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WAVELET METHODS FOR THE REPRESENTATION, ANALYSIS
AND SIMULATION OF OPTICAL SURFACES
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Abstract. In this paper, we introduce a wavelet method for the description, approximation,
analysis and simulation of optical surfaces. We describe the new method and show results of several
numerical experiments for relevant applications in optics.

We focus on three main aspects. First, we describe a highly accurate representation of smooth
optical surfaces in terms of a B-spline quasi-interpolant. This representation is used in a ray trace
algorithm for the analysis of optical systems and is particularly suited for a wavelet decomposition.
The Fast Wavelet Transform gives access to the use of wavelets for the separation of low and mid spa-
tial frequency errors modeled by Zernike polynomials and Power Spectral Density functions, as well
as the localization and correction of errors. We compare our results with the classical representation
in terms of Zernike polynomials.
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1. Introduction. The shape of optical surfaces ranges from flat surfaces and
spherical sections to rotationally symmetric surfaces with mild or strong deviation
from a best-fit sphere to freeform surfaces with or without symmetries. Because they
are easily manufactured, flat and spherical surfaces are by far the most common.
These surfaces can be described by just one parameter, i.e., the curvature of the
surface. Advances in fabrication technology and optical design led to a regular use of
aspheric elements in optical systems. Aspheric surfaces are often described in terms
of a power series expansion of a basic conical section.

The evaluation of the performance of optical systems is usually based on ray trace
algorithms. In order to determine the path of a ray through an optical system, the
intersection points of the ray with the optical surfaces have to be computed. For an
optical system that contains only spherical surfaces, this calculation is straightforward
and an analytical expression can be given. In general, there exists no analytical
expression and iterative procedures have to be used to calculate approximations for
the intersection points.

In some cases, the representation of a surface in terms of polynomials turned out
to be impractical. Freeform surfaces without symmetries that are frequently used in
illumination systems may fall into this category. Another example is the description
of an aspheric surface as it is built including manufacturing errors.

Usually the surfaces show high-frequency oscillations and local defects due to
imperfections in the tools and the manufacturing process. Trying to represent such
an as-built surface by polynomials inevitably leads to a high number of terms and
makes ray tracing expensive and time-consuming. In addition, if local structures are
present on the surface, a large approximation error is introduced despite of the high
number of polynomial terms in a global representation of the surface. Consequently
there is a need for alternative surface descriptions that combine high approximation
accuracy with fast evaluation.
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One possibility is the use of the well-known Zernike polynomial system not only
for the characterization of the wave front but also for the description of the surface
[11]. These functions are often used to establish a direct connection between surface
defects and the aberrations of the optical system. However, a global description by
Zernike polynomials is not well-suited for the representation of local structures on
subapertures of a surface.

Several authors considered alternative aspheric representations. Greynolds [10]
gives a brief review of the so-called ‘superconic’ and ‘subconic’ surface descriptions.
The motivation for the introduction of these types was to produce steep aspheres
with less terms and smoother correction. Recently, Forbes [8] proposed a sum of
Jacobi polynomials to represent rotationally symmetric aspheres. These polynomials
constitute an orthonormal basis of the unit circle. Forbes’ representation has the
property to facilitate the enforcement of fabrication constraints, e.g. the deviation
of the slope from a best-fit sphere. For non-rotationally symmetric surfaces, splines
have been studied in the literature [9, 17, 18]. Parametric curves such as non-uniform
rational B-splines (NURBS) have been applied to the design of rotationally symmetric
aspheres [3] as well as to the design of freeform mirrors [16]. Because NURBS are a
standard surface type in CAD software, they offer an attractive surface description
when data has to be exchanged between optical design and CAD tools. Another
optical surface representation using 2D Gaussians as radial basis functions has been
introduced by Cakmakci and co-workers [2]. The emphasis of their work is a surface
description that is suitable for the optimization of rotationally symmetric as well
as freeform systems. They represent an optical surface as a sum of 2D Gaussians
as basis functions. Gaussians are smooth functions having derivatives of all orders
and can be regarded as local functions. The Fourier transform of a Gaussian is
again a Gaussian which gives access to the Power Spectral Density (PSD) function of
the surface. Therefore, Gaussians have several desirable properties in the context of
optical design.

Wavelets are a class of functions used to localize a given signal in both frequency
and space domains [4, 21]. An arbitrary function is represented as a linear combination
of local basis functions. The basis functions are obtained from a single prototype
wavelet, called the mother wavelet, by scaling (dilation) and shifting (translation).
The localization property of (compactly supported) wavelets offers a unique advantage
over Fourier methods for detecting local spatial structures. In signal analysis and
image processing wavelet methods are a well-established tool [14]. Wavelet transforms
have also been used in the analysis of surface data [7]. Recently, Tien and Lyu
introduced an inspection method based on the discrete wavelet transform [19]. Their
method offers fast and automated recognition of surface defects and deformations for
manufactured optical surfaces with flat shape.

Because wavelets are well adapted to represent both local and global structures,
a wavelet approach to the representation of optical surfaces seems promising. We
restrict ourselves to non-diffractive elements and assume sufficiently smooth surfaces.
Refraction and reflection of a ray at a surface are calculated with the surface normal
at the intersection point. This means that we have to evaluate the derivative of the
surface function during the ray trace algorithm. To facilitate this, we use cardinal
B-splines as basis functions. They offer the advantage that a recursive formula exists
for themselves as well as for their derivatives.

The surface data is contained in a bounding box. In order to obtain an accurate
approximation, a quasi-interpolation is applied. As we will see, this reduces to a



A WAVELET METHOD FOR OPTICS 3

weighting of the data in the case of B-spline basis functions. We present a ray trace
algorithm using this surface description. The iterative calculation of the intersection
points is performed by a Newton method. This implementation of a ray tracing allows
the evaluation of the performance of optical systems using measured surface data as
well as tolerating surface errors in different spatial frequency regimes.

A wavelet approach is also appropriate for the analysis of optical surfaces. We
apply a fast wavelet transformation (FWT) to measurement data to obtain a wavelet
representation. Threshold algorithms that cut the wavelet coefficients are used to
separate noise introduced by the measurement from the underlying structures of the
surface. The reconstruction of the manipulated data is performed by the inverse
FWT.

This paper is organized as follows. In §2, we collect the main facts of B-spline
multiresolution and wavelets that are relevant for this paper. A short introduction
how to model surface errors in optics is given in §3. Section 4 is devoted to the B-
spline quasi-interpolation method with corresponding numerical results also for the
ray tracing in §5 and §6. We describe and test our wavelet method in §7. The paper
ends with a summary and outlook.

2. B-Splines and Multiresolution. We start by reviewing those basic facts
on B-splines, Multiresolution Analysis (MRA) and wavelets that will be relevant in
the sequel.

We recall only the main facts of B-splines and refer to [6] for details. There are
several equivalent definitions of cardinal B-splines Nd, we use the following recursive
scheme

N1(x) := χ[0,1)(x), Nd(x) :=
∫ 1

0
Nd−1(x− t) dt = (Nd−1 ∗N1) (x),

for d ≥ 1. The following properties are well-known and will frequently be used in the
sequel

supp Nd ⊂ [0, d] (locality), (2.1)

Nd(x) = x

d− 1Nd−1(x) + d− x
d− 1Nd−1(x− 1) (recursion), (2.2)

Nd ∈ Cd−2(R) with N ′d(x) = Nd−1(x)−Nd−1(x− 1) (regularity). (2.3)

Note that (2.2) offers a fast recursive evaluation procedure since the evaluation is
trivial for N1. In addition (2.3) also allows a fast evaluation of derivatives. Another
important property of Nd is the following equation

Nd(x) = 21−d
d∑
k=0

(
d

k

)
Nd(2x− k), x ∈ R,

which is known as refinement equation. Finally, it is known that shifts of Nd, i.e.
Nd(· − k), k ∈ Z, are linearly independent. These last two properties mainly enable
B-splines to generate a Multiresolution Analysis (MRA) which will be described next.
We define for a piecewise continuous function g : R → R its scaled and shifted
variant as gj,k(x) := 2j/2g

(
2jx− k), where j ∈ Z is called level, k ∈ Z. Next,

abbreviating ϕ := Nd and Sj := closL2(R)Φj , Φj := {ϕj,k : k ∈ Z}, we obtain the
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following properties

Sj ⊂ Sj+1 (nestedness), (2.4a)

closL2(R)
⋃
j∈Z

Sj = L2(R),
⋂
j∈Z

Sj = {0} (span and intersection), (2.4b)

f ∈ Sj ⇐⇒ f(2·) ∈ Sj+1 (scaling), (2.4c)
f ∈ S0 ⇐⇒ f(· − k) ∈ S0 (shift invariance), (2.4d)
Φj is a Riesz basis for Sj with constants independent of j. (2.4e)

A sequence S = {Sj}j∈Z of spaces satisfying (2.4) is called Multiresolution Analysis
(MRA) [14] and the function ϕ scaling function of the MRA. There are also other
functions than Nd satisfying (2.4). Here, we are only interested in compactly sup-
ported generators ϕ. One can show that (2.4) implies the existence of a dual scaling
function ϕ̃ such that (

ϕ(·), ϕ̃(· − k)
)

0;R = δ0,k, k ∈ Z,

and ϕ̃ generates a dual MRA S̃. We denote by (u, v)0;Ω the inner product on L2(Ω)
and the induced norm by ‖u‖0;Ω :=

√
(u, u)0;Ω. There exist several ϕ̃ labelled by an

index d̃, d + d̃ even, and denoted by Ñd,d̃. This additional index has the following
meaning: Whereas Nd are piecewise polynomials (and each polynomial p ∈ Pd−1 can
be represented by Φ0), we obtain that

xr =
∑
k∈Z

αr,k ϕ̃(x− k), αr,k :=
∫

R
tr ϕ(t− k)dt,

for 0 ≤ r ≤ d̃− 1. Moreover, also Ñd,d̃ are compactly supported [5].
Given a scaling function ϕ, the biorthogonal projection Pj : L2(R) → Sj of a

function f ∈ L2(R) onto the space Sj is given by

Pj f =
∑
k∈Z

(
f, ϕ̃j,k

)
0;R ϕj,k. (2.5)

If Φj represents polynomials in Pd−1 (up to degree d−1), the following error estimate
is well-known

‖f − Pj f‖0;R . 2−js‖f‖s;R, f ∈ Hs(Ω), 0 ≤ s < d.

Here, A . B means that A ≤ cB with a uniform constant c > 0. Moreover, Hs(Ω)
denotes the standard Sobolev norm of weakly differentiable functions of order up to
s ∈ N normed by

‖f‖2s;R :=
s∑

m=0
‖∂mf‖20;R.

There is also a generalization to s ∈ R+. We will use periodic scaling functions in the
sequel. To this end, we define the periodization of a continuous function f : R → R
by

[f ] (x) :=
∑
k∈Z

f(· − k)|[0,1](x).
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Then, ϕj,k := [ϕ]j,k gives rise to a system of linearly independent functions Φj :=
{ϕj,k : k ∈ Ij}, Ij := {0, . . . , 2j−1}, that span nested spaces Sj of periodic functions.
In other words, [ϕ] is a generator of a periodic MRA.

Now, we introduce biorthogonal wavelets. Let two MRA’s S, S̃ generated by
scaling functions ϕ, ϕ̃ be given and define complement spaces Wj , W̃j by

Sj+1 = Sj ⊕Wj , S̃j+1 = S̃j ⊕ W̃j , Sj⊥W̃j , S̃j⊥Wj .

A function ψ is called (mother) wavelet if

Ψj := {ψj,k : k ∈ Jj := Ij+1 \ Ij}
is a Riesz basis for Wj and Ψ := ∪jΨj for L2(R). One can show that there is a
corresponding dual wavelet ψ̃, i.e.,

(ψj,k, ψ̃j′,k′)0;R = δj,j′ δk,k′ , j, j′, k, k′ ∈ Z.

In addition, we assume that ψ, ψ̃ are compactly supported, e.g. the Cohen-Daubechies-
Feauveau (CDF)-biorthogonal B-spline wavelets [5]. The periodization is straightfor-
ward.

One main ingredient for our later application is the Fast Wavelet Transform
(FWT) described as follows. Let fj ∈ Sj , then

fj =
∑
k∈Ij

cj,k ϕj,k, cj,k := (fj , ϕ̃j,k)0;R , cj := (cj,k)k∈Ij
,

is called single scale representation of fj . Since Sj = Sj−1 ⊕Wj−1, we obtain the
alternative representation

fj =
∑

k∈Ij−1

cj−1,k ϕj−1,k +
∑

k∈Jj−1

dj−1,k ψj−1,k

and straightforward calculations show that

cj−1,m = 1√
2
∑
k∈Ij

cj,l ãl−2m, dj−1,m = 1√
2
∑
k∈Ij

cj,l b̃l−2m,

where ãk, b̃k are the dual refinement and wavelet coefficients, i.e.,

ϕ̃(x) =
∑
k∈Ij

ãk ϕ̃(2x− k), ψ̃(x) =
∑
k∈Ij

b̃k ϕ̃(2x− k).

The mapping cj 7→ (cj−1,dj−1) is called decomposition and the iterated application

FWT : cj 7→ (c0,d0, . . . ,dj−1)

is known as Fast Wavelet Transform. It is remarkable that the FWT and also its in-
verse IFWT both are of linear complexity as long as primal and dual scaling functions
are compactly supported. We obtain the wavelet representation of fj ∈ Sj as

fj =
j−1∑
`=−1

∑
k∈J`

d`,kψ`,k,
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where we have set ψ−1,k := ϕ0,k, d−1,k := c0,k and J−1 := I0 for simplicity. With
respect to the single scale projectors Pj in (2.5) the detail reads

Qjf := (Pj+1 − Pj)f =
∑
k∈Z

(
f, ψ̃j,k

)
0;R ψj,k.

For a given function f ∈ L2(R), the term (f, ψ̃j,k)0;R is called wavelet coefficient.
Finally, we consider the two-dimensional case. It is readily seen that the bivariate

tensor product

ϕ2D
j,k(x, y) :=

(
ϕj,k1 ⊗ ϕj,k2

)
(x, y) = ϕj,k1(x) · ϕj,k2(y), k = (k1, k2),

is refinable and Φ2D
j := {ϕ2D

j,k : k ∈ I2D
j := Ij × Ij} generates a MRA S2D in L2(R2)

or L2([0, 1]2) with periodic functions. In the 2D-case, one has 3 different types of
wavelets, often referred to as horizontal, vertical and diagonal detail

ψH := ψ ⊗ ϕ, ψV := ϕ⊗ ψ, ψD := ψ ⊗ ψ.

Then, single scale and wavelet representation of a function fj ∈ Sj reads

fj =
∑

k∈I2D
j

cj,k ϕ
2D
j,k =

j−1∑
`=−1

∑
e∈{H,V,D}

∑
k∈J 2D

`

de`,k ψ
e
`,k.

The FWT reads similar, again with linear complexity.
Nowadays, there is a deep analysis of wavelets available, several results have been

proven and wavelets have been used in different areas. We just mention [21] for a
recent monograph. Let us describe one property that is important in the sequel. It
is easily seen that polynomial exactness of the dual scaling functions imply vanishing
moments of the primal wavelets. That means

Mr(ψ) :=
∫

R
xr ψ(x) dx = 0, 0 ≤ r < d̃.

The left term in the equation is called r-th order moment and a wavelet is said to
have vanishing order d̃ if Mr(ψ) = 0 for all 0 ≤ r < d̃. If ψ has d̃ vanishing moments,
then it is known that

|(f, ψj,k)0;Ω| . 2−js‖f‖s;supp ψj,k

for all f ∈ Hs(supp ψj,k) ∩ L2(Ω), and 0 ≤ s < d̃. This means that wavelet co-
efficients of a function are small provided the underlying function is locally smooth
(since | supp ψj,k| . 2−j). Vice versa, large wavelet coefficients indicate local non-
regularity. With regard to optical surfaces this means that large wavelet coefficients
are an indicator for local errors. This is the mathematical foundation for our method.

3. Errors of Optical Surfaces. Since decades, Carl Zeiss AG produces high
quality optical systems. The demands of modern optical systems require a careful
investigation of errors that might be present in such a system. Those errors may result
from the production, the assembling or from damages e.g. caused by the transport.
Besides the analysis of such errors, the interest lies of course in their correction in
order to assure a prescribed specification of an optical system.
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Let us restrict ourselves in the following to surface errors of elements of an optical
system. Typically, these errors are classified in terms of their spatial frequencies,
namely low, mid and high spatial frequency perturbations [12]. Low spatial frequency
perturbations are long wave defects, that cause classical aberrations, like astigmatism
or coma. In contrast, typical ripple pattern and waviness are usually interpreted as a
mid spatial frequency perturbation. This type of surface error may cause a diffusion of
light incident on the surface with a small angle range and reduce the resolution of the
optical system. Finally, high spatial frequency perturbations characterize polishing
defects or micro roughness which leads to a wide angle diffusion of light. This has no
effect on the resolution but lowers the contrast and is mainly considered in scattered
light calculations. For ray tracing and tolerating these perturbations are negligible,
so that we consider only low and mid spatial frequency perturbations here.

Traditionally, the focus in optics lies in the investigation of low frequency errors.
These are described by the orthogonal system of Fringe-Zernike polynomials {Zm :
m ∈ R} that are also used in the characterization of wave front errors [15]. They
represent an orthonormal basis on the unit circle and so are well-suited to describe
global irregularities of a circular surface or fitting errors. Moreover, these functions
do have a physical interpretation which makes them particularly interesting in optics.
The corresponding part of the error should be called ZFR error and is denoted by

errZFR(x, y) :=
∞∑
m=1

cm Zm(x, y), cm ∈ R.

The properties of the perturbations errZFR are well investigated and their influence on
the optical system is well established [12]. The abbreviation ZFR for Fringe-Zernike
is standard in optics.

As already mentioned, the demands of high-resolution optical systems enforce
the optical industry nowadays also to investigate the mid frequency errors. This is
typically modeled by a so-called Power Spectral Density (PSD) function. The PSD
is a useful tool if one wants to identify oscillatory signals in time series data and to
determine their amplitude. The corresponding error is denoted by errPSD. Given a
PSD P (for which one chooses a probability density function), the relationship to the
corresponding errPSD is given by

P (ωx, ωy) :=
∣∣∣ F [errPSD(x, y)]

∣∣∣2, (3.1)

where ωx and ωy are spatial frequencies and F denotes the Fourier transform.
Let us briefly describe a method to realize errPSD. We define an equidistant mesh

with n × n grid points, which coincides with the spatial frequencies ωx = ωy. For
every grid point, we compute a realization of P and the phase φ(i, j). This is done
by choosing specific probability distributions and using a random number generator
for the chosen distribution. Finally, we obtain the surface error errPSD by applying
the inverse Fourier transform as described above. For a continuous surface we obtain
the following representation

errPSD(x, y) = c0 +

n−1
2∑

i,j=0

(
ai,j · sin(iπx+ jπy + αi,j) + bi,j · sin(iπx− jπy + βi,j)

)
,

with c0 := π
2
√
P (0, 0) and Fourier coefficients

ai,j := ∆i,j

√
P (iπ, jπ) + P (−iπ,−jπ), bi,j := ∆i,j

√
P (iπ,−jπ) + P (−iπ, jπ),
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where ∆i,j := π
2
√

2 (2− δi,0 − δj,0) and phase values

αi,j := π

2 + 1
2
(
φ(iπ, jπ)− φ(−iπ,−jπ)

)
, βi,j := π

2 + 1
2
(
φ(iπ,−jπ)− φ(−iπ, jπ)

)
.

We have chosen P ∼ χ2
2 with two degrees of freedom and φ ∼ U ([0, 2π)), i.e., the

uniform distribution. Hence, we have two free parameters left, n and the scaling of
errPSD. As already mentioned, we neglect the high frequency part of the error, so we
assume that the total error can be represented as errTOTAL := errZFR + errPSD.

4. B-Spline Representation. In this section, we introduce the description of
an optical surface in terms of B-splines. Of course, such an approach is by far not
new [9]. However, we will use a more recent quasi-interpolation scheme in order to
guarantee the accuracy of the representation and also as a preparation for the later
wavelet analysis. The framework under consideration is the following. On one hand,
there is a ‘theoretical’ shape of the surface which is a smooth function f : Ω → R,
describing an ‘optimal’ optical surface, e.g. a sphere, asphere or freeform surface.
Here, Ω ⊂ R2 is a closed and bounded domain e.g. the area that is needed to define
the parameterization of the surface. Without loss of generality, we can assume that
Ω ⊂ � = [0, 1]2 with a positive distance of Ω to the boundary of the box. In particular,
we extend f to �, i.e., we consider f : �→ R. On the other hand, in many relevant
situations, we are just given measurements of a surface in terms of point values.
We would like to be able to reconstruct the underlying surface. Moreover, these
measurement data are always affected by errors. Hence, the second issue is to analyze
and possibly correct such errors.

4.1. Projection and Quasi-Interpolation.

Projection. If a surface is given by a function f : �→ R, f ∈ L2(�), which we
assume to be periodic and Ψ = {ψj,k : (j,k) ∈ J 2D}, J 2D = ∪∞j=0j×{0, . . . , 2j−1}2,
is a wavelet basis, then the following representation is well-known

f =
∑

(j,k)∈J 2D

dj,k ψj,k, dj,k = (f, ψ̃j,k)0;Ω.

In many cases, the above representation is not useful in practice since the expansion
may involve infinitely many terms. Thus, we need an appropriate approximation.
One possibility is to use the underlying MRA and the corresponding (bi-)orthogonal
projection, namely

fj := Pj f :=
∑

k∈I2D
j

cj,kϕj,k, cj,k := (f, ϕ̃j,k)0;Ω, I2D
j = {0, . . . , 2j − 1}2,

where Φj = {ϕj,k : k ∈ I2D
j } is a basis for the multiresolution space S2D

j . As we have
seen above, the approximation error ‖f−Pjf‖0;� mainly depends on the regularity of
the function f to be approximated (assuming that we have chosen the scaling function
system appropriately).

Note however, that still we are facing a problem for a real application. In fact,
the coefficients cj,k involve an integral which typically cannot be computed exactly.
Of course, one can resort to quadrature formulae which typically involve point values
of f and the dual scaling functions ϕ̃j,k. In most cases, point values of ϕ̃j,k cannot
be computed exactly. One alternative is a quasi-interpolation scheme. Since we
use a tensor product construction, we describe just the 1D-case in the sequel. The
generalization to 2D is straightforward by the tensor product.
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Quasi-Interpolation. A quasi-interpolation scheme produces an approximation
of a given function f by only using point values of the function. This is similar to a
classical interpolation. The difference is that a quasi-interpolation does not need to
match point values of f at given nodes. This allows error estimates in L2 also with high
orders of accuracy. Moreover, the well-known oscillations in standard interpolation
can be avoided.

Often, the following approximation is used (see, e.g. [4, 14])

cj,k ≈ 2−
j
2 f
(
2−jk

)
.

Obviously, this corresponds to approximate the integral for the true coefficient by a
quadrature using only one point.

To increase the order of accuracy for the approximation, one has to use more than
just one node. This results in a quasi-interpolation scheme of the form

cj,k ≈ c̄j,k := 2−
j
2

m∑
`=−m

γd,l f
(
2−j(k + `)

)
with m :=

⌊
d−1

2
⌋
and weights γd,`. These weights are determined in order to obtain

a maximal order of accuracy. We refer to [1] for the construction of the weights and
its values.

If we assume that f is only given on a bounded domain (e.g. Ω ⊂ �), then
the above formula requires point-values of f outside Ω. This is typically done by
extrapolating data or by extending the function f outside Ω. In our main application,
we know the true f so that this can in fact be done. In case of measurements of an
optical surface, we will use the error of the measurements with respect to a true surface
so that we can extrapolate the data by zero outside Ω without loss of accuracy.

For the arising quasi-interpolant defined by

P qi
j f :=

∑
k∈Ij

c̄j,k ϕj,k

the following error estimate is known [22],

‖f − P qi
j f‖0;Ω . 2−js‖f‖−s;R, (4.1)

i.e., the same order of approximation as Pj .

5. Ray Tracing. One typical application in optics is ray tracing, i.e., the calcu-
lation of light rays through a system of optical surfaces. In this section, we describe
how to use the above multiresolution approximation and the corresponding wavelet
representation in order to perform an efficient ray trace algorithm.

5.1. Intersection and Refraction. The following procedure for ray tracing is
based on [17] and is adapted to the use of our B-spline representation of the surface.
We define a ray r : R → R3 through a point p = (px, py, pz)T ∈ R3 in a direction
d = (dx, dy, dz)T ∈ R3 as

r(α) := p + αd, α ∈ R.

Let us describe the refraction of such a ray by an optical surface given in terms
of a function g (which could also be an approximation e.g. determined by a quasi-
interpolation). First we need the point in which the ray intersects the surface. Let
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us denote this point by x = x(x, y) = (x, y, g(x, y))T ∈ R3, (x, y) ∈ Ω. The normal
vector of the surface at x is given as

n = n(x, y) = e1 × e2 = (−∂xg(x, y),−∂yg(x, y), 1)T , (5.1)

where e1 and e2 are the two tangential vectors of the surface in x, i.e., e1 = ∂xx(x, y) =
(1, 0, ∂xg)T and e2 = ∂yx = (0, 1, ∂yg)T . In order to obtain a unique intersection
point, we have to assume that the ray is not parallel to the tangential plane. Then,
the condition p + αd = x for the 3 unknowns α, x and y can be rephrased as

F (α) := pz + αdz − g(px + αdx, py + αdy) = 0, F : R→ R.

This is obviously a one-dimensional nonlinear equation which can be numerically
solved e.g. by Newton’s method which requires the derivative

F ′(α) = dz − ∂xg(px + αdx, py + αdy)dx − ∂yg(px + αdx, py + αdy)dy
= n(x(α), y(α))T · d,

where x(α) := px + αdx and y(α) := py + αdy.
Now, we know the intersection point x and the normal vector n at this point. Let

us denote by γ the incidence angle of the ray and the surface, i.e. cos(γ) = nT ·d, and
by n, n′ the refractive indices of the media in front of and behind the surface. So we
can apply the Law of Refraction, i.e. in R3,

cos(γ′) =
(

1−
( n
n′
)2 (

1− cos2(γ)
)) 1

2

,

to obtain the new incidence angle γ′. Hence, we can calculate the direction d′ of the
ray in the medium behind the actual surface and proceed ray tracing with the next
optical surface.

5.2. Evaluation of the Quasi-Interpolation. Let us now consider the case
in which the parameterization of the surface is given in terms of the above described
quasi-interpolant. Using tensor-product B-splines of order d, the approximation takes
the form(

P qi
j f

)
(x, y) = 2j

∑
k∈I2D

j

c̄j,k ·Nd
(
2jx− k1 + d

2
) ·Nd (2jy − k2 + d

2
)
, (5.2)

with an index set I2D
j := Ij × Ij and Ij := {⌊2j · −d2⌋ , . . . , ⌈2j ·+d

2
⌉}. Since highly

efficient routines for evaluating B-splines are available and the index set I2D
j is finite,

the evaluation of (5.2) can be done efficiently as well. The same holds for derivatives
of B-splines, so the calculation of partial derivatives of (5.2) is straightforward.

6. Numerical Results for Representation and Ray Tracing. In this sec-
tion, we describe our numerical results concerning the multiresolution approximation
of optical surfaces and the corresponding ray tracing. We use aspheres with a suffi-
ciently large support in order to avoid extension at the boundaries. The ultimate goal
is a sufficiently accurate approximation. All described schemes have been implemented
within FLENS1. In order to test the performance within a realistic framework, we

1Flexible Library for Efficient Numerical Solutions, University of Ulm, Institute for Numerical
Mathematics and Scientific Computing Center Ulm (UZWR), http://flens.sourceforge.net.
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compare our above described ray trace algorithm with the optical design software
OASE2. Further examples, in particular concerning surfaces that need extension
methods on the boundary, are described in [13].

6.1. Approximation of Optical Surfaces. We start by describing numerical
experiments for approximating a given optical surface in terms of a multiresolution
approximation. The left part of Figure 6.1 shows a contour-color plot of the asphere
S1 given by the parameterization

fS1(x, y) := ρxx
2 + ρyy

2

2 + c1x+ c2y + c3x
2 + c4xy + c5y

2 + c6x
3 + . . .

with parameters shown in Table 6.1. Note that the above numbering of the coefficients
ck is the standard labeling in optics.

Figure 6.1. Contour-color plot of the test surfaces S1 (left) and S2 (right).

S1 S2

ρx −2,15e−1 ρ 1,00
ρy 1,22e−1

c10 −4,05e−4 c1 1,50
c12 −8,13e−4 c2 −7,00e−1

c14 5,73e−4 c3 5,00e−1

c21 −4,59e−6 c4 −5,00e−1

c23 1,14e−5

c25 9,64e−6

c27 4,45e−7

c36 −2,69e−9

c38 −7,96e−8

c40 −8,79e−8

c42 −9,16e−8

c44 2,43e−8

Table 6.1
Parameters of the test surfaces S1 and S2; all other coefficients ck are zero.

We compute the approximation by the quasi-interpolation method described in
§4.1 above. To use our method, a simple transformation from the bounding box of the
asphere Ω := [−5.5, 5.5]2 to the unit square is done. For different levels j and B-spline

2Optische Analyse und Synthese, Carl Zeiss AG.
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orders d, we compute the root mean square value RMS(Ej) of the error e := f−P qi
j f ,

where

Ej :=
(
e(xi, yj)

)
i,j=1,...,n

,

is a n×n matrix and {(xi, yj) : i, j = 1, . . . , n} defines an equidistant mesh in Ω. The
RMS-value is defined as usual.

We list the corresponding errors RMS(Ej) of the surface S1 in the left part of
Figure 6.2 for B-spline orders d = 1, . . . , 6, where we have used n = 104. The legend
additionally shows the exponent s of the rate of convergence, i.e., 2−js, see (4.1). For
two levels j1 < j2, the exponent s is calculated by

s = 1
j2 − j1 log2

(
RMS(Ej1 )
RMS(Ej2 )

)
, if RMS(Ej1) > 0, RMS(Ej2) > 0.

In the actual examples we used levels j1 = 4 and j2 = 9 to compute s.
We see that we reach machine accuracy for orders d = 5, 6 and levels j ≥ 10.

Besides the case d = 5, we obtain the expected rate of convergence of s = d. This
shows in particular that the analyzed surface is quite smooth. For d = 5, we obtain
a super-convergence, namely s = 5.7. We have verified this also with other surfaces
but do not have a clear explanation for this effect.

Figure 6.2. RMS error of the multiresolution approximation of S1 (left) and of the partial
derivative ∂xPjfS2 (right).

The second example concerns a rotationally symmetric asphere defined by

fS2(h) := ρh2

2 +
∞∑
k=2

ckh
2k,

where h2 := x2 + y2. The coefficients are detailed in Table 6.1 and a contour-plot
is shown in the right part of Figure 6.1. We have used this example in order to
investigate the approximation order of the first derivative, where we expect to lose
one order of approximation. Hence, we compute Ej as above, where now

e := ∂

∂x

(
f − P qi

j f
)
.

We obtain the error RMS(ES2
j ) in the right part of Figure 6.2. As above, the legend

shows the exponent of the rate of convergence which is here in the order of 2−j(s−1).
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As we see, we obtain the expected rate s = d− 1 for d = 1, 2, 3. Starting from d = 4,
the rate is larger then d− 1 which is an indication for the smoothness of the surface.
At a first glance, one might wonder why the error for d = 6 and j > 9 increases. Note,
however, that the error is already in the order of 10−12 so that the machine accuracy
influences the computations.

6.2. Accuracy of the Ray Tracing. Next, we test the performance of the
above described ray trace method. For a given set of rays ri, i = 1, . . . , n, we compute
the intersection point xi and the normal ni. Again, we use OASE to validate our
results. Of course, both intersection and normal depend on the level j so that we use
the notation x(j)

i and n(j)
i . By x(O)

i and n(O)
i , we indicate the results computed by

OASE.
For n = 106 rays, we report the maximal deviation of all rays

Mx,j := max
i=1,...,n

{
‖x(O)

i − x(j)
i ‖
}
, Mn,j := max

i=1,...,n

{
‖n(O)

i − n(j)
i ‖
}
,

where ‖ · ‖ denotes the standard Euclidean norm in R3. The error plot for surface S1
is given in the left part of Figure 6.3. We use ε = 10−12 for the stopping criterion of
Newton’s method and the parameter s is computed based on levels 4 and 7. In the
right part of Figure 6.3, we indicate the error Mn,j for computing the normal vector.

Figure 6.3. Maximal deviation Mx,j of the intersection point (left) and Mn,j of the normal
(right).

We observe a similar behavior as above. The rate of convergence for Mx,j is s ≈ d,
again with a super-convergence for d = 5. Since the normal is based on derivatives,
it is not surprising that we obtain s ≈ d− 1, but again increasing for larger d.

7. Wavelet Analysis and Correction. In this section, we describe the use of
wavelet methods to analyze and correct given real and synthetic optical surfaces.

To analyze the perturbation of an asphere on a circular aperture Ωasphere =
{(x, y) : x2 + y2 ≤ 1} we inscribe the circle into a square Ω := [−1, 1]2 and use a
tensor product periodic FWT on Ω.
We want to define PSD errors on arbitrary disks and toruses. Therefore we fix an
inner and outer radius ri, ro and a decay length l ≥ 0. To get smooth edges we now
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multiply errPSD by the rotationally symmetric infinitely differentiable decay function

decri,ro,l(x, y) :=


0, if h = 0.0,
1, if h ≥ l,(

1 + e5·tan(π2−
π
l h)
)−1

, else,

for inner points (x, y) ∈ {(x, y) ∈ R2 : ri ≤ r ≤ ro}, where r :=
√
x2 + y2, and the

distance h := min{ro − r, r − ri} to the nearest boundary. The univariate function
dec0,1,0.4 is shown in Figure 7.1.

Figure 7.1. Decay function dec0,1,0.4(x, 0).

It is well-known that errZFR is not zero on the boundary ∂Ωasphere which is a
consequence of the particular model for the ZFR error. However, we want to study
the error in the inner part of the surface, since in practice most of the light passes
through here. Thus, we also multiply the ZFR error with the above decay function
decri,ro,l for fixed ri = −l and ro = 1.

7.1. Localization of Mid Spatial Frequency Perturbed Domains. If a
manufactured surface has a significant mid spatial frequency perturbation (i.e., a
PSD-error), the surface usually does not meet the desired specification. Especially
when the surface has a shape with steep regions, the performance of the optical
system can be seriously affected by the presence of a PSD-error. In that case, a costly
Computer Controlled Polishing (CCP) is needed. It would be desirable to perform a
CCP only in regions where it is really needed. We want to use a wavelet analysis to
detect such local perturbations.

Again, we use synthetic data in order to simulate localized mid spatial frequency
errors. Therefore we split the domain Ωasphere into two parts, namely

Ωint :=
{

(x, y) :
√
x2 + y2 ≤ 0.5

}
, Ωext :=

{
(x, y) : 0.5 <

√
x2 + y2 ≤ 1.0

}
,

i.e., Ωasphere = Ωint ∪Ωext. We assume that the specification of the surface is satisfied
in the interior Ωint, whereas we do not make any assumptions for Ωext. To obtain
smooth edges of the PSD-errors we use the decay function decri,ro,0.3 for the data
with corresponding radii. In addition to localized PSD-errors we also add low spatial
frequency errors in terms of a ZFR-error. This is done to obtain a more realistic model
of a surface. An example with nint = next = 51 and RMS(errPSD|Ωint

) = 1.0 · 10−4,
RMS(errPSD|Ωext

) = 2.0 · 10−4 is shown in the left part of Figure 7.2.
Starting from the single-scale representation in terms of the above described quasi-

interpolation, we compute the wavelet representation

Qqi
j f =

j−1∑
l=0

∑
e∈{H,V,D}

∑
k
d̄el,k ψ

e
l,k, k ∈ J e` ,
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Figure 7.2. Surface with fixed ZFR-error and varying PSD-errors (left) and aggregated detail
w9 for orders d = d̃ = 3 (right).

like in §2. Next, in order to make the detail pattern clearly visible, we aggregate the
different parts of the detail and compute

w` = (w`,k)k∈J ∗` :=
√

(d̄V
`,k)2 + (d̄H

`,k)2 + (d̄D
`,k)2. (7.1)

Note that due to periodicity we have |I2D
j | = 22j and |J V

` | = |J H
` | = |J D

` | = 22j so
that we can use the same index set J ∗` for all 3 parts of the detail. Due to the Riesz
basis property, the quantity ‖w`‖`2(J ∗` ) is equivalent to ‖Qqi

j f‖0;Ω which represents
the energy of error. In the right part of Figure 7.2 we show a contour-color plot of
w9. We can clearly see local effects that allow to restrict a CCP to these regions only.

Next, we use a simulation for a PSD-error with varying waviness. We do this by
using different parameters n in the model of the PSD-error, namely nint = 51 and
next = 61. We illustrate such an example in Figure 7.3, where we use equal RMS-
values for both domains, namely RMS(errPSD|Ωint

) = RMS(errPSD|Ωext
) = 1.0 ·10−4.

In the right part of Figure 7.3 we show a contour-color plot of w9. Again, we can

Figure 7.3. Surface with nint 6= next (left) and detail w9 for d = d̃ = 3 (right).

clearly see the localization of the PSD error in the exterior Ωext.

7.2. Error Separation of Manufactured Surfaces. Let us now consider the
case where a manufactured surface is given, its theoretical shape is known and we
would like to analyze the errors as described above. So far, in optics typical low
frequency errors as well as optical aberrations are well described by Zernike polyno-
mials. Hence, one is interested in expanding the manufacturing error of a surface in
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such a representation. Thus, the goal is to minimize the mid and high spatial frequen-
cies. In the multiscale representation in terms of wavelets this means that low spatial
frequency perturbations occur on other levels than mid and high spatial frequency
perturbations.

7.2.1. Comparison of Thresholding and Truncation. To this end, we in-
vestigate if we can associate errZFR and errPSD to certain ranges of levels, in that case
truncation and thresholding methods should perform almost equal. In order to do so,
we analyze various realizations of the two errors and do a wavelet decomposition up
to level j = 6. Let us denote by dtrunc

j,k and dthresh
j,k the wavelet coefficients arising from

truncation at level jtrunc or (hard-)thresholding with a threshold T ∈ R+, i.e.,

dtrunc
j,k :=

{
0, ∀ j ≥ jtrunc,

dj,k, else,
dthresh
j,k :=

{
0, if |dj,k| ≤ T,
dj,k, else.

Accordingly, let the projectors be defined by

Qtrunc
j f =

∑
k∈J 2D

j

dtrunc
j,k ψj,k, Qthresh

j f =
∑

k∈J 2D
j

dthresh
j,k ψj,k.

In order to compare a level-wise truncation with a thresholding, we simulate
different errTOTAL with varying amount of errPSD to study the influence of the PSD-
error on this separation of levels and compute the relative error of the reconstruction
to the optimal ZFR-surface errZFR after the manipulation. As in §6.1 we approximate
the L2-norm by the RMS-value and compute

ρ∗ ≈ ‖Q∗j f − errZFR‖0;Ω

‖errTOTAL − errZFR‖0;Ω
.

In Table 7.1, we show the above defined ratio as an average over N = 100 realizations,
i.e.,

ρ̄∗ := 1
N

N∑
i=1

ρ∗i ,

where ρ∗i denotes the ratio for the i-th realization and we used orders d = 3, d̃ = 9.
By varying the parameter n in the simulation of the PSD as described in §3, we vary
the frequencies present in errPSD.

RMS(errPSD) n = 31 n = 51 n = 71 n = 91

(∗ · 10−4) A B A B A B A B

2.0 64.2 64.8 48.8 50.9 39.7 43.3 34.2 36.6
4.0 53.0 53.8 36.9 37.0 29.8 30.1 26.0 26.6
8.0 38.1 38.6 30.4 30.9 24.2 24.3 19.9 20.0
16.0 28.4 29.0 20.9 20.2 18.1 18.3 16.1 16.4

Table 7.1
Comparison of thresholding ρ̄thresh (A) and truncation ρ̄trunc (B) in percent for orders d =

3, d̃ = 9.

We observe no significant difference between truncation and thresholding which
has the above mentioned interpretation. For increasing n, we observe decreasing ρ̄
which was expected since the separation of low and mid frequency part of the error
is more pronounced.
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7.2.2. Estimation of the Truncation Level. As we have seen by our above
described experiments, the wavelet decomposition allows a separation of low and mid
spatial frequency errors via a level-wise truncation. Of course, for given data it is
not obvious how to choose the optimal truncation level jtrunc. Now, we describe a
deterministic approach to determine jtrunc.

It is well-known that

σ̂2(x) := 1
n− 1

n∑
k=1

(xk − x̄)2, x̄ := 1
n

n∑
k=1

xk,

is an estimator for the variance of a vector x = (x1, . . . , xn)T ∈ Rn. We use this
estimator now for w` defined in (7.1), i.e. σ̂2

` := σ̂2(w`). If we normalize the scaling
functions in L1, i.e., ‖ϕj,k‖L1 ∼ ‖ϕ‖L1 , the values of σ̂2

` should be comparable for
different values of `, see [4]. Since ZFR- and PSD-error appear on different levels,
there should be a discrete local minimum in the sequence σ̂2

` , ` = 1, . . . , j − 1. The
corresponding level separates the involved level ranges and can be used as truncation
level jtrunc.

In order to investigate the performance of this approach, we fix a maximum
level j = 10 and simulate 100 randomly generated surfaces. We compare an optimal
truncation by computing all possible truncations with the truncation induced by the
approximate level jtrunc determined above. In Table 7.2, we show as above the relative
error of the reconstruction for different values n indicating the waviness. For the
relevant cases of high waviness we obtain a very good agreement of optimal and
approximated truncation.

RMS(errPSD) n = 31 n = 51 n = 71 n = 91

(∗ · 10−4) A B A B A B A B

2.0 63.9 71.3 49.3 79.3 42.6 45.7 35.9 36.3
4.0 54.0 56.0 36.9 37.2 29.6 30.0 25.8 28.8
8.0 38.5 76.9 30.9 40.2 24.4 27.8 19.9 21.0
16.0 29.2 86.7 21.2 71.6 18.3 58.6 16.3 37.4

Table 7.2
Comparison of optimal ρ̄opt (A) and approximated ρ̄app (B) truncation in percent for level

j = 10 and orders d = 3, d̃ = 9.

7.2.3. Example for the Separation of Low and Mid Frequencies. Let us
show an example for the separation of low and mid spatial frequency perturbation by
our wavelet method. We start by a simulated surface having both ZFR- and PSD-error
components, shown in the left part of Figure 7.4. Since we have used a simulation for
the error, we can compare the original ZFR-error and the ZFR-part of the error as
determined by our wavelet method. We show both quantities in Figure 7.5 and the
point-wise difference in the right part of Figure 7.4. The maximal deviation is in the
order of 8.5 · 10−4 which seems quite good. Moreover, we see that the location of the
largest error terms is at the boundaries of the shape of the error functions. In order
to avoid this, one could follow an adaptive strategy which is devoted to a forthcoming
paper. Finally, we have performed a Zernike fit to 100 coefficients and get a RMS-
error of 6.6 · 10−5 for the reconstructed data, while the RMS-error is 1.0 · 10−3 for the
original surface.
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Figure 7.4. Simulation of a low and mid spatial frequency perturbed surface (left) and error
|Qtrunc

j f − errZFR| of the wavelet reconstruction (right).

Figure 7.5. Original low spatial frequency perturbation (left) and reconstruction by the wavelet
method (right), j = 10, d = 3, d̃ = 9.

7.3. Correction of Local Errors. Finally, we use wavelets in order to detect
and correct local errors of an optical surface. In Figure 7.6, we see on the top right part
an artificial localized error that we add to measurements of a surface. The resulting
surface is shown on the top left part of the same figure. On the bottom part of the
figure, we show the aggregated wavelet detail for level ` = 5 (left) and ` = 6 (right).
The first observation is the strong dominance of details close to the boundary. Note
that this is not caused by the embedding of the circular domain Ω into the square and
using periodized wavelets there. Since we consider the error, these figures show that
there is a true error close to the boundary. This fact can already be seen by the plot
of the surface (top left). The explanation is that the true surface has a steep gradient
close to the boundary where no light passes through. Therefore, errors in that area
are in fact permitted in the production.

If we have a close look to the detail in level ` = 6, we do see the local pertur-
bation (which is not clearly visible on level ` = 5). This allows to correct this local
deformation. Finally, one notices also a true local error in the center of the surface.

8. Summary and Outlook. In this paper, we introduced a wavelet method
for representing, analyzing, simulating and correcting optical surfaces. The method
consists of five steps, namely

1. Highly accurate B-spline quasi-interpolation of measured data.
2. Wavelet decomposition using biorthogonal B-spline wavelets (FWT).
3. Determination of a truncation level based on the wavelet coefficients.
4. Level-wise truncation of wavelet coefficients. Possible correction.
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Figure 7.6. Surface with artificial error (top left), artificial local error (top right) and aggre-
gated wavelet details for level 5, 6 (bottom) for j = 9, d = 3, d̃ = 9 and .

5. Wavelet reconstruction (IFWT).
We have shown the abilities of the proposed method for both real and synthetic data
for optical surfaces. Since the theoretic shape of the surfaces under consideration
is known, we can use the error of the surface for our wavelet method. This allows
embedding of the layout of the surface into a square and use highly efficient wavelet
methods there. In addition, we developed and implemented a ray tracing method
based upon the wavelet representation of the surface. This method allows to simulate
the behavior of the optical system, in particular the influence of occurring errors.

The positive results documented in this paper motivate us to continue with in-
vestigations concerning the use of wavelet methods in optics. One direction already
mentioned above is the use of adaptive strategies. In fact, modern optical systems
are highly sophisticated and consist of several lenses that may be arranged in a fairly
complicated way. It is obviously of economical interest to minimize a posteriori pol-
ishing and correcting already manufactured surfaces. Thus, we aim at developing an
adaptive wavelet minimization method that enables a given optical system to meet the
desired specification with minimal corrections. We will report on this in a forthcoming
paper.
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