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MODELING AND MANAGEMENT OF NONLINEAR DEPENDENCIES– 

COPULAS IN DYNAMIC FINANCIAL ANALYSIS 

Abstract: The aim of this paper is to study the influence of nonlinear dependencies on a 

non-life insurer's risk and return profile. To achieve this, we integrate several copula 

models in a dynamic financial analysis (DFA) framework and conduct numerical tests 

within a simulation study. We also test risk management strategies in response to ad-

verse outcomes generated by nonlinear dependencies. We find that nonlinear dependen-

cies have a crucial influence on the insurer's risk profile that can hardly be affected by 

the analyzed management strategies. Depending on the copula concept employed, we 

find large differences in risk assessment for the ruin probability and for the expected 

policyholder deficit. This has important implications for regulators and rating agencies 

that use these risk measures as a foundation for capital standards and ratings. 

Keywords: Non-Life Insurance, Risk Management, Dynamic Financial Analysis, Co-

pulas, Performance Measurement 

1. INTRODUCTION 

Dynamic financial analysis (DFA) is a financial modeling approach that projects finan-

cial results under a variety of possible scenarios, showing how outcomes might be af-

fected by changing internal and external conditions (see Casualty Actuarial Society, 

2006). DFA has become an important tool for decision making and an essential part of 

enterprise risk management (ERM), particularly within the field of non-life insurance. 

The DFA results and the quality of decisions derived from them depend on an appropri-

ate modeling of the stochastic behavior of assets and liabilities. In this context, the cor-

rect mapping of nonlinear dependencies is of central concern. Although many DFA 

models and most practitioners still focus on linear correlation, the literature suggests 



 

 

 

 

 

2

that solely considering linear correlation is not appropriate in modeling dependence 

structures between heavy-tailed and skewed risks, which are frequent in the insurance 

context (see, e.g., Embrechts/McNeil/Straumann, 2002). These risks are especially rele-

vant in case of extreme events, e.g., the September 11, 2001, terrorist attacks that re-

sulted in insurance companies experiencing large losses both from their underwriting 

business and the related capital markets plunge (see, e.g., Achleitner/Biebel/Wichels, 

2002). A more recent example is the subprime credit crisis, in which insurers have sus-

tained large losses from their investments, e.g., in mortgage-backed securities, as well 

as from insuring structured credit products such as collateralized debt obligations 

(American International Group (AIG) is the most prominent example). 

In this paper we evaluate the influence of such extreme events on a non-life insurer's 

risk and return profile. We integrate nonlinear dependencies in a DFA framework using 

the copulas concept and evaluate their effects on the insurer’s risk and return distribu-

tion within a simulation study. As one cannot generally say which copula describes real-

ity best, we compare different forms of copulas (i.e., the Gauss, t, Gumbel, Clayton, and 

Frank copulas) and evaluate the possible impact in a stress-testing sense.  

In our simulation study, we find that nonlinear dependencies have a strong influence on 

the insurer's default risk and performance. We also find different impacts of nonlinear 

dependencies on ruin probability and expected policyholder deficit, a result that is of 

special relevance for policyholders, regulators, and rating agencies. For example, for 

some kinds of nonlinear dependencies, the expected policyholder deficit cannot be re-

duced by increasing equity capital. It thus seems that these tail dependencies are rele-

vant not only for low-capitalized companies but also for well-capitalized ones. Further-

more, we test several risk management strategies implemented in response to adverse 
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outcomes generated by nonlinear dependencies. Our simulation results show that simple 

risk-reduction strategies are of little use. For example, a reinsurance strategy can delimit 

the high ruin probability generated by nonlinear dependencies, but not necessarily the 

expected policyholder deficit. 

Our paper builds upon two branches of literature—DFA and the copulas concept. In the 

late 1990s, the Casualty Actuarial Society introduced simulation models for property-

casualty insurers, calling them “DFA” (see Casualty Actuarial Society, 2006). Since 

then, several surveys and applications of DFA have been published in academic jour-

nals. Lowe/Stanard (1997), as well as Kaufmann/Gadmer/Klett (2001), provide an in-

troduction to DFA by presenting a model framework and an application of their model. 

Lowe/Stanard (1997) develop a DFA model for the underwriting, investment, and capi-

tal management process of a property-catastrophe reinsurer and Kaufmann/Gadmer/ 

Klett (2001) provide an up-and-running model for a non-life insurance company. Blum 

et al. (2001), D’Arcy/Gorvett (2004), and Eling/Parnitzke/Schmeiser (2008) use DFA to 

examine specific decision-making situations. Blum et al. (2001) investigate the impact 

of foreign exchange risks on reinsurance decisions within a DFA framework and 

D’Arcy/Gorvett (2004) apply DFA to search for an optimal growth rate in the property-

casualty insurance business. The influence of management strategies on an insurers risk 

and return position using DFA is investigated in Eling/Parnitzke/Schmeiser (2008). 

The copulas concept and the problem of mapping nonlinear dependencies in an insur-

ance context was first introduced by Wang (1998), who discusses models and algo-

rithms for the aggregation of correlated risk portfolios. Frees/Valdez (1998) also pro-

vide an introduction to the use of copulas in risk measurement by describing the basic 

properties of copulas, their relationships to measures of dependence, and several fami-
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lies of copulas. Klugman/Parsa (1999), Mashal/Zeevi (2002), Malevergne/Sornette 

(2003), Dias (2004), and Kole/Koedijk/Verbeek (2007) develop appropriate models to 

analyze capital and insurance markets by fitting copulas to empirical data. 

Blum/Dias/Embrechts (2002) discuss the use of copulas to handle the measurement of 

dependence in alternative risk transfer products. Embrechts/McNeil/Straumann (2002) 

present properties, pitfalls, and simulation algorithms for correlation and dependence in 

risk management and analyze the effect of dependence structures on the value at risk. 

Pfeifer/Nešlehová (2004) propose approaches for modeling and generating dependent 

risk processes in the framework of collective risk theory. McNeil (2007) presents algo-

rithms for sampling from a specific copula class which can be used for higher-

dimensional problems. 

The aim of this paper is to contribute to this literature by integrating copulas in an ex-

tended version of the DFA model presented by Eling/Parnitzke/Schmeiser (2008) and 

by evaluating their influence on the insurer's risk and return position. Our results indi-

cate that it is crucial to consider the copulas concept in order to improve DFA and deci-

sion making in enterprise risk management. Our findings are important to both regula-

tors and rating agencies as they reveal large differences in risk assessment for the ex-

pected policyholder deficit and for the ruin probability. As these measures are the basis 

of many capital standards and ratings, it is important to integrate nonlinear dependen-

cies in the regulatory framework and in rating assessment, e.g., in stress testing and sce-

nario analysis.1 

                                                 
1  Ibragimov/Walden (2007) and Ibragimov/Jaffee/Walden (2008) investigate the diversity of optimal 

insurance in the presence of heavy tails versus light tails. While these two studies analyze individual 

risks, our focus is on enterprise risk management at the whole-company level. Ibragi-



 

 

 

 

 

5

The rest of the paper is organized as follows. In Section 2, we present a DFA frame-

work containing the essential elements of a non-life insurance company. In Section 3, 

we describe the copulas concept, different types of copulas, and how we integrated them 

in the DFA framework. In Section 4, we define financial ratios, reflecting both risk and 

return in a DFA context. A DFA simulation study to examine the effects of the copulas 

on risk and return is presented in Section 5. In Section 6, we measure the influence of 

risk management strategies implemented as a response to adverse outcomes generated 

by the copulas. Section 7 concludes. 

2. MODEL FRAMEWORK 

We build on the DFA framework used by Eling/Parnitzke/Schmeiser (2008) to investi-

gate the influence of management strategies on an insurer's risk and return. In this mod-

el, a management rule changes the portion of risky investments and the market share in 

the underwriting business depending on the insurer's financial situation. We extend this 

framework with a modified underwriting cycle following an autoregressive process and 

a modified claims process consisting of noncatastrophe and catastrophe losses. 

Let ECt be the equity capital of the insurance company at the end of time period t 

( 1,...,t T ) and Et the company’s earnings in t. Then, development of the equity capital 

over time can be written as: 

                                                                                                                                               
mov/Jaffee/Walden (2008) analyze i.i.d. risks and Ibragimov/Walden (2007) symmetric spherical dis-

tributed risks, while we consider the dependence of differently distributed risks including nonlinear 

and, in particular, asymmetric dependence. Our model not only addresses value at risk, but also looks 

at several other risk measures, return measures, and the risk-adjusted performance of the company. 

Ibragimov/Jaffee/Walden (2008), Ibragimov/Walden (2007), and our paper highlight the fact that 

solely considering linear correlation is not appropriate in modeling dependence structures between 

heavy-tailed and skewed risks. 
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1 t t tEC EC E  . (1) 

The financial statement earnings tE  in period t consist of the investment result tI  and 

the underwriting result tU . In case of positive earnings, taxes are paid. We denote tr as 

the tax rate and obtain the company’s earnings in t as: 

max( ( ),0)t t t t tE I U tr I U     . (2) 

The assets can be divided in high-risk investments, such as stocks or high-yield bonds, 

and low-risk investments, such as government bonds or money market instruments. We 

denote 1t   as the portion of high-risk investments in time period t and 1tr  ( 2tr ) as the 

return of the high-risk (low-risk) investment in t. The return of the company’s invest-

ment portfolio in t ( ptr ) can be calculated as: 

 1 1 1 21pt t t t tr r r       . (3) 

By multiplying the portfolio return with the funds available for investments, we calcu-

late the company’s investment result. The funds available for investments are the equity 

capital and the premium income 1tP , less upfront costs 1
P
tEx  : 

1 1 1( )P
t pt t t tI r EC P Ex      . (4) 

To model the underwriting business, we denote 1t   as the company’s portion of the 

relevant market in t. The underwriting market accessible to the insurer (given by MV) is 

obtained with 1  . The market volume rises by the rate i, which might represent av-

erage market growth or compensate for inflation. The premium rate level achievable in 

the market has been observed to exhibit a cyclical pattern. Following Cum-

mins/Outreville (1987), we model the underwriting cycle using a stationary autoregres-

sive process of order two (with the parameters a0, a1, and a2 for lags 0, 1, and 2): 
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0 1 1 2 2a a a        t t t t . (5) 

The rate level t  depends on the premium levels of the two previous periods and a ran-

dom error term t  following a white noise process. Depending on the parameterization, 

the process produces cycle lengths that can be calibrated according to observed data. 

The premium income tP  in period t thus depends on the premium rate level t .2 

Based on an experiment, Wakker/Thaler/Tversky (1997) showed that a rise in default 

risk leads to a rapid decline in the achievable premium level. The premium income 

should thus not only be connected to the underwriting cycle but also to a consumer re-

sponse function. The consumer response function (denoted by the parameter cr) 

represents the link between the premiums written and the company’s safety level. We 

determine the safety level by considering the equity capital at the end of the previous 

period. The premium income in our model is given as: 

1

1

1
1 1 1 (1 )




       t

t

EC t
t t tP cr MV i . (6) 

Two types of costs are integrated in the model: upfront costs ( 1
P
tEx  ) and claim settle-

ment costs ( C
tEx ).The upfront costs depend linearly on the level of written market vo-

lume (modeled with the factor  ), and quadratically on the change in written market 

                                                 
2  The presented autoregressive process is the most widespread approach to model the cyclical pattern of 

premium rate level over time; see Venezian (1985), Niehaus/Terry (1993), Day-

kin/Pentikäinen/Pesonen (1994), Lamm-Tennant/Weiss (1997), Fung et al. (1998), Chen/Wong/Lee 

(1999), and Meier (2006) for an overview. An alternative in the context of DFA is to use Markov 

processes and transition probabilities as done in Eling/Parnitzke/Schmeiser (2008) and D’Arcy et al. 

(1998). We implemented this approach as a robustness test and found that this modeling alternative 

does not influence our main results. 
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volume (modeled with the factor  , e.g., because of increased advertising and promo-

tion efforts). The upfront costs 1
P
tEx   are thus calculated as: 

1 1 2
1 1 1 2(1 ) (( ) (1 ) )     
             P t t

t t t tEx MV i MV i .  (7) 

Claim settlement costs are given as a portion   of the claims (denoted by C) incurred 

( C
t tEx C ). The claims consist of noncatastrophe losses and catastrophe losses 

(C=Cncat+Ccat). The underwriting result is thus given by: 

1 1
P C

t t t t tU P C Ex Ex     . (8) 

Although we restrict ourselves to the standard components necessary in DFA (see 

Kaufmann/Gadmer/Klett, 2001, p. 218), one might argue that the model depends on 

many parameters. However, there is a tradeoff between accuracy and complexity. Our 

aim is to take a holistic view of the company's assets and liabilities and we include the 

essential elements of a non-life insurance company and calibrate them using realistic 

data. Within this setting, we isolate the effect of different dependencies on risk and re-

turn. We present results for alternative copulas and parameter settings in order to assess 

the range of possible outcomes under different scenarios. For the sake of clarity, a table 

containing all model parameters (and their initial values) is presented in Section 5.1. 

3. INTEGRATION OF COPULAS IN DFA 

In this section we consider the modeling of dependencies between risk categories, i.e., 

between different asset classes (high-risk vs. low-risk investments), different kinds of 

liabilities (noncatastrophe losses vs. catastrophe losses), and between assets and liabili-

ties. The dependencies between these risk categories can be integrated in DFA by gene-

rating correlated random numbers. 
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As the literature suggests that solely considering linear correlation is not appropriate in 

modeling dependence structures between heavy-tailed and skewed risks, we use copulas 

to model nonlinear dependencies and a rank correlation measure (Kendall’s tau) that is 

invariant under monotonic transformations and thus not affected by the marginal distri-

butions (see, e.g., McNeil/Frey/Embrechts, 2005, pp. 206–208). Copulas provide a means 

of separating the description of a dependence structure from the marginal distributions. 

To investigate the effects of different copulas, we model correlations between high-risk 

investments, low-risk investments, noncatastrophe losses, and catastrophe losses using 

the Gauss copula, the t copula, and three nonexchangeable Archimedean copulas (Gum-

bel, Clayton, Frank). We selected these copulas because they are actually used in prac-

tice, easy to parameterize, and simple to calibrate from a technical perspective (see, e.g., 

Sun/Frees/Rosenberg, 2008; SCOR Switzerland AG, 2008). In addition, they exhibit 

different forms of tail dependence and thus are useful for scenario analyses and stress 

testing.3/4 Also useful in the context of scenario analysis is that all these copulas span 

                                                 
3  According to Joe (1997, p. 33) tail dependence can be defined as follows: 

L 0 1 2 0 2 1 2λ lim Pr(U U ) lim Pr(U , U ) Pr(U )u uu u u u u           is the lower tail dependence 

parameter for two standard uniform random variables 1U , 2U  with joint distribution function 

C( 1U , 2U ). Upper tail dependence Uλ  can be defined analogously. Note that there are different defi-

nitions of tail dependence measures in the literature that can lead to different indications of asymptotic 

dependence and independence; see, e.g., Coles/Heffernan/Tawn (1999) and Charpentier (2006). Tail 

dependence is a copula property as the tail dependence coefficient can be expressed in terms of the 

copula. See, e.g., McNeil/Frey/Embrechts (2005, p. 209). 

4  An empirical motivation for selection of the copulas would be ideal, but it is problematic to calibrate 

parametric copulas to aggregated empirical data because the volume of data is rarely sufficient. Cop-

ula selection and calibration methods are discussed in the literature (see, e.g., Genest/Rivest, 1993; 
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the full range from bivariate countermonotonicity to comonotonicity (except for the 

Gumbel, which only ranges from independence to comonotonicity). 

The Gauss and the t copulas have been studied extensively in risk management litera-

ture (see, e.g., McNeil/Frey/Embrechts, 2005). The Gauss copula is contained in the 

multivariate normal distribution and does not exhibit tail dependence: 

1 1 1 1
1 2 3 4( ) ( ( ), ( ), ( ), ( ))Gauss

P PC u u u u       u Φ . (9) 

  denotes the standard univariate normal density function and PΦ  is the joint density 

function of a four-dimensional Gaussian vector u with correlation matrix P. The t co-

pula arises from the multivariate Student t distribution. In contrast to the Gauss copula, 

the t copula exhibits upper and lower tail dependence (see Demarta/McNeil, 2005): 

1 1 1 1
, , 1 2 3 4( ) ( ( ), ( ), ( ), ( ))t
P PC t u t u t u t u     

   u t , (10) 

where t  is the density function of a standard univariate t distribution and t  is the joint 

density function of a four-dimensional vector with correlation matrix P. The subscript v 

denotes the degrees of freedom of the multivariate t distribution.  

McNeil/Frey/Embrechts (2005) propose a method to calibrate elliptical copulas such as 

the Gauss and the t copula using the relationship between Kendall’s rank correlation   

and the off-diagonal elements ij  of the correlation matrix P, where ij  stands for the 

correlation between the two random variables Xi and Xj. We follow their approach and 

calibrate the Gauss and the t copula parameters according to: 

                                                                                                                                               
Chen/Fan, 2006; Patton, 2006). An important argument for selecting the Clayton copula is that it pro-

vides a natural limit for conditional bivariate extremes having an Archimedean dependence structure. 

This is especially relevant for practical purposes when only few data are available and fitting of copu-

las is not possible (see Juri/Wüthrich, 2002). 
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( , ) (2/ )arcsini j ijX X   . (11) 

In addition to the Gauss and t copulas, we implement three Archimedean copulas and 

their respective Survival copulas. The key characteristic of Archimedean copulas is that 

they can be easily constructed using generator functions ( ) u  (see Nelsen, 2006, p. 

109). We use three different copulas to account for different types of tail dependence. 

The Gumbel copula shows upper tail dependence, the Clayton copula has dependence in 

the lower tail, and the Frank copula exhibits no tail dependence. In the insurance indus-

try, a threatening development is simultaneous high losses in several lines of business 

and/or low asset returns in different asset classes. Such a situation could occur, for ex-

ample, during a financial market crisis where insurers are exposed to financial risk on 

both the asset and the liability side of the balance sheet. Other adverse scenarios involve 

natural or man-made catastrophes that lead to high losses and have severe impacts on 

the financial markets. In our analysis, such developments are visualized by the Clayton 

copula, which exhibits lower tail dependence (i.e., low returns in asset classes and low 

underwriting result corresponding to high losses in several lines of business), and can be 

thought of as an analysis of the worst-case scenarios in a stress-testing context. Usually, 

however, data for analyzing tail dependence are rarely available in sufficient volume in 

most insurance companies. In practice, the form of tail dependence can be deduced 

based only on available data. However, these can be complemented by scenario analys-

es of adverse outcomes by employing the Clayton copula. 

We also consider the Survival Gumbel and Survival Clayton copulas, which can be 

generated by transforming the Gumbel and Clayton random numbers with 1-u. The Sur-

vival Gumbel exhibits lower tail dependence and the Survival Clayton upper tail depen-

dence. Note that we do not consider the Survival Frank copula, as it is symmetric and 
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equal to the Survival copula. The generator functions ( ) u  for the five copulas are giv-

en in Table 1.   denotes the respective copula parameter. 

 

Table 1: Properties of Archimedian Copulas and Their Survival Functions 

Copula 
Tail  

Dependence
Generator ( ) u  Kendall’s tau   

Parameter 

range 
λU λL 


GumbelC  upper ( ln ) u  1–1/  1   1/2 2   0 

Survival GumbelC  
lower via Gumbel copula

 
1–1/  1   0 1/2 2 


ClaytonC  lower 1 ( 1)  u   /( +2) 1    0 

1/2 , 0;

0, 0

if

if

 


 
  

Survival ClaytonC  
upper via Clayton copula  /( +2)

 
1    

1/2 , 0;

0, 0

if

if

 


 
  

0 


FrankC  none 

1
ln( )

1














ue

e
 

1 1

0
1 4 (1 /(exp( ) 1)


     u t dt

 
  �

 
0 0  

 

Archimedean copulas can be calibrated to data based on the functional relationship be-

tween Kendall’s rank correlation   and the copula parameter  . These relationships 

are summarized in the fourth column of Table 1 for the copulas used in our model. For 

example, Kendall’s tau   equals 1–1/  for the Gumbel copula. By inverting this rela-

tionship, the parameter value   can be obtained for any given value of  . 

The family of Archimedean copulas contains both exchangeable and nonexchangeable 

copulas. As exchangeable copulas impose restrictive conditions on the dependence 

structure, especially in a multivariate context (e.g., exchangeable copulas result in the 

same correlation within liabilities as between assets and liabilities), we will use nonexc-

hangeable copulas in order to avoid these unfavorable features. We choose a four-

dimensional nonexchangeable construction, described in McNeil/Frey/Embrechts 

(2005), consisting of three strict Archimedean generators with completely monotonic 

inverses and composite functions 1
3 1   and 1

3 2  : 



 

 

 

 

 

13

1 1 1
1 2 3 4 3 3 1 1 1 1 2 3 2 2 3 2 4( , , , ) ( ( ( ) ( ) ) ( ( ) ( )) )

high risk and low risk investments non catastrophe and catastrophelosses

C u u u u u u u u          

  

    
 

. (12) 

There are other possible four-dimensional nonexchangeable constructions, but this one 

proves helpful since it results in two exchangeable groups. The first group consists of 

the high-risk and the low-risk investments and the second group of noncatastrophe 

losses and catastrophe losses. Thus, we are able to calibrate the copulas according to 

different correlations for assets and liabilities. 

Although it would also be possible to combine the copulas shown in Table 1 in the four-

dimensional construction, we will concentrate on the same copula for all three generat-

ing functions in the construction scheme (Equation (12)) in order to analyze the pure 

effects of different types of tail dependence. Thus, the generators 1 , 2 , and 3  differ 

only in their respective parameter values, which are calibrated using Kendall’s rank 

correlation  . 

We will use the generator function 1  and its corresponding parameter 1  to model the 

correlation between high-risk and low-risk investments, 2  with parameter 2  for the 

correlation between noncatastrophe losses and catastrophe losses, and 3  with 3  to 

correlate assets and liabilities. The copula parameter values 1 , 2 , and 3  are cali-

brated based on the correlations 1  (high-risk investments and low-risk investments), 

2  (noncatastrophe losses and catastrophe losses), and 3  (assets and liabilities). 

To generate random deviates from the Archimedean copulas, we apply the inverse 

transform method to the conditional distributions using numerical rootfinding tech-
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niques following the algorithm described in Embrechts/Lindskog/McNeil (2001).5 An 

application of this algorithm to a financial market context can be found in Savu/Trede 

(2006). Berg/Aas (2007) compare the nonexchangeable Archimedean model with a 

pair-copula construction, examine estimation as well as simulation techniques and test 

the goodness-of-fit with two data sets. Nonexchangeable Archimedean copulas are 

computationally demanding and usually result in clumsy expressions. Therefore, we 

restrict ourselves to the basic description in Table 1. Nonexchangeable Archimedean 

copulas following the construction scheme of Equation (12) result in a hierarchical de-

pendence structure that can be represented by a tree diagram, as shown by Figure 1. 

 

Figure 1: Dependence structure of nonexchangeable Archimedean copulas 
 

 

 

 

 

 

 

One of the technical requirements in the construction of nonexchangeable Archimedean 

copulas results in higher correlations for copulas on a lower level in the hierarchical 

structure. This technical condition limits the level of correlation at higher hierarchical 

levels (see Joe, 1997, pp. 89–91). In our model the correlation between assets and liabil-

ities must thus be smaller than the minimum of correlations of different asset classes 

                                                 
5  An alternative algorithm using Laplace transforms is presented in McNeil (2007). We also imple-

mented this modeling approach. See Berg/Aas (2007) for a comparison of the different approaches. 
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and the correlations of different liability classes. Note that we concentrate on spatial 

correlation at certain points in time and do not model an intertemporal correlation on 

aggregate risk level. The only intertemporal correlation is at the premium level via the 

underwriting cycle. 

In the simulation analysis, the tail dependent copulas are each calibrated to the same set 

of Kendall’s tau values so as to make them comparable. An advantage of using Kend-

all’s tau for calibration is that it is more readily available than other measures of de-

pendence, such as, e.g., the tail dependence coefficient λ. For the Gumbel and Clayton 

copulas, tail dependence can be fully determined by Kendall’s tau (see Table 1, Col-

umns 5 and 6), but for the t copula, tail dependence involves both Kendall’s tau and the 

degrees of freedom v chosen.6 The higher Kendall’s tau, the higher the tail dependence. 

Moreover, the fewer the degrees of freedom in the t copula, the higher the tail depend-

ence. For degrees of freedom → ∞, the t copula converges to the Gaussian copula and 

the tail dependence converges towards zero. 

Focusing on lower tail dependence, Figure 2 compares the Survival Gumbel, the Clay-

ton, and the t copulas for different degrees of freedom (1 to 9) for a bivariate couple in 

the 4-variate nonexchangeable copula.7 The figure also illustrates the range of lower tail 

dependence that can be achieved with the different copulas. For the Clayton, the Sur-

vival Gumbel and the t copulas the range goes from 0 to 1; for a negative Kendall’s tau, 

                                                 
6  The t copula is symmetric and its tail dependence is given by  12 ( 1)(1 ) / (1 )    vt v   ; see 

Equation (11) for the relationship between   and Kendall's tau. Note that the Gauss and Frank copu-

las do not exhibit tail dependence and therefore are not mentioned in this context. 

7  In the later simulations (Section 5) the Survival function for one of the variates is used in order to 

obtain negative dependence for the Survival Gumbel copula. 
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the lower tail dependence of the Clayton and the Survival Gumbel copula is zero. Upper 

tail dependence is similar to the dependence shown in Figure 2, with “Survival Gum-

bel” replaced by “Gumbel” and “Clayton” replaced by “Survival Clayton.” 

 

Figure 2: Lower tail dependence for the Survival Gumbel, the Clayton copula, and the t 

copula 
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The degrees of freedom can be chosen so that the lower tail dependence of the t copula 

matches the lower tail dependence of the Clayton copula or of the Survival Gumbel. For 

example, if Kendall’s tau is 0.18 (dotted line in Figure 2), the lower tail dependence of 

the t copula with three degrees of freedom corresponds to the lower tail dependence of 

the Clayton copula. If Kendall’s tau is 0.34 (dashed line in Figure 2), the t copula with 

one degree of freedom would lead to the same lower tail dependence as the Clayton 

copula. 

In our simulation analysis we present results for five different degrees of freedom (1, 3, 

5, 7, and 9). We do this because in our model we vary Kendall’s tau for the different 

assets, liabilities, and between assets and liabilities and we thus need different degrees 

of freedom to match the lower tail dependence of the t and Clayton copulas. However, 
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since we generate random numbers from one multidimensional t distribution, we can 

choose only one degree of freedom parameter for the whole model. Therefore, we can 

calibrate the t copula to exactly match the Clayton copula only for the special case when 

Kendall’s tau is identical for all three dependencies being considered.8 We use two dif-

ferent approaches to deal with this technical problem. First, we show the full spectrum 

of possible outcomes by considering different degrees of freedom (see Section 5). Sec-

ond, we present two examples where the lower tail dependence of the t and Clayton 

copulas corresponds to each other (see Appendix, where we consider an identical Kend-

all’s tau of 0.1 (0.2) and 7.00 (2.83) degrees of freedom, which leads to a lower tail de-

pendence of 0.04 (0.25) for both the t and Clayton copulas). 

4. MEASUREMENT OF RISK, RETURN, AND PERFORMANCE IN DFA 

4.1. RETURN 

In the simulation study, we measure risk, return, and performance considering seven 

financial ratios used in Eling/Parnitzke/Schmeiser (2008). As a measure of return, we 

consider the expected gain per annum. We denote the expected gain from time 0 to time 

T as   0TE EC EC . The expected gain E(G) per annum can be written as: 

                                                 
8  Due to the hierarchical structure of the problem, we cannot calculate tail dependence for the full 

model, as we use pairwise tail dependence on the different hierarchical levels. We also cannot apply 

the t copula with multiple parameters of degrees of freedom as presented, e.g., in Luo/Shevchenko 

(2007), because this approach can be used only to calibrate within groups (Kendall’s tau for the dif-

ferent assets or for the different liabilities) but not between groups (Kendall’s tau between assets and 

liabilities; for the grouped t copula, see also McNeil/Frey/Embrechts, 2005). Schmid/Schmidt (2007) 

consider multivariate extensions of Spearman’s rho and of tail dependence measures, which could be 

used to extend our model when there are more than two elements in one hierarchical group (e.g., more 

than two asset classes or more than two groups of liabilities). 
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  0( ) TE EC EC
E G

T


 . (13) 

4.2. RISK 

We analyze three risk measures: standard deviation, ruin probability, and expected poli-

cyholder deficit (results for value at risk and tail value at risk (see Dowd/Blake, 2006) 

are available upon request). The standard deviation of the gain per annum (G) takes 

into account both positive and negative deviations from the expected value and thus is a 

measure of total risk: 

( )
( ) TEC
G

T

  . (14) 

However, in the insurance context, risk is often measured using downside risk measures 

such as the ruin probability (RP) or the expected policyholder deficit (EPD). Downside 

risk measures differ from total risk measures in that only negative deviations from a 

certain threshold are taken into account. In this context, the ruin probability can be de-

fined as: 

 ˆRP Pr T   , (15) 

where  ˆ inf 0; 0tt EC     with 1 2t , , ..., T  describes the first occurrence of 

ruin (i.e., a negative equity capital; see, e.g., Heilmann, 1988, p. 247). Note that the cal-

culation of ruin probabilities in discrete time leads to lower values than does continuous 

time analysis (see, e.g., Bühlmann, 1996, p. 134). However, closed-form solutions of 

ruin problems are generally available only under very restrictive conditions (see Rolski 

et al., 1998, p. 19). Thus, for more complex models, analytical or numerical approxima-

tions are necessary. An argument in favor of simulation models in discrete time is that 

they make it easy to consider dependencies of differently distributed risks (see, e.g., 

McNeil/Frey/Embrechts, 2005, p. 232). 
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The ruin probability does not provide any information regarding the severity of insol-

vency (see Butsic, 1994; Barth, 2000) or the time value of money (see Powers, 1995; 

Gerber/Shiu, 1998). To take these into account, the EPD can be considered: 

    
1

0 1
T

t
t

t

fEPD E max -EC , r



   , (16) 

where fr  stands for the risk-free rate of return.  

4.3. PERFORMANCE 

We consider three performance measures. The Sharpe ratio SRσ measures the relation-

ship between the risk premium (mean excess return above the risk-free interest rate) and 

the standard deviation of returns (see Sharpe, 1966): 

0( )  (1 )

( )

  


T
T f

T

E EC EC r
SR

EC 
. (17) 

In the numerator, the risk-free return is subtracted from the expected value of the equity 

capital in T . Using the standard deviation as a measure of risk, the Sharpe ratio also 

measures positive deviations of the returns in relation to the expected value. Since risk 

is often calculated by downside measures, either the ruin probability or the EPD can be 

used in the denominator of the Sharpe ratio: 

0( )  (1 )T
T f

RP

E EC EC r
SR

RP

  
 , (18) 

0( )  (1 )T
T f

EPD

E EC EC r
SR

EPD

  
 . 

(19) 

SRRP denotes the Sharpe ratio based on ruin probability. SREPD is the Sharpe ratio based 

on expected policyholder deficit. 
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5. MEASURING THE INFLUENCE OF COPULAS IN DFA 

5.1. MODEL SPECIFICATIONS 

In our simulation study we present results for a stylized example so as to focus directly 

on the methodology. An application of our methodology to real-world data is available 

upon request (the “real-world” application uses data from a German non-life insurance 

company). Table 2 summarizes the model parameters, their definitions, and their initial 

values for the stylized example. 

In the simulation study we consider a time horizon of five years. The market volume 

MVt of the underwriting market accessible to the insurance company is €1,000 million 

and rises by i = 3% each year. Assets are normally distributed, noncatastrophe losses are 

log-normally distributed, and the catastrophe claims are modeled using a Pareto distri-

bution.9 The underwriting cycle is parameterized using the German all-lines underwrit-

ing profit ratios as an example.10 The consumer response parameter cr is 1 (0.95) if the 

equity capital at the end of the last period is above (below) the company’s safety level. 

The company’s safety level is determined by the minimum capital required (MCR), 

which is based on the Solvency I rules in effect in Germany. 
                                                 

9  To avoid the situation where the Pareto distribution generates infinitely large losses, we define a 

maximum loss based on the concept of the probable maximum loss (see Woo, 2002). While the ruin 

probability is hardly affected by the choice of this cut-off point, the level of EPD depends on the 

maximum loss. However, additional robustness tests show that the relationship between the different 

copulas is not affected by the choice of the maximum loss. In additional tests, we also varied the dis-

tributional assumptions and, e.g., considered the normal inverse Gaussian and skewed t distribution 

for the assets, the Gamma for the noncatastrophe losses, and the Frechet for the catastrophe losses. 

See Bali/Theodossiou (2008) for the risk measurement performance of alternative distribution functions. 

10  The data are taken from Cummins/Outreville (1987). A cycle will be present if a1 > 0, a2 < 0 and 

a1
2+4a2 < 0. These statonarity conditions imply that underwriting profits follow a cyclical pattern. The 

cycle period can then be obtained by -1
1 22π/cos (a /2 -a ) . In our case, the cycle period equals 7.76 

years. This cycle will either have a tendency to die down over time if 2-a <1 or be explosive if 

2-a >1. Even a damped cycle will be maintained over time if random shocks occur. 
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Table 2: Parameter configuration for stylized example 

Parameter Symbol Initial value at t = 0

Time period in years T 5 

Equity capital at the end of period t ECt €75 million 

Tax rate tr 0.25 

Portion invested in high-risk investments in period t 1t   0.40 

Normally distributed high-risk investment return in period t 1tr   

 Mean return 1( )tE r  0.10 

 Standard deviation of return 1( )tr  0.20 

Normally distributed low-risk investment return in period t 2tr   

 Mean return 2( )tE r  0.05 

 Standard deviation of return 2( )tr  0.05 

Risk-free return rf 0.03 

Underwriting market volume MV €1,000 million 

Market growth i 0.03 

Company’s underwriting market share in period t 1t   0.20 

Premium rate level in period t t  1 

 Autoregressive process parameter for lag 0 a0 1.191 

 Autoregressive process parameter for lag 1 a1 0.879 

 Autoregressive process parameter for lag 2 a2 -0.406 

Consumer response function 
1

1

t

t

ECcr 


 1 

Upfront expenses linearly depending on the written market volume   0.05 

Upfront exp. nonlinearly depending on the change in written market vol.   0.001 

Log-normal noncatastrophe claims as portion underwriting market share Cncat  

 Mean claims E(Cncat) €170 million 

 Standard deviation of claims σ(Cncat) €17 million 

Claim settlement costs as portion of claims  0.05 

Pareto distributed catastrophe claims Ccat  

 Mean claims E(Ccat) €0.5 million 

 Dispersion parameter D(Ccat) 4.5 

Kendall’s rank correlation between high-risk and low-risk investments 1  0.2 

Kendall’s rank correlation between noncatastrophe losses and cat. losses 2  0.2 

Kendall’s rank correlation between assets and liabilities 3  -0.1 
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Another important set of input parameters in our simulation are the correlation assump-

tions. There is no clear empirical evidence concerning these correlation values (see 

Lambert/Hofflander, 1966, Haugen, 1971, Kahane/Nye, 1975, and Li/Huang, 1996); 

however, in the robustness tests we will present results for alternative parameter set-

tings. In our stylized example, we use random numbers with the following correlation 

structure. Kendall’s rank correlation between high-risk and low-risk investments is 0.2, 

the correlation between catastrophe losses and noncatastrophe losses is 0.2, and between 

assets and liabilities Kendall’s rank correlation is –0.1.11  

5.2. SIMULATION RESULTS 

Table 3 sets out the simulation results for six different dependence structures. All results 

have been calculated on basis of a Monte Carlo simulation with 500,000 iterations (for 

details on Monte Carlo simulation, see, e.g., Glassermann, 2004). 

 

Table 3: Results for the input parameters given in Table 2 

Dependence 

structure  

No corr. Gauss t     Gumbel Survival 

Gumbel 

Clayton Survival 

Clayton 

Frank 

Tail dependence none none upper and lower upper lower lower upper none 

degree   1 3 5 7 9      

E(G) in million € 31.51 31.12 31.00 31.06 31.03 31.07 31.08 31.14 30.86 30.77 31.22 31.16 

σ(G) in million € 13.57 16.04 16.06 16.14 16.05 16.07 16.07 17.67 18.20 19.17 17.28 15.75 

RP 0.09% 0.42% 0.92% 0.74% 0.62% 0.56% 0.52% 0.31% 0.96% 0.92% 0.27% 0.32% 

EPD in million € 0.01 0.05 0.15 0.11 0.09 0.07 0.07 0.85 1.24 1.80 0.76 0.04 

SRσ 2.15 1.79 1.78 1.78 1.79 1.78 1.79 1.63 1.56 1.48 1.67 1.83 

SRRP 157.56 34.42 15.58 19.39 23.24 25.69 27.49 46.08 14.80 15.46 53.35 45.35 

SREPD 15.86 2.86 0.96 1.30 1.68 1.93 2.04 0.17 0.11 0.08 0.19 3.26 

E(G): expected gain per annum, σ(G): standard deviation of the gain per annum, RP: ruin probability, EPD: expected policyholder 
deficit, SRσ: Sharpe ratio based on standard deviation, SRRP: Sharpe ratio based on ruin probability, SREPD: Sharpe ratio based on 
expected policyholder deficit. 
 

                                                 
11  To generate the negative dependence between assets and liabilities, we apply the uniform random 

variates generated with the hierarchical Archimedean copulas to the Survival functions of the margin-

al distributions for the liabilities. 
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In the case without correlations (i.e., we assume independence between assets, liabilites, 

and assets and liabilities), we find an expected gain of €31.51 million per annum with a 

standard deviation of €13.57 million. The ruin probability amounts to 0.09%. This cor-

responds to an investment grade rating and is below the requirements of many regulato-

ry authorities (e.g., the Solvency II framework planned in the European Union requires 

a ruin probability below 0.50%; see European Commission, 2008). 

Comparing the case without correlations and the Gauss copula (i.e., only linear depen-

dence is considered), we observe minor effects on the mean returns. E(G) is reduced 

about 1.24%, from €31.51 million to €31.12 million. However, we find much larger 

changes in risk. σ(G) rises from €13.57 million to €16.04 million (+18.20%) and RP 

from 0.09% to 0.42% (+466.67%). Obviously, the extreme changes in risk are espe-

cially due to the lower partial moments, as the increase in ruin probability (the measure 

for downside risk) is 26 times higher than the increase in standard deviation (the meas-

ure for total risk). Therefore, the performance is much lower than in the case without 

correlations: SRσ is reduced about 16.52% and SRRP by about 78.15%. 

We find large differences when comparing the results for the copulas. Looking at the t, 

the Gumbel, the Clayton, and the Frank copulas, we again observe only minor effects on 

the mean returns and extreme effects on the risk. However, the change in risk depends 

on the form of nonlinear dependence. With the copulas that exhibit upper or no tail de-

pendence (the Gumbel and Frank copulas), the ruin probability is lower than with the 

Gauss copula, whereas these values are much higher with lower tail dependent copulas 

(the t and Clayton copulas). These findings are confirmed by the results of the Survival 

copulas. The Frank copula, which is the only symmetric Archimedean copula, exhibits a 

lower ruin probability than the Gauss copula as it is lighter in the tails (see Venter, 
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2002). It is also noteworthy that in this example the ruin probability for the t, the Sur-

vival Gumbel, and for the Clayton copulas are above most regulatory requirements 

(e.g., 0.50% in Solvency II).  

The impact of nonlinear dependencies on different risk measures can be illustrated by 

the results for ruin probability and expected policyholder deficit. The Gumbel copula 

has a smaller RP compared to the Gauss and the t copulas, but the EPD is much higher; 

comparing the performance measures based on downside risk, we find that the Gumbel 

copula has a higher SRRP than the Gauss and the t copulas, but a lower SREPD. These 

differences might be due to the extreme levels of the higher moments (skewness, kurto-

sis) with the non-symmetric Gumbel copula, as the EPD is more sensitive to higher 

moments than is the ruin probability.12 The results illustrate the importance of modeling 

nonlinear dependencies in DFA, as the integration of these features has extreme effects 

on the risk and performance of the insurance company. The results found with the RP 

and the EPD might be of special relevance for regulators and rating agencies, because, 

depending on the copula concept employed, we find large differences in risk assessment 

for different risk measures. 

 

                                                 
12  The EPD is much higher with the nonsymmetric copulas compared to the symmetric Gauss, t, and 

Frank copulas becasue nonsymmetric copulas generate more extreme values in the tails compared to 

their symmetric counterparts. For example, based on lower tail dependence, we would expect that the 

risk of the t copula with three degrees of freedom is comparable to the risk of the Clayton copula. 

However, this is only true for the ruin probability, but not for the EPD. Therefore, the extent of lower 

tail dependence corresponds to the ruin probability, but not to the EPD, which is much more sensitive 

to the extreme values produced by the nonsymmetric Gumbel and Clayton copulas. The EPD reflects 

both the lower tail dependence and the asymmetry of the copulas. 
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5.3. ROBUSTNESS OF FINDINGS 

We check the robustness of our findings by varying the level of equity capital, the corre-

lation settings, and the time horizon. The results are robust if the basic relations between 

the analyzed copulas are independent of the given input parameters. 

In the first step, we vary the level of equity capital in t = 0, which determines the com-

pany’s safety level, leaving everything else constant. In Section 5.2, the level of equity 

capital was set at €75 million. To test the implications of different levels of equity capi-

tal, we vary the equity capital in t = 0 from €50 to €100 million in €5-million intervals. 

The results are shown in Figure 3, where the ruin probability and the expected policy-

holder deficit are displayed as a function of the equity capital. 

 

Figure 3: Variation of equity capital in t = 0 between €50 m and €100 m (RP and EPD) 
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As the level of equity capital increases, the ruin probability decreases with all copulas 

because the company’s safety level is improved. However, the relative difference be-

tween the copulas increases with an increasing level of equity capital. For example, with 

EC0 = 50, the ruin probability of the Clayton copula (RP = 2.62%) is five times higher 

than the ruin probability without correlation (RP = 0.49%), but with EC0 = 100, the ruin 

probability of the Clayton copula (RP = 0.316%) is 26 times higher than in the case 

without correlation (RP = 0.012%). The fact that the influence of nonlinear dependen-

cies increases with an increasing level of equity capital is an important result because it 

indicates that copulas are relevant not only for low-capitalized companies but also for 

well-capitalized companies. 

Looking at the expected policyholder deficit, we find a relatively small risk reduction 

especially with the Gumbel and the Clayton copulas. As mentioned, the asymmetric 

Gumbel and Clayton copulas generate more extreme values compared to the symmetric 

copulas and these high values are not affected by an increase in equity capital; thus, the 

EPD is hardly affected by a change in equity capital. Considering the EPD, the results 

of the simulation thus indicate that the risks generated by tail dependencies are not 

much reduced by an increasing level of equity capital. Therefore, it again seems that 

copulas are important for well-capitalized companies. This result is also relevant for 

policyholders and regulators because the expected policyholder deficit is more impor-

tant for the policyholders than for the equityholders (see Bingham, 2000), given that 

policyholders have to bear the amount of loss, while the shareholders (in case of limited 

liability) have a limited downside risk. 

In the second step, we vary the correlations. In our basic setting, these are relatively 

low. Kendall’s rank correlation between high-risk and low-risk investments is 0.2, be-
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tween catastrophe losses and noncatastrophe losses 0.2, and between assets and liabili-

ties –0.1. To test the implications of different correlation assumptions on the level of 

ruin probability, we vary the correlation between the high-risk and low-risk investments 

from 0.1 to 0.5 in 0.1 intervals (upper part of Figure 4) and between catastrophe losses 

and noncatastrophe losses also from 0.1 to 0.5 in 0.1 intervals (lower part of Figure 4). 

 

Figure 4: Variation of correlation between 0.1 and 0.5 (RP) 
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We find that the ruin probability increases with an increasing correlation between the 

assets. This occurs because the higher the correlation, the higher the likelihood that neg-

ative outcomes are generated for both types of assets (i.e., low returns with the high- 

and the low-risk investments). With the Clayton copula the increase is larger than with 

correlation between the assets 

correlation between the liabilities 
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the Survival Gumbel because the relative increase in lower tail dependence is much 

higher (when Kendall’s tau is increased; see Figure 2). All other relations remain robust. 

The increase in ruin probability is much smaller when the correlation between the liabil-

ities is varied. This is because, with the given parametrization, the underwriting busi-

ness is more profitable than the insurer’s investments on the capital market. 

In Section 5.2, a time period of T = 5 years was considered. To check how different 

time horizons affect our results, Figure 5 presents ruin probability and expected policy-

holder deficit for time horizons ranging from 1 to 20 years. 

 

Figure 5: Variation of time horizon between 1 and 20 years 
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Both the ruin probability and the expected policyholder deficit increase when the time 

horizon is expanded. However, all the basic relations set out in Section 5.2 between the 
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different copulas remain unchanged; thus, the results are robust with regard to variation 

of the time horizon. 

6. MEASURING THE INFLUENCE OF RISK MANAGEMENT STRATEGIES 

6.1. MODEL SPECIFICATIONS 

In this section, we investigate whether management can influence the risk introduced by 

tail dependencies. To this end, in our model, decisions concerning the portion of risky 

investments ( ) and the market share in the underwriting business ( ) can be made at 

the beginning of each year. We first consider two management strategies introduced by 

Eling/Parnitzke/Schmeiser (2008): the solvency strategy and the growth strategy. 

The solvency strategy is aimed at risk reduction. For each point in time (t = 1,…, T-1), 

we decrease the portion of risky investments   by 0.05 and the insurance market share 

  by 0.02 as soon as the equity capital falls below the critical value defined by the 

minimum capital required (MCR) plus a safety loading of 50%. The growth strategy 

combines the solvency strategy with a growth target for the underwriting business. 

Should the equity capital drop below the minimum capital required (MCR), including a 

safety loading of 50%, the same rules apply as in the solvency strategy. If the equity 

capital is above the trigger, there is a growth of 0.02 in  . 

In addition to the strategies used in Eling/Parnitzke/Schmeiser (2008), we consider a 

reinsurance strategy. Here the insurer signs a stop-loss reinsurance contract on its whole 

book of business with an attachment point of €200 million, a limit of €40 million, and a 

premium of €4 million at the beginning of each year. The payment from the reinsurer at 

the end of each year can thus be calculated by min (max (Ct-200,0);40). 

Of course, these three strategies are only heuristic risk management approaches. We use 

them to provide some general insights into simple risk reduction approaches under the 
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different copulas. Further research on this topic might include analyzing different rein-

surance contracts (such as stop loss, excess of loss, and double trigger contracts) and 

their effects on an insurers risk and return position (see Eling/Toplek, 2007). Another 

idea would be to search for an optimal risk management strategy within the DFA 

framework (see D’Arcy/Gorvett, 2004, for a related analysis). 

6.2. SIMULATION RESULTS 

The simulation results for the solvency, growth, and reinsurance strategies are presented 

in Table 4. When comparing the results of Table 4 with those of Table 3, we see that 

downside risk is reduced under the solvency strategy although the return remains almost 

unchanged. Thus, the solvency strategy reduces the ruin probability without having 

much effect on the return. However, risk is not as much reduced when nonlinear depen-

dencies are taken into account. The solvency strategy is thus not effective in reducing 

downside risk in the case of nonlinear dependencies. 

Under the growth strategy, we obtain a completely different risk and return profile—a 

higher return is accompanied by higher risk. Again, the level of return is not affected by 

the integration of nonlinear dependencies, but large differences are found for downside 

risk measures. Here risk is much increased with all copula models. Therefore, the per-

formance numbers for the growth strategy are mostly lower than those in the situation 

where no management rule is applied. 

In contrast to the other strategies, the reinsurance strategy leads to a lower return. We 

again find large differences for the downside risk measures. The ruin probability is in all 

cases kept within the regulatory limits suggested by the Solvency II framework (the 

maximum ruin probability is 0.37% for the Survival Gumbel copula). It might thus 

seem that reinsurance is an efficient method to limit the risks generated by nonlinear 
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dependencies. However, this is again only true from the equityholders’ perspective, be-

cause we find that the EPD is very little reduced by purchasing reinsurance. 

 

Table 4: Results for the solvency, growth, and reinsurance strategies 
Dependence 

structure  

No corr. Gauss t     Gumbel Survival 

Gumbel 

Clayton Survival 

Clayton 

Frank 

Tail dependence none none upper and lower upper lower lower upper none 

degree   1 3 5 7 9      

Solvency strategy 

E(G) in million € 31.12 30.65 30.43 30.47 30.44 30.48 30.48 30.69 30.38 30.29 30.77 30.69 

σ(G) in million € 13.67 16.16 16.11 16.21 16.12 16.15 16.14 17.76 18.32 19.27 17.45 15.86 

RP 0.06% 0.30% 0.76% 0.58% 0.47% 0.41% 0.37% 0.22% 0.82% 0.76% 0.19% 0.22% 

EPD in million € 0.00 0.03 0.11 0.07 0.06 0.05 0.04 0.83 1.21 1.76 0.76 0.03 

SRσ 2.10 1.75 1.74 1.73 1.74 1.74 1.74 1.59 1.53 1.45 1.63 1.78 

SRRP 245.97 46.45 18.40 24.11 30.08 34.06 37.64 63.80 17.09 18.46 73.30 63.98 

SREPD 30.43 4.89 1.30 1.88 2.54 3.03 3.26 0.17 0.12 0.08 0.19 5.25 

Growth strategy 

E(G) in million € 33.02 32.43 36.74 36.75 36.68 36.73 36.72 32.52 32.10 31.99 32.62 32.50 

σ(G) in million € 14.85 17.63 20.27 20.41 20.32 20.36 20.36 19.11 19.73 20.64 18.80 17.27 

RP 0.14% 0.60% 0.82% 0.61% 0.50% 0.45% 0.40% 0.43% 1.31% 1.25% 0.37% 0.43% 

EPD in million € 0.01 0.07 0.12 0.08 0.06 0.05 0.05 0.86 1.31 1.86 0.79 0.06 

SRσ 2.06 1.70 1.69 1.68 1.69 1.69 1.69 1.58 1.51 1.43 1.61 1.74 

SRRP 106.95 25.15 21.06 28.25 34.02 38.37 42.59 35.20 11.34 11.86 41.27 35.11 

SREPD 11.09 2.16 1.42 2.09 2.72 3.28 3.68 0.17 0.11 0.08 0.19 2.69 

Reinsurance strategy 

E(G) in million € 31.57 31.31 29.41 29.44 29.41 29.45 29.45 31.29 31.09 31.03 31.35 31.31 

σ(G) in million € 12.77 15.00 14.98 15.06 15.00 15.03 15.02 16.81 17.10 18.08 16.53 14.79 

RP 0.02% 0.14% 0.43% 0.35% 0.31% 0.29% 0.27% 0.10% 0.37% 0.36% 0.11% 0.11% 

EPD in million € 0.00 0.01 0.05 0.04 0.03 0.03 0.03 0.81 1.12 1.69 0.74 0.01 

SRσ 2.29 1.93 1.80 1.80 1.80 1.80 1.80 1.72 1.68 1.58 1.75 1.96 

SRRP 868.44 102.70 31.20 38.43 43.25 47.08 50.98 139.22 39.25 39.49 134.31 137.72 

SREPD 114.67 13.22 2.74 3.84 4.63 4.78 5.22 0.18 0.13 0.08 0.20 13.54 

E(G): expected gain per annum, σ(G): standard deviation of the gain per annum, RP: ruin probability, EPD: expected policyholder 
deficit, SRσ: Sharpe ratio based on standard deviation, SRRP: Sharpe ratio based on ruin probability, SREPD: Sharpe ratio based on 
expected policyholder deficit. 
 

6.3. ROBUSTNESS OF FINDINGS 

We checked the robustness of our findings using the tests described in Section 5.3. Fig-

ure 6 shows the ruin probability for different levels of equity capital under the solvency 

strategy (upper part of the figure), the growth strategy (middle part of the figure), and 

the reinsurance strategy (lower part of the figure). The expected policyholder deficit 

yields the same conclusions as in Section 5.3. 
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Figure 6: Variation of equity capital in t = 0 between €50 m and €100 m (RP) 
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The results displayed in Figure 6 are comparable to the results presented in Figure 3. As 

the equity capital increases, the ruin probability decreases for all strategies. The only 

difference is the base level of the ruin probability. The strategies cannot influence the 

relative difference between the copulas described in Section 5.2, i.e., the fact that the 

EC in t = 0 

Solvency Strategy 

Growth Strategy 

Reinsurance Strategy 
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relative difference between the copulas increases with the level of equity capital. How-

ever, overall these results indicate that the main conclusions presented in Section 6.2 are 

very robust. We also investigated the implications of different correlation assumptions 

and different time horizons and again found robust results.  

7. CONCLUSION 

We study the influence of nonlinear dependencies on a non-life insurers risk and return 

profile by integrating several copula models in a DFA framework. Nonlinear dependen-

cies are especially relevant in the case of extreme events that might induce tail depen-

dencies between different assets, different kinds of liabilities, or between assets and 

liabilities. One example of such extreme events are the terrorist attacks of September 

11, 2001, which resulted in insurers experiencing large losses from the underwriting 

business and on the capital markets. 

We have three main findings, each with important implications for insurance company 

stakeholders. Firstly, we find that extreme events are especially relevant for policyhold-

ers and regulators (which have to monitor insurers solvency to protect policyholders), 

because nonlinear dependencies do not affect the return level but, instead, the ruin prob-

ability and the expected policyholder deficit (EPD). Depending on the copula, the ruin 

probability increases up to a factor of eleven in our simulation study compared to a situ-

ation without dependencies. We observe the highest levels of risk in case of lower tail 

dependent copulas such as the t and the Clayton copulas. 

A second key result is that while in general the ruin probability decreases when equity 

capital increases, there are nonlinear dependencies where the expected policyholder 

deficit cannot be reduced by increasing equity capital−a finding which is again of spe-

cial importance for policyholders and regulators. It thus seems that copulas are relevant 
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not only for low-capitalized companies but also for well-capitalized companies. This 

finding also highlights the importance of considering nonlinear dependencies, especially 

for regulators and rating agencies. Depending on the copula concept employed, we find 

large differences in the risk assessment of policyholder deficit and ruin probability. As 

these measures are the foundation of capital standards and ratings, it is important to 

consider nonlinear dependencies in the regulatory framework and in rating assessment, 

e.g., in stress testing and scenario analysis. 

Thirdly, we check the effectiveness of different risk management strategies used in re-

sponse to adverse outcomes generated by nonlinear dependencies, but we find that the 

risk profile cannot be affected by simple risk reduction strategies. A reinsurance strate-

gy can delimit the ruin probability, but not the expected policyholder deficit. In our si-

mulation study, the reinsurance strategy thus proves to be an useful instrument for se-

curing the position of equityholders, but not necessarily for policyholders, which have 

to bear the amount of loss in case of insolvency. 

The paper points towards an important distinction between copula functions when it 

comes to modeling the ruin probability and the expected policyholder deficit, i.e., the 

distinction between symmetric and asymmetric dependence structures of different asset 

classes and different liabilities. Imposing a symmetric dependence structure leads to 

significantly lower EPD values for matched Kendall’s tau and degrees of freedom pa-

rameters across copula specifications. The survival copulas confirm the higher sensitiv-

ity of the EPD to extreme tail events as compared to the ruin probability. These results 

emphasize the importance of modeling asymmetric nonlinear dependencies. 

As mentioned, there are a number of empirical papers that attempt to answer the ques-

tion of which copula will provide the best fit for empirical data that contains different 
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asset classes and different liabilities. The general finding of all these studies is that it is 

not easy to fit parametric copulas to empirical data, but that the Gaussian copula is most 

likely not the best one for describing real-world dependencies, thus giving our scenario 

analyses greater relevance. In practice, different business units of an insurance company 

have detailed data for their specific segment and are thus able to calculate a univariate 

loss distribution that is a reasonably accurate description of their business. These mar-

ginal models are then integrated into a multivariate model by assuming a correlation 

structure, which is typically Gaussian. This means that detailed marginal data are com-

bined with rather scarce dependence information, an approach fraught with model risk. 

In this paper, we provide an assessment of this risk by considering a specific selection 

of copulas. 

Moreover, the current financial market crisis, which has impacted many insurers on 

both sides of their balance sheets, illustrates the importance of analyzing extreme events 

in an asset liability management context. It is also important that existing regulation in 

Europe (Solvency II, Swiss Solvency Test) incorporates linear dependencies, but ne-

glects nonlinear dependencies, which is also true of most internal risk models used in 

practice. Our paper shows what can happen in extreme scenarios such as simultaneous 

adverse developments in different business areas, and we believe that the current crisis 

is a good real-world illustration of their relevance. As these scenarios are not fully re-

flected in current regulation and most of the internal models, we recommend their use in 

stress testing. 
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APPENDIX: MATCHING OF KENDALL’S TAU AND DEGREES OF FREEDOM  

 

Table A1: Results for matched Kendall’s tau and degrees of freedom 

Dependence structure  No corr. Gauss t  Gumbel 
Survival 

Gumbel 
Clayton 

Survival 

Clayton 
Frank 

Tail dependence none none 
upper and 

lower 
upper lower lower upper none 

Kendall’s tau = 0.1 and degrees of freedom = 7.00 

E(G) in million € 31.51 31.20 31.16 31.32 30.91 31.03 31.21 31.30 

σ(G) in million € 13.57 15.52 15.55 15.50 17.06 15.87 17.01 15.30 

RP 0.09% 0.33% 0.46% 0.26% 0.85% 0.73% 0.25% 0.25% 

EPD in million € 0.01 0.04 0.06 1.28 1.04 1.64 0.87 0.04 

SRσ 2.15 1.86 1.85 1.87 1.67 1.80 1.69 1.89 

SRRP 157.56 43.45 31.43 56.16 16.76 19.76 58.67 57.58 

SREPD 15.86 3.64 2.35 0.11 0.14 0.09 0.17 3.80 

Kendall’s tau = 0.2 and degrees of freedom = 2.83 

E(G) in million € 31.51 30.88 30.83 31.06 30.50 30.58 31.01 31.04 

σ(G) in million € 13.57 17.25 17.24 18.20 18.41 18.18 18.42 16.86 

RP 0.09% 0.80% 1.08% 0.50% 1.61% 1.66% 0.39% 0.52% 

EPD in million € 0.01 0.11 0.17 1.40 1.14 1.49 0.94 0.08 

SRσ 2.15 1.65 1.65 1.58 1.53 1.55 1.55 1.70 

SRRP 157.56 17.81 13.18 28.71 8.75 8.48 36.50 27.80 

SREPD 15.86 1.35 0.86 0.10 0.12 0.09 0.15 1.81 
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