µµδ + eµ(uµ, µ)µδ = 0 ∈ V ′D
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for any direction µδ ∈ D. Note that (uµ, µ) belongs to F(Pµ). Then, Lemma 4.5
implies that eu(uµ, µ)−1 : V ′D → V0 is a linear and bounded operator so that we
infer from (4.18)

(4.19) u′µµδ = −eu(uµ, µ)−1(eµ(uµ, µ)µδ

) ∈ V0.

Inserting (4.19) into (4.17) we find

∇J red(µ)Tµδ = −〈Ju(uµ, µ), eu(uµ, µ)−1(eµ(uµ, µ)µδ

)〉
V ′0 ,V0

+ Jµ(uµ, µ)Tµδ

= Jµ(uµ, µ)Tµδ −
〈
eµ(uµ, µ)µδ, eu(uµ, µ)−1(Ju(uµ, µ)

)〉
V ′0 ,V0

=
(
Jµ(uµ, µ)− eµ(uµ, µ)⋆ eu(uµ, µ)−⋆

(
Ju(uµ, µ)

))T

µδ,

where
eu(uµ, µ)−⋆ : V ′0 → VD and eµ(uµ, µ)⋆ : VD → D

are the adjoint operators of eu(uµ, µ)−1 and eµ(uµ, µ), respectively. Setting

λ = −eu(uµ, µ)−⋆
(
Ju(uµ, µ)

) ∈ VD,

the reduced gradient is represented by

(4.20) ∇J red(µ) = Jµ(uµ, µ) + eµ(uµ, µ)⋆ λ ∈ RN .

Notice that Lµ(uµ, µ, λ) = ∇J red(µ) holds. In particular, we obtain(∇J red(µ)
)
k

=
(
Lµ(uµ, µ, p)

)
k

= κ
(
µk − µ◦k

)
+
∫

ΩB

(
Ak∇uµ

) · ∇p+
(
bk · ∇uµ

)
pdx

for k = 1, . . . , N , where p solves the adjoint system and u is the solution to the
state equation for the parameter µ.

5. A Numerical optimization method

We solve the minimization problem (Pred
µ ) (see beginning of Section 3) numeri-

cally by applying a gradient projection method; see, e.g., in [6, 10]. The admissible
parameter space is an N -dimensional cube given by

Dad :=
N×

i=1
Ji, Ji := [µ

i
, µi],

with
µ

i
≤ µi ≤ µi, i = 1, . . . , N.

By P : RN → Dad we denote the common projection defined by

(P(µ)
)
i

=


µ

i
if µi < µ

i
,

µi if µ
i−1 ≤ µi ≤ µi,

µi if µi > µi

for µ = (µ1, . . . , µN ) ∈ D and i = 1, . . . , N . The gradient projection method is
presented in Algorithm 1. If ∇J red is Lipschitz continuous, then every accumulation
point µ∗ ∈ Dad of the sequence {µk}k∈N generated by Algorithm 1 is a stationary
point, i.e., ∇J red(µ∗) = 0; see [6, p. 95], for instance.
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Algorithm 1 (Gradient projection method)

1: Choose a starting value µ(0) ∈ Dad, the stopping tolerances 0 < εrel ≤ εabs, a
maximal number kmax of iterations, the scalars ̺ > 0, β ∈ (0, 1) and c ∈ (0, 1)
(e.g., c = 10−4); set k = 0.

2: repeat
3: Compute the cost J red(µ(k)) and its gradient ∇J red(µ(k)).
4: if |∇J red(µ(k))|2 < εabs or |∇J red(µ(k))|2 < εrel |∇J red(µ(0))|2 then
5: Return µ(k) and stop.
6: else {Projection step}
7: Set d(k) = −∇J red(µ(k)).
8: Find the least integer m such that

J red(µk(βm))− J red(µ(k)) ≤ −c
βm

‖µk(βm)− µ(k)‖2

with µk(βm) := P(µ(k) + βm d(k)).
9: Set µ(k+1) = µk(βm) and k = k + 1.

10: end if
11: until k = kmax.

6. An Application: A rotor with moving blades

In this section, we describe the already mentioned example that has been mo-
tivated by the Voith Schneider Propeller (VSP)2, a ship propulsion and steering
system, see e.g. [2, 13]. On the VSP, a rotor casing which ends flush with the ship’s
bottom is fitted with a number of axially parallel blades and rotates about a ver-
tical axis. To generate thrust, each of the propeller blades performs an oscillating
motion about its own axis (similar to the motion of the tail fin of a fish). This is
superimposed by a uniform rotary motion. We use this as a model here.

6.1. Problem formulation. We consider the case of five blades that are fixed on
a rotating disc (the rotor) which are rotated with an angle φ. At each rotation
angle φ (the phase angle) of the rotor, each blade Bi, i ∈ {1, . . . , 5}, is oriented
around an angle νi ∈ Ji with respect to the tangential of the circle. The geometry
is shown in Figure 6.1. Note the particular subdivision of the domain, where we
have labeled the blades in the reference situation (c.p. Section 6.2) as well as the
outer part of the domain (ΩE) to which we will refer in the sequel.

In the true model, the angles νi are not completely free, but linked by a mechan-
ical control (see Figure 6.1) in the following sense. Given a so-called blade steering
curve

α ∈ C2
2π =

{
α̃ ∈ C2([0, 2π])

∣∣ α̃ is 2π periodic
}
,

the angles are given by νi(φ) := α
(
φ + 2π(i − 1)/NB

)
for i = 1, . . . , NB (the

number of blades, i.e., here NB = 5). The ultimate goal is to determine a blade
steering curve that gives rise to optimal efficiency, [5, 13]. This requires of course
an instationary model. Here, we consider a simplified stationary model, i.e., instead
of varying the blade steering curve itself, in each blade we consider an independent
variation from a fixed blade steering curve, i.e. νi(φ) := α

(
φ+ 2π(i− 1)/NB

)
+ ν̃i

2Voith Turbo Marine, Heidenheim, Germany, http://www.voithturbo.de/marine
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Figure 6.1. Top: Initial configuration for our numerical tests
(left); Magnification of an arbitrary blade (right). Bottom: Blade
angle φ and steering angle α for a VSP with 6 blades (left); Blade
steering curve (right).

for i = 1, . . . , NB , for a variable phase angle φ. For technical reasons, the range of
these variations (ν̃i)i=1,...,5 is typically restricted to

ν̃i ∈ Ji =
[
− π

12 ,
π

12

]
=
[− 15◦, 15◦

]
for i ∈ {1, . . . , 5}.

Moreover, since the whole model is periodic, it is sufficient to consider φ ∈ I =
[−π/5, π/5] in the case of five blades. Hence, we have the parameter vector

(ν̃1, . . . , ν̃5, φ) ∈ Dad :=
(
J1 × . . .× J5

)× [− π

5 ,
π

5

]
=:

6×
i=1

Ji ⊂ R6

describing the location of the five blades. It will be convenient to denote ν̃6 := φ
so that we have a parameter vector

µ = (ν̃1, . . . , ν̃NB+1)T ∈ Dad ⊂ RNB+1,

i.e., N = NB +1 in the context of Sections 2–4. The blades in their original position
(determined by the given α) are denoted by Bi,0, i = 1, . . . , NB , and the moved
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ones by Bi,µ. By

Bµ :=
NB⋃
i=1

Bi,µ ⊂ Ω,

we denote the part of Ω containing the rigid bodies for a parameter vector µ and
we set Ωµ = Ω \ Bµ. Suppose that for any x ∈ Ωµ the matrix α(x) is bounded,
α ∈ C1

loc(Ω̄µ; R2×2) and symmetric, i.e. α(x) = α(x)T for all x ∈ Ωµ. Furthermore,
let β ∈ C1

loc(Ω̄µ; R2) be a given bounded convection field. Then, we consider the
convection-diffusion problem for u

−∇ · (α(x)∇u(x)) + β(x) · ∇u(x) = f(x) f.a.a. x ∈ Ωµ,(6.1a)
u(x) = 0 f.a.a. x ∈ ∂Bµ,(6.1b)
u(x) = 0 f.a.a. x ∈ ΓD,(6.1c)

n(x) · (α(x)∇u(x)) = g(x) f.a.a. x ∈ ΓN,(6.1d)
where ΓN is the Neumann part of the outer boundary, ΓD the Dirichlet part of ∂Ω,
f : Ωµ → R denotes a fixed inhomogeneity, g : ΓN → R is a given boundary data,
and n = n(x) denotes the outward normal vector. For the right-hand side f , we
assume
(6.2) f

∣∣
Ωµ\ΩE

≡ 0,

which means that f vanishes outside of ΩE (c.p. Figure 6.1). Note, that (6.2) allows
also non-homogeneous Dirichlet boundary conditions in (6.1c). In fact, posing
u = g̃ on ΓD instead of (6.1c) requires to solve (6.1a) with the exterior force
f̃ := f +∇ · (α(·)∇ug̃)− β(·) · ∇ug̃, where ug̃ is a homogenizer that should vanish
outside of ΩE , i.e., ug̃|ΓD = g̃ and ug̃|Ω\ΩE

≡ 0, to meet (6.2) for f̃ .
In order to state the weak formulation of (6.1), we have to define parameter-

dependend trial and test spaces as follows
Vµ := H1(ΩBµ

)
VD;µ := {v ∈ Vµ : v = 0 on ΓD} ,
V0;µ := {v ∈ VD;µ : v = 0 on ∂Bµ} ,

Then, for chosen µ ∈ RNB+1, the function u ∈ V0;µ is called a weak solution to (6.1)
provided

(6.3)
∫

Ωµ

(
α∇u) · ∇ϕ+

(
β · ∇u)ϕdx =

∫
ΩE

f ϕdx +
∫

ΓN

g ϕdx for ϕ ∈ V0;µ.

Introducing for µ ∈ RNB+1 the parametrized bilinear and bounded form a(· , · ;µ) :
Vµ × Vµ → R as

a(ϕ,ψ;µ) =
∫

Ωµ

(
α∇ϕ) · ∇ψ +

(
β · ∇ϕ)ψ dx for ϕ ∈ Vµ,

we can write (6.3) compactly as
(6.4) a(u, ϕ;µ) = 〈f, ϕ〉L2(ΩE) + 〈g, ϕ〉L2(ΓN ) for all ϕ ∈ V0;µ.

Obviously, this problem does not fit immediately into the framework of parame-
terized convection-diffusion problems as presented above since here the domain Ωµ

depends on the parameter. However, using a standard approach, namely transform-
ing this parameter-dependend domain to a fixed reference domain, will lead us to
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the above form. In fact, the change of variables causes the presence of parameter-
dependend coefficient functions. Hence, we will now describe the reduction to a
reference situation.

6.2. Reduction to a reference situation. As already said, it is natural to trans-
form the problem to a reference situation with a fixed domain. In the example
problem of the Voith-Schneider propeller, the parameter µ describes a rotation.
Therefore, the desired transformation is not too difficult, if we subdivide the do-
main as shown in the left part of Figure 6.1.

The reference situation is given in terms of the initial position of the blades, i.e.,
µ̂ ≡ 0,

B̂ := Bµ̂ =
NB⋃
i=1

Bi,µ̂

and the reference domain by Ω̂ := Ω \ B̂. Then, we set

V̂ := Vµ̂, V̂D := VD;µ̂, V̂0 = V0;µ̂,

and proceed by transforming the variational problem (6.3) to a reference domain
Ω̂. Then, we shall see that a weak solution û ∈ V̂0 satisfies

(6.5)

∫
Ω̂

((
T (1)(x̂ , µ)∇û(x̂)

) · ∇ϕ̂(x̂) +
(
T (2)(x̂ , µ) · ∇û(x̂)

)
ϕ̂(x̂)

)
dx̂

=
∫

ΩE

f(x̂) ϕ̂(x̂) dx̂ +
∫

ΓN

g(x̂) ϕ̂(x̂) dx̂ for all ϕ̂ ∈ V̂0,

where T (1) : Ω̂ × Dad → R2×2 and T (2) : Ω̂ × Dad → R2 denote the appropri-
ate, continuous transformations depending on the coefficient functions α and β,
respectively. If

(6.6) τ : Ωµ ×Dad → Ω̂,

represents the transformation x ∈ Ωµ 7→ x̂ = τ(x, µ) ∈ Ω̂, then û(x̂) = u(τ(x, µ))
solves (6.5) provided u solves (6.3). Note, that in our case τ |ΩE

≡ Id, i.e. the
transformation is the identity in ΩE , and therefore, the integrals over ΩE and ΓN
in (6.3) remain unchanged in (6.5). Moreover, due to (6.2), f in (6.5) remains
independent on the parameter µ in entire Ω̂. Hence, we have reduced this problem
to (2.1) with A ≡ T (1), b ≡ T (2) and ΩB replaced by the reference domain Ω̂.

7. Numerical Experiments

In this final section, we report on the results of several numerical experiments
that we have performed. They were all done using FEMLAB version 2.3 in con-
junction with MATLAB 6.5. We consider the VSP optimization problem described
in the previous section. We always start with the reference configuration that is
shown in the Figure 6.1 (left part) as initial value for the optimization. Further-
more, it visualizes the particular division of Ω̂ into sub-domains that is needed to
define the transformation τ (see (6.6)) appropriately. For more details refer to [13].

In the right part of Figure 6.1, one arbitrary blade is visualized in order to show
that the discretization is chosen in such a way that each edge has the same length.
This fact simplifies the implementation of a convolution along the boundary of the
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blade, which is our choice for the smoothing operator F (c.p. (2.6)). To be more
precise, let v̂ = n̂ · (T (1)(·, µ)∇û), then on blade B̂i we have∫

∂B̂i

|F (v̂(x̂))|2 dx̂ =
∫ NE

0
|F (v̂(x̂(s)))|2

∣∣∣∣ ∂∂s x̂(s)
∣∣∣∣
2

ds,

where NE is the number of edges, x̂(s) is an appropriate parameterization of ∂B̂i

and we set

F (v̂(x̂(s))) :=
∫ 1

−1
k(t)v̂(x̂(s− t)) dt.

For the kernel we consider two cases, namely the characteristic function k = χ[−1,1]
and the delta dirac function k = δ0, which obviously results in F ≡ Id. Note, that
k = χ[−1,1] is covered by our analysis concerning the regularity properties of the
mapping F , whereas k = δ0 is not. Recall that by (4.12), the choice of F is crucial
for the Dirichlet boundary conditions for the adjoint system on ∂B̂. Thus, Figure
7.1 visualizes the functions v̂(x̂(s)) and p(x̂(s)) (c.p. (4.12)) on an arbitrary blade.
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Figure 7.1. v̂ = n̂ · (T (1)(·, µ)∇û) and p on an arbitrary blade
using linear (top) and quadratic elements (bottom) and kernels
k = χ[−1,1] (left) and k = δ0 (right).
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7.1. Standard gradient method. Before we consider the gradient projection me-
thod described above, we want to validate our implementation. This is done by
allowing steering angles of the propellers in the interval [−90◦, 90◦], which means
that no constraints are posed, as in this case no projection is expected.

We start visualizing the optimized configuration for a constant (left part of Figure
7.2) and a non-constant (right part of Figure 7.2) velocity field. The results are
quite natural since each blade is aligned within the velocity field.

Figure 7.2. Optimized configuration for constant (left) and non-
constant (right) velocity field and variations from steering curve
in [−90◦, 90◦]. In black lines also the start configuration for the
optimization method is shown.

For a quantitative analysis, we first consider three different mesh sizes h =
0.2, 0.1, 0.05 for the finite element mesh. In Figure 7.3, we show that the convergence
history for the reduced cost functional (left) as well as the reduced gradient (right),
where we have used the value of the final iteration as ‘exact’ optimal value of the
reduced cost functional. Besides the very last stage of the algorithm (where the final
approximation is already basically reached), we obtain the expected asymptotic
behavior.

Next, in Figure 7.4 we consider different orders of the finite elements, namely
linear and quadratic elements, as well as two different choices of the smoothing
function F as described above. We can clearly see the better asymptotic rate of con-
vergence for quadratic elements (Lag=2) as compared to linear elements (Lag=1).
Furthermore, we observe basically the same behavior for k = χ[−1,1], which is cov-
ered by our analysis, and for k = δ0, which is not justified. We interpret this as a
quite promising result.

7.2. Gradient projection method. In order to investigate the influence of the
projection within the scheme, we restrict the steering angles to [−15◦, 15◦] and run
the same tests as for the ‘standard’ gradient method described above. Again, we
start by visualizing the optimized configuration in Figure 7.5. In this case not all
the blades are aligned completely within the velocity field. This is obviously due
to the restriction within the steering angles.
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Figure 7.3. Convergence history for the gradient method (no
projection) for linear elements and mesh sizes h = 0.2, 0.1, 0.05.
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Figure 7.4. Convergence history for the gradient method (no
projection) for mesh size h = 0.2, linear and quadratic elements,
as well as smoothing kernels k = χ[−1,2] and k = δ0.

Next, we again consider the three different mesh sizes (h = 0.2, 0.1, 0.05) for
the finite element mesh. In Figure 7.6, we show the convergence history for the
reduced cost functional (left) as well as the norm of the projected reduced gradient
(right). One can clearly see whenever the next component of the reduced gradient
is projected within the scheme. This corresponds to a change of the slope in the
right part of the figure.

Finally, in Figure 7.7, we consider again different orders of the finite elements
as well as the two different smoothing kernels. Also this case of a projection we
can clearly observe the better rate of convergence for quadratic elements (Lag=2)
as compared to linear elements (Lag=1). Furthermore, we basically find the same
behavior for k = χ[−1,1] and k = δ0, as well.
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Figure 7.5. Optimized configuration for a constant (left) and
a non-constant (right) velocity field and variations from steering
curve in [−15◦, 15◦]. In black lines also the start configuration for
the optimization method is shown.
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Figure 7.6. Convergence history for the projected gradient
method for linear elements and mesh sizes h = 0.2, 0.1, 0.05.

8. Conclusions and Outlook

We have investigated an optimal control problem for parameterized convection-
diffusion equations with a non-classical cost functional and possible lack of regular-
ity in the state. For the latter, from the analytic point of view it has turned out
to be essential to introduce a smoothing operator F . We have analyzed existence
of solutions, first-order necessary optimality conditions and differentiability of the
(reduced) cost functional. For the optimization method itself we utilize the gradient
projection method.
For a possible application we choose a simplified model of the VSP. In our numerical
experiments, we observe the expected (asymptotic) behavior of a gradient method
in all cases. Furthermore, the choice of the smoothing operator F ≡ Id does not
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Figure 7.7. Convergence history for the projected gradient
method for mesh size h = 0.2, linear and quadratic elements, as
well as convolution kernels k = χ[−1,1] and k = δ0.

seem to have a negative influence on the method, although this case is not covered
by our analysis.
These quite promising results motivate us to continue the investigation of this
problem. One possible direction is to consider the full VSP problem using incom-
pressible flows. Another direction is the application of reduced-basis methods for
a rapid computation of the reduced cost functional and the reduced gradient. In
terms of this, optimization methods different from the gradient projection method,
e.g., a quasi-Newton method, can be investigated and compared.
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