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SIMPLE ERROR ESTIMATORS FOR THE GALERKIN BEM
FOR SOME HYPERSINGULAR INTEGRAL EQUATION IN 2D

C. ERATH, S. FUNKEN, P. GOLDENITS, AND D. PRAETORIUS

Abstract. A posteriori error estimation is an important tool for reliable and efficient
Galerkin boundary element computations. For hypersingular integral equations in 2D with
positive-order Sobolev space, we analyze the mathematical relation between the h − h/2-
error estimator from [18], the two-level error estimator from [22], and the averaging error
estimator from [7]. All of these a posteriori error estimators are simple in the following sense:
First, the numerical analysis can be done within the same mathematical framework, namely
localization techniques for the energy norm. Second, there is almost no implementational
overhead for the realization. In particular, this is very much different to other a posteriori
error estimators proposed in the literature. As model example serves the hypersingular
integral equation associated with the 2D Laplacian, and numerical experiments underline
the mathematical results.

1. Introduction

We consider a hypersingular integral equation
Wu = f on Γ(1.1)

for a relatively open and connected subset Γ ⊆ ∂Ω of the boundary of a bounded Lipschitz
domain Ω ⊆ R2. Here, W denotes the hypersingular integral operator which formally reads,
e.g., for the Laplace operator

Wu(x) = 1
2π

∂

∂n(x)

∫
Γ
u(y) ∂

∂n(y) log |x− y| dsy for x ∈ Γ(1.2)

with
∫

Γ ds the integration over the surface piece Γ and n(x), for x ∈ Γ, the outer unit normal
vector of Ω. Then, 〈〈u , v〉〉 := 〈Wu, v〉 defines a scalar product on a certain closed subspace
H of H1/2(Γ), where 〈· , ·〉 denotes the extended L2-scalar product.

Based on a partition Th = {T1, . . . , TN} of Γ, we consider the lowest-order Galerkin method
with ansatz space Xh := S1(Th) ∩ H, which consists of continuous and Th-piecewise affine
functions. We analyze different strategies for the a posteriori error control of |||u−uh|||, where
uh ∈ Xh denotes the Galerkin solution and where ||| · ||| denotes the energy norm induced
by 〈〈· , ·〉〉. Altogether, thirteen different error estimators are derived and treated within one
analytical framework. For the introduction, we only address some examples. The reader is
refered to Section 6.2 for an overview of all error estimators under consideration. — A prior
work [15] containing similar results, was concerned with weakly-singular integral equations
with energy space H̃−1/2(Γ), but the proofs therein do not simply apply to the present
situation.
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Key words and phrases. hypersingular integral equation, boundary element method, a posteriori error

estimate, adaptive algorithm.
1



First, we consider the h−h/2-strategy which has been proposed in [18] in the context of the
weakly-singular integral equation with energy space H̃−1/2(Γ). The canonical h− h/2-error
estimator reads

ηH := |||uh/2 − uh|||,(1.3)
where uh/2 ∈ Xh/2 := S1(Th/2) ∩ H is the Galerkin solution with respect to the uniformly
refined mesh Th/2. Whereas the energy norm ||| · ||| is non-local, an adaptive mesh-refinement
can be steered by use of

µH := ‖h1/2(uh/2 − uh)′‖L2(Γ),(1.4)
where h ∈ L∞(Γ) denotes the local mesh-size of Th and where (·)′ denotes the arc-length
derivative. Second, we consider the two-level error estimator from [22]

ηT :=
( ∑

Tj∈Th

|〈f −Wuh , ϕj〉|2
|||ϕj|||2

)1/2
,(1.5)

where ϕj ∈ Xh/2 denotes the hat-function with respect to the midpoint of an element Tj ∈ Th.
Finally, we consider the averaging-based error estimators proposed in [7]

ηA := |||uh/2 −Ghuh/2||| and µA := ‖h1/2(uh/2 −Ghuh/2)′‖L2(Γ),(1.6)

where Gh denotes the Galerkin projection onto the continuous and Th-piecewise quadratic
functions Xh := S2(Th) ∩ H. We stress that —unlike the error estimators ηH , µH , and
ηT — the error estimators ηA and µA were introduced for a posteriori error estimation of the
improved Galerkin error |||u− uh/2||| ≤ |||u− uh|||.

Our analytical results below can be briefly concluded as follows: First, we prove that all
of the error estimators in this work are equivalent, i.e., for each two error estimators η and
µ, there are constants Clow, Chigh > 0 such that

C−1
low µ ≤ η ≤ Chigh µ.(1.7)

Second, we consider efficiency and reliability of the error estimators η in the sense that
C−1

eff η ≤ |||u− uh||| ≤ Crel η(1.8)
with some constants Ceff , Crel > 0. Whereas all introduced error estimators are efficient,
reliability turns out to be equivalent to the saturation assumption

|||u− uh/2||| ≤ qS |||u− uh|||(1.9)
with some constant qS ∈ (0, 1). To mention some further contributions of this work, we stress
that h−h/2-based error estimators have not been considered in the context of hypersingular
integral equations. Moreover, our analysis provides an alternative proof for the efficiency
and reliability result for ηT from [20]. Finally, we prove that the error estimator

µ̃A := ‖h1/2(u′h/2 −Πhu
′
h/2)‖L2(Γ)(1.10)

with Πh the L2-projection onto the discontinuous Th-piecewise affine functions is, in fact,
equivalent to the averaging error estimators ηA and µA. This gives a positive answer to an
empirical observation from [7]. Throughout, our analysis is simple in the sense that it is only
based on so-called localization techniques which allow to replace the energy norm ||| · ||| by a
weighted H1-seminorm ‖h1/2(·)′‖L2(Γ).
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The content of the paper is organized as follows: Notations, preliminaries, and the locali-
zation arguments are collected in Section 2. Section 3 is concerned with error estimation
by space enrichment, e.g., the h− h/2-error estimators. Section 4 treats the two-level error
estimator ηT introduced and studied in [20, 22]. Section 5 considers error estimators based
on local averaging which were proposed by [7, 8]. Section 6 addresses some implementational
aspects. In particular, we show that the implementation of all error estimators under consid-
eration is simple and straightforward. This is in sharp contrast to, e.g., residual-based error
estimators [2, 3, 4, 5, 6, 9, 10, 16] which require, by others, well-adapted quadrature rules
and a pointwise evaluation of the residual. Numerical experiments in Section 7 give empirical
evidence that an adaptive mesh-refining strategy which is steered by the local contributions
of one of the introduced error estimators, is much superior to uniform mesh-refinement.

2. Preliminaries

2.1. Fractional Order Sobolev Spaces. Let Ω be a bounded domain in R2 with Lipschitz
boundary ∂Ω. Given 0 < α ≤ 1, the Sobolev space Hα(∂Ω) is the set of all real-valued
functions on ∂Ω which are the traces of functions in Hα+1/2(R2) to ∂Ω,

(2.1) Hα(∂Ω) := {u|∂Ω : u ∈ Hα+1/2(R2)}.
Moreover, it is consistent to define H0(∂Ω) := L2(∂Ω) and to define Sobolev spaces of
negative order by duality,
(2.2) H−α(∂Ω) := Hα(∂Ω)∗,
with corresponding norms and duality brackets 〈· , ·〉 which extend the L2(∂Ω) scalar product.
For the hypersingular integral equation on ∂Ω, one considers the subspaces Hα

⋆ (∂Ω) to factor
the constant functions out,

Hα
⋆ (∂Ω) := {u ∈ Hα(∂Ω) : 〈1 , u〉 = 0},(2.3)

where 1 denotes the constant function. For a (relatively) open subset ω ⊆ Γ and α ≥ 0, we
define the fractional order Sobolev space Hα(ω) by extension

Hα(ω) := {u|ω : u ∈ Hα(∂Ω)},(2.4)
where the norm of u ∈ Hα(ω) is defined as the minimal norm of an extension, i.e.

‖u‖Hα(ω) := inf{‖û‖Hα(∂Ω) : û ∈ Hα(∂Ω) with û|ω = u}.(2.5)

Furthermore, there are Sobolev spaces H̃α(ω)

H̃α(ω) := {u ∈ Hα(∂Ω) : supp(u) ⊆ ω}(2.6)
associated with the usual Hα(ω) norm. The corresponding spaces of negative order are again
defined by duality

H−α(ω) = H̃α(ω)∗ and H̃−α(ω) = Hα(ω)∗.(2.7)

Remark 1. Note that H̃α(∂Ω) = Hα(∂Ω). For ω $ ∂Ω, there holds only H̃α(ω) ⊆ Hα(ω)
with ‖u‖Hα(ω) ≤ ‖u‖ eHα(ω) for all u ∈ H̃α(ω). �
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Remark 2. Note that according to Sobolev’s inequality in 1D, each function u ∈ Hα(ω)
with α > 1/2 is continuous. Moreover, each function u ∈ H1(ω) is absolutely continuous, i.e.
there holds the fundamental theorem of calculus with respect to the arclength-derivative. �

2.2. Hypersingular Integral Operator and Energy Norm. The analysis below only
makes use of the following assumptions: Let

H =
{
H̃1/2(Γ) := {v ∈ H1/2(Γ) : supp(v) ⊆ Γ} in case of Γ $ ∂Ω,
H

1/2
⋆ (Γ) := {v ∈ H1/2(Γ) :

∫
Γ v ds = 0} in case of Γ = ∂Ω.

(2.8)

We assume that 〈〈u , v〉〉 := 〈Wu, v〉 is a scalar product on H with corresponding norm
||| · ||| ∼ ‖ · ‖H1/2(Γ) on H. Moreover, for Γ = ∂Ω, let 〈〈· , ·〉〉 be a continuous and symmetric
bilinear form on the entire space H1/2(Γ) and assume that 〈〈c , v〉〉 = 0 for all c ∈ R and
v ∈ H1/2(Γ). This situation is met for several first-kind integral equations, which arise from
elliptic PDEs. Besides the Laplace operator from the introduction, examples arise for the
hypersingular integral equations associated with the Lamé and the Stokes problem. We
stress that the dual space of H is given by

H∗ =
{
H−1/2(Γ) in case of Γ $ ∂Ω,
H
−1/2
⋆ (Γ) := {g ∈ H−1/2(Γ) : 〈g , 1〉 = 0} in case of Γ = ∂Ω.

(2.9)

We then consider the variational formulation of (1.1)
〈〈u , v〉〉 = 〈f , v〉 for all v ∈ H(2.10)

for a given right-hand side f ∈ H∗. According to Riesz’ theorem, there is a unique solution
u ∈ H of (2.10). With a conforming discrete space Xh ⊂ H, we consider the Galerkin
method

〈〈uh , vh〉〉 = 〈f , vh〉 for all vh ∈ Xh,(2.11)
for which the Riesz theorem again provides a unique solution uh ∈ Xh. We stress the
Galerkin orthogonality

〈〈u− uh , vh〉〉 = 0 for all vh ∈ Xh,(2.12)
which in fact characterizes the discrete solution uh ∈ Xh. In particular, there holds

|||u− uh||| ≤ |||u− vh||| for all vh ∈ Xh,(2.13)
i.e. uh is the best approximation of u with respect to Xh and the energy norm.

2.3. Galerkin Discretization. Let Th be a partition of Γ, i.e. Th = {T1, . . . , TN} is a finite
set of pairwise disjoint, connected, and relatively open subsets of Γ such that Γ =

⋃N
j=1 T j .

For the ease of presentation, we assume that the elements Tj are affine boundary pieces. We
define the local mesh-width by

h ∈ L∞(Γ), h|Tj
:= hj := sup{|x− y| : x, y ∈ Tj}.(2.14)

Moreover, the local mesh-ratio is given by
κ(Th) := max{hj/hk : Tj , Tk ∈ Th with T j ∩ T k 6= ∅},(2.15)

i.e. by the maximal quotient of the lengths of two neighbouring elements. Refinement of an
element Tj ∈ Th means that Tj is split into two new elements of half length. Since the error
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estimates below depend on κ(Th), our implementation always ensures that κ(Th) ≤ 2 κ(T0),
where T0 denotes the initial mesh.

Throughout, Kh denotes the set of all nodes of a triangulation Th. Recall that #Kh = #Th

for Γ = ∂Ω, whereas #Kh = #Th + 1 for Γ $ ∂Ω.
Let Pp(Th) denote the space of all Th-piecewise polynomials of degree ≤ p with respect to

the arclength and Sp(Th) := Pp(Th) ∩ C(Γ). The canonical discrete spaces Xh in (2.11) are
given by

S̃p(Th) := Sp(Th) ∩ H̃1/2(Γ) = {vh ∈ Sp(Th) : vh|∂Γ = 0} for Γ $ ∂Ω(2.16)

and

Sp
⋆ (Th) := Sp(Th) ∩H1/2

⋆ (Γ) = {vh ∈ Sp(Th) :
∫

Γ vh ds = 0} for Γ = ∂Ω,(2.17)

respectively. However, for implementational and even analytical reasons in Section 4, we
shall consider a different space in case of Γ = ∂Ω. We define

Sp
0 (Th) :=

{
S̃p(Th) in case of Γ $ ∂Ω,
{vh ∈ Sp(Th) : vh(zN) = 0} in case of Γ = ∂Ω,

(2.18)

where zN ∈ Kh is a fixed node of Th. Note that conformity Sp
0 (Th) ⊂ H holds, by definition,

only for Γ $ ∂Ω. However, there holds the following elementary link between Sp
⋆ (Th) and

Sp
0 (Th) for Γ = ∂Ω.

Lemma 2.1. Assume that Γ = ∂Ω. Then, 〈〈· , ·〉〉 defines a scalar product on Sp
0 (Th).

Given f ∈ H∗, there thus exists a unique Galerkin solution uh ∈ Sp
0 (Th) with respect to

Sp
0 (Th). Moreover, the Galerkin solution u⋆

h ∈ Sp
⋆ (T ) with respect to Sp

⋆ (T ) ⊂ H is given by
u⋆

h = uh − |Γ|−1 ∫
Γ uh ds. Finally, with u ∈ H the continuous solution of (2.10), there holds

|||u− uh||| = |||u− u⋆
h||| as well as (2.12)–(2.13) with the entire space Xh = Sp(Th) instead of

only the subspace Sp
0 (Th).

Proof. Let vh ∈ Sp
0 (Th) with 〈〈vh , vh〉〉 = 0 and define v⋆

h := vh − vh ∈ Sp
⋆ (Th), where vh :=

|Γ|−1 ∫
Γ vh ds ∈ R. Then, we obtain 〈〈v⋆

h , v
⋆
h〉〉 = 〈〈vh , vh〉〉−2〈〈vh , vh〉〉+〈〈vh , vh〉〉 = 0. Therefore,

v⋆
h = 0 and vh is constant. From vh(zN ) = 0, we infer vh = 0. Therefore, 〈〈· , ·〉〉 is a scalar

product on Sp
0 (Th). Let uh ∈ Sp

0 (Th) be the associated Galerkin solution. For arbitrary
v⋆

h ∈ Sp(Th), we define vh := v⋆
h − v⋆

h(zN) ∈ Sp
0 (Th). As before, we obtain 〈〈u⋆

h , v
⋆
h〉〉 =

〈〈uh , vh〉〉 = 〈f , vh〉 = 〈f , v⋆
h〉, where the final equality follows from f ∈ H∗ = H

−1/2
⋆ (Γ).

In particular, u⋆
h ∈ Sp

⋆ (Th) is the unique Galerkin solution with respect to Sp
⋆ (Th). The

remaining claims follow by use of the same arguments. �

The focus of this work is on the lowest-order Galerkin scheme for p = 1. We shall use the
nodal basis {φz : z ∈ Kh} of S1(Th), where Kh denotes the set of nodes of Th and where
φz ∈ S1(Th), for z ∈ Kh, denotes the corresponding hat function which satisfies φz(z′) = δzz′

for all nodes z′ ∈ Kh.

2.4. Notational Conventions. If not stated otherwise, we use the following notation,

Xh := S1
0 (Th), Xh/2 := S1

0 (Th/2), and Xh := S2
0 (Th),(2.19)
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where the partition Th/2 is obtained from a uniform refinement of Th. Moreover, in Section 3
and 4, we use

X̂h ∈ {Xh/2, Xh},(2.20)

i.e. X̂h denotes either Xh/2 or Xh. The Galerkin solutions with respect to Xh, Xh/2, Xh, and
X̂h are denoted by uh, uh/2, uh, and ûh, respectively. Throughout, Galerkin projections are
denoted by G. The indices indicate the corresponding space, e.g. Gh denotes the Galerkin
projection onto Xh and Gh/2 denotes the Galerkin projection onto Xh/2.

Altogether, we shall introduce thirteen different error estimators below. Throughout, the
notation of the a posteriori error estimators

η, η̃, µ, and µ̃(2.21)
uses the following convention: η denotes an error estimator which is based on the energy
norm, whereas µ denotes an error estimator which is based on an h1/2-weighted H1-seminorm.
Moreover, η and µ need the computation of a certain Galerkin projection G, whereas η̃ and µ̃
are based on simpler operators, c.f. the definition of the h−h/2-error estimators ηS in (3.1),
η̃S in (3.6), and µS as well as µ̃S in (3.7). The subscript indicates the type of error estimator,
e.g. ηS shows that this error estimator is based on space enrichment.

2.5. Localization of H1/2H1/2H1/2-Norm. The first lemma provides a localization of the energy
norm for discrete functions vh ∈ S1(Th). Since ||| · ||| is an equivalent norm on the subspace H
of H1/2(Γ), this localization is naturally given in terms of a mesh-size weighted H1-seminorm.

Lemma 2.2. (i) For any discrete function vh ∈ Sp
0 (Th) holds the inverse estimate

‖h1/2v′h‖L2(Γ) ≤ Cinv|||vh|||(2.22)
where the constant Cinv > 0 depends only on Γ and the polynomial degree p ≥ 0.
(ii) For p = 1, the nodal interpolation operator Ih : C(Γ) → S1(Th), Ihv :=

∑
z∈Kh

v(z)φz

and the L2-orthogonal projection Πh : L2(Γ) → P0(Th) are related by
(Ihv)′ = Πhv

′ for all v ∈ H1(Γ).(2.23)
(iii) There holds the following approximation estimate

|||v − Ihv||| ≤ Capx‖h1/2(v − Ihv)′‖L2(Γ) ≤ Capx‖h1/2v′‖L2(Γ) for all v ∈ H1(Γ) ∩H,(2.24)
where the constant Capx > 0 depends only on Γ and κ(Th).
(iv) Moreover, the Galerkin projection Gh : H → Sp

0 (Th) satisfies
|||v −Ghv||| ≤ Capx min

{‖h1/2v′‖L2(Γ), ‖h1/2(v −Ghv)′‖L2(Γ)
}

for all v ∈ H1(Γ) ∩H(2.25)
with the constant Capx from (iii).
Sketch of Proof. We only consider the case Γ = ∂Ω and stress that the simpler case Γ $ ∂Ω
follows along the same lines. The local inverse estimate (2.22) is proven in [7, Proposition
3.1] in the form

‖h1−αv′h‖L2(Γ) ≤ C̃inv‖vh‖Hα(Γ) for all vh ∈ Sp(Th),

where C̃inv depends only on Γ, α ≥ 0, and p ∈ N0. We only consider the case α = 1/2.
For vh ∈ Sp

0 (Th), we define v⋆
h := vh − |Γ|−1 ∫

Γ vh ds ∈ Sp
⋆ (T ). Now, norm equivalence on
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Sp
⋆ (Th) ⊂ H = H

1/2
⋆ (Γ) as well as |||vh||| = |||v⋆

h||| and v′h = (v⋆
h)′ prove (2.22). To prove (2.23),

it only remains to verify ∫
T

(v − Ihv)′ ds = 0 for all T ∈ Th

which however follows from the fact that the nodal values of v − Ihv are zero. The local
approximation estimate from [2, Theorem 1] reads

‖v − Ihv‖Hα(Γ) ≤ C̃apx‖h1−αv′‖L2(Γ) for all v ∈ H1(Γ),(2.26)

where the constant C̃apx depends only on Γ, α ≥ 0, and on κ(Th). For α = 1/2, continuity of
the bilinear form 〈〈· , ·〉〉 yields |||w||| ≤ C ‖w‖H1/2(Γ) for all w ∈ H1/2(Γ). Therefore, we obtain

|||v − Ihv||| ≤ Capx ‖h1/2v′‖L2(Γ) for all v ∈ H1(Γ).
We apply this estimate to w := v− Ihv ∈ H1(Γ)∩H. From the projection property I2

h = Ih,
we infer

|||v − Ihv||| = |||w − Ihw||| ≤ Capx‖h1/2w′‖L2(Γ) = Capx‖h1/2(v − Ihv)′‖L2(Γ),(2.27)
Note that the L2-orthogonal projection Πh onto P0(Th) is even Th-elementwise the best
approximation operator. This and (2.23) imply

‖(v − Ihv)′‖2
L2(Tj) = ‖v′ − Πhv

′‖2
L2(Tj) ≤ ‖v′‖2

L2(Tj) for all Tj ∈ Th.

Multiplying this estimate with the local mesh-width and summing over all elements, we see
‖h1/2(v − Ihv)′‖L2(Γ) ≤ ‖h1/2v′‖L2(Γ).

The combination of this and (2.27) concludes the proof of (2.24). It finally remains to
prove (2.25). In a first step, we use the best approximation property of the Galerkin projec-
tion Gh, cf. Lemma 2.1. This implies

|||v −Ghv||| = min
vh∈Sp(Th)

|||v − vh||| ≤ |||v − Ihv||| ≤ Capx‖h1/2v′‖L2(Γ).

The strengthened form (2.25) is again obtained by simple postprocessing: We consider w :=
v −Ghv ∈ H1(Γ) ∩H and use G2

h = Gh to derive
|||v −Ghv||| = |||w −Ghw||| ≤ Capx‖h1/2w′‖L2(Γ) = Capx‖h1/2(v −Ghv)′‖L2(Γ).

Therefore, |||v −Ghv||| is even bounded by the minimal right-hand side. �

3. Error Estimation by Space Enrichment

Let Xh ⊂ X̂h be nested discrete subspaces of H with corresponding Galerkin solutions
uh ∈ Xh and ûh ∈ X̂h, respectively. We now use the difference of the two Galerkin solutions

ηS := |||ûh − uh|||(3.1)

to estimate the error |||u− uh|||. The Galerkin orthogonality (2.12) for X̂h then yields
|||u− uh|||2 = |||u− ûh|||2 + |||ûh − uh|||2 = |||u− ûh|||2 + η2

S

and thus ηS ≤ |||u− uh|||. This proves efficiency of ηS with Ceff = 1. The reliability of ηS is
usually proven with the help of the saturation assumption

|||u− ûh||| ≤ qS |||u− uh||| with some uniform constant qS ∈ (0, 1).(3.2)
7



Under this assumption, we obtain |||u−uh|||2 = |||u− ûh|||2 + η2
S ≤ q2

S |||u−uh|||2 + η2
S and thus

reliability

|||u− uh||| ≤ 1√
1− q2

S

ηS.(3.3)

The same arguments, in fact, imply that reliability of ηS yields the saturation assump-
tion (3.2) with qS = (1 − C−2

rel )1/2. We state these elementary observations in the following
proposition.

Proposition 3.1. (i) The error estimator ηS is always efficient with Ceff = 1.
(ii) The saturation assumption (3.2) is equivalent to reliability of ηS with Crel = (1−q2

S)−1/2.
�

Note that (3.2) always holds with qS = 1 due to the best approximation property of
Galerkin solutions. Therefore, the space X̂h has to be sufficiently larger than Xh to allow
and guarantee (3.2) with uniform qS < 1. In the following, we consider two canonical choices
for the enriched space X̂h: First, the h− h/2-strategy which has been proposed and studied
in [18] in the context of the weakly singular integral equation with energy space H̃−1/2(Γ).
Let Th = {T1, . . . , TN} be a partition of Γ and Th/2 be obtained from a uniform refinement
of Th. We then may consider the discrete spaces

Xh := S1
0 (Th) and X̂h := S1

0 (Th/2).(3.4)
Alternatively, we might use the analogous p− (p+ 1)-strategy, where

Xh := S1
0 (Th) and X̂h := S2

0 (Th).(3.5)
For the finite element method and either of the choices (3.4)–(3.5), the saturation assump-
tion (3.2) can be proven under some mild conditions on the local mesh refinement [14].
However, we stress that the saturation assumption — although observed in practice, cf.
Section 7 below — has not been proven for the boundary element method, yet.

Moreover, for either of the two choices, the error estimator ηS suffers from two things: First,
the energy norm ||| · ||| does not provide information, where the mesh Th should be refined
to decrease the error most efficiently. Second, we do not only have to compute the Galerkin
approximation uh with respect to Xh but even the computationally more expensive Galerkin
solution ûh. A numerical algorithm clearly returns ûh, since this is a better approximation
of the exact solution u than uh.

Some kind of remedy is given by the following theorem: First, the nonlocal energy norm
is replaced by an h-weighted H1-seminorm. Second, we might replace uh by the nodal
interpolant Ihûh of the more accurate Galerkin solution ûh. Instead of solving a linear
system with dense Galerkin matrix to obtain uh, we thus only compute Ihûh, which is done
in real linear complexity.

Theorem 3.2. Let Xh and X̂h be given by either (3.4) or (3.5). Besides the error estimator
ηS, we define

η̃S := |||ûh − Ihûh|||(3.6)
as well as the h-weighted L2-norm based error estimators

µS := ‖h1/2(ûh − uh)′‖L2(Γ) and µ̃S := ‖h1/2(ûh − Ihûh)′‖L2(Γ),(3.7)
8



Element Tj Function ϕj for bXh = S1
0 (Th/2) Function ϕj for bXh = S2

0(Th)
Figure 1. The space X̂h, which is either S1

0 (Th/2) or S2
0 (Th) is decomposed into Xh =

S1
0 (Th) and one-dimensional spaces Xh,j := span{ϕj}. For each element Tj ∈ Th, we

choose the additional function ϕj ∈ X̂h such that supp(ϕj) ⊆ Tj and such that the nodal
interpolant satisfies Ihϕj = 0.

where Ih denotes the nodal interpolation operator. With the constants Cinv, Capx > 0 of
Lemma 2.2, there hold the equivalence estimates

µ̃S ≤ µS ≤
√

2CinvηS and ηS ≤ η̃S ≤ Capx µ̃S.(3.8)
Therefore, all error estimators are always efficient, and reliability holds under the saturation
assumption (3.2).

Proof. Let Gh denote the Galerkin projection onto Xh. Note that Ghûh = uh according
to Xh ⊂ X̂h. Therefore, the best approximation property of the Galerkin projection and
the approximation estimate (2.24) prove ηS ≤ η̃S ≤ Capxµ̃S. The estimate µS ≤

√
2CinvηS

follows from the inverse estimate (2.22) applied for X̂h, where the additional factor
√

2 only
arises in case of the h − h/2-strategy (3.4). Finally, recall that (Ihv)′ = Πhv

′, where Πh is
the Th-elementwise L2-orthogonal projection onto P0(Th). This implies

hTj
‖(ûh − Ihûh)′‖2

L2(Tj) ≤ hTj
‖(ûh −Ghûh)′‖2

L2(Tj) for all Tj ∈ Th.

Summing these estimates over all elements Tj ∈ Th, we conclude µ̃S ≤ µS. �

4. Two-Level Error Estimation

Let Th = {T1, . . . , TN} be a partition of Γ and Xh ⊂ X̂h be either given by (3.4) or by (3.5).
Let uh ∈ Xh and ûh ∈ X̂h be the corresponding Galerkin solutions.

For each element Tj ∈ Th, we choose a function ϕj ∈ X̂h\Xh with supp(ϕj) ⊆ Tj and nodal
interpolant Ihϕj = 0, cf. Figure 1. Let Xh,0 := Xh and Xh,j := span{ϕj} for j = 1, . . . , N .
We denote with Gh,j the Galerkin projection onto Xh,j.

The following theorem has first been proven in [22] for uniform mesh-refinement in 2D and
3D. Their arguments were generalized for adaptive mesh-refinement in 2D in [20] and in [19]
even in 3D. For the 2D case, we provide an alternative proof by means of the localization
techniques for the energy norm.

Theorem 4.1. There are constants C1, C2 > 0 which depend only on the constants
Cinv, Capx > 0 of Lemma 2.2 such that

C−1
1 ηS ≤

( N∑
j=1

|||Gh,j(ûh − uh)|||2
)1/2

≤ C2 ηS,(4.1)

where ηS denotes the error estimator from the previous section. In particular, with the refine-
ment indicators ηT,j := |||Gh,j(ûh − uh)|||, the two-level error estimator ηT :=

( ∑N
j=1 η

2
T,j

)1/2

9



is equivalent to ηS. Therefore, ηT is always efficient, and reliability of ηT holds under the
saturation assumption (3.2). Finally, ηT,j can be written as

ηT,j = |〈〈ûh − uh , ϕj〉〉|
|||ϕj||| = |〈f −Wuh , ϕj〉|

|||ϕj||| for j = 1, . . . , N.(4.2)

The proof of Theorem 4.1 needs the following three results.

Lemma 4.2. For v̂h ∈ X̂h, there are coefficients λj ∈ R such that v̂h = Ihv̂h +
∑N

j=1 λjϕj.

Proof. Let B = {φ1, . . . , φK} denote the nodal basis of S1(Th), where K denotes the number
of nodes of Th, namely K = N in case of Γ = ∂Ω and K = N + 1 in case of Γ $ ∂Ω.
Clearly, B̂ := B ∪ {ϕ1, . . . , ϕN} is a linearly independent subset of S1(Th/2) resp. S2(Th).
Moreover, it is an elementary observation that B̂ contains K + N = #S1(Th/2) = #S2(Th)
elements. Therefore, B̂ is a basis of S1(Th/2) resp. S2(Th). For v̂h ∈ X̂h, we thus obtain
v̂h =

∑K
k=1 µkφk +

∑N
j=1 λjϕj with appropriate scalars µk, λj ∈ R. Note that, for each node

zℓ of Th, there holds φk(zℓ) = δkℓ with Kronecker’s delta as well as ϕj(zℓ) = 0. This proves
v̂h(zℓ) = µℓ. Therefore, the first sum simplifies to Ihv̂h =

∑K
k=1 µkφk. �

Lemma 4.3. For any function v̂h ∈ X̂h holds |||(1− Ih)v̂h||| ≤ C3 |||v̂h|||, where the constant
C3 > 0 depends only on the constants Cinv, Capx > 0 of Lemma 2.2.

Proof. There holds |||(1 − Ih)v̂h||| ≤ Capx‖h1/2v̂′h‖L2(Γ) ≤
√

2CinvCapx|||v̂h|||, where the pes-
simistic factor

√
2 arises in case of the h− h/2-strategy (3.4). �

Lemma 4.4. For any functions vj ∈ Xh,j holds

C−1
4

( N∑
j=1

|||vj|||2
)1/2

≤
∣∣∣∣∣∣∣∣∣ N∑

j=1
vj

∣∣∣∣∣∣∣∣∣ ≤ C5

( N∑
j=1

|||vj|||2
)1/2

,(4.3)

where the constants C4, C5 ≥ 1 depend only on the constants Cinv, Capx > 0 of Lemma 2.2.
Proof. By choice of Xh,j = span{ϕj}, there hold vj = (1− Ih)vj and supp(vj) ⊆ Tj . We thus
infer

|||vj||| = |||(1− Ih)vj ||| ≤ Capx‖h1/2v′j‖L2(Γ) = Capx‖h1/2v′j‖L2(Tj).

Summing these estimates over all j = 1, . . . , N , we obtain
N∑

j=1
|||vj|||2 ≤ C2

apx

N∑
j=1

‖h1/2v′j‖2
L2(Tj) = C2

apx

∥∥∥h1/2
N∑

j=1
v′j

∥∥∥2

L2(Γ)
≤ 2C2

apxC
2
inv

∣∣∣∣∣∣∣∣∣ N∑
j=1

vj

∣∣∣∣∣∣∣∣∣2
,

where we have used that the supports supp(vj) ⊆ Tj are pairwise disjoint and the inverse
estimate (2.22) for the function v̂h :=

∑N
j=1 vj in the final estimate. The converse inequality

follows from the same type of arguments: With
∑N

j=1 vj = (1− Ih)
∑N

j=1 vj , we estimate∣∣∣∣∣∣∣∣∣ N∑
j=1

vj

∣∣∣∣∣∣∣∣∣2
≤ C2

apx

∥∥∥h1/2
N∑

j=1
v′j

∥∥∥2

L2(Γ)
= C2

apx

N∑
j=1

‖h1/2v′j‖2
L2(Tj) ≤ 2C2

invC
2
apx

N∑
j=1

|||vj|||2.
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This concludes the proof, where C4, C5 ≥ 1 follows from the equalities in (4.3) if vj = 0 for
all j = 2, . . . , N . �

Proof of Theorem 4.1. We first prove

C−1
1 |||v̂h||| ≤

( N∑
j=0

|||Gh,jv̂h|||2
)1/2

≤ C2 |||v̂h||| for all v̂h ∈ X̂h.(4.4)

A triangle inequality |||∑N
j=0 Gh,j v̂h||| ≤ |||Gh,0v̂h||| + |||∑N

j=1 Gh,j v̂h||| ≤
√

2
(|||Gh,0v̂h|||2 +

|||∑N
j=1 Gh,j v̂h|||2

)1/2 and Lemma 4.4 prove

∣∣∣∣∣∣∣∣∣ N∑
j=0

Gh,j v̂h

∣∣∣∣∣∣∣∣∣ ≤ √
2C5

( N∑
j=0

|||Gh,jv̂h|||2
)1/2

.

Moreover, the symmetry of the Galerkin projection yields
N∑

j=0
|||Gh,jv̂h|||2 =

N∑
j=0
〈〈Gh,j v̂h , v̂h〉〉 ≤

∣∣∣∣∣∣∣∣∣ N∑
j=0

Gh,j v̂h

∣∣∣∣∣∣∣∣∣|||v̂h|||.

The combination of the last two estimates proves the upper bound in (4.4)( N∑
j=0

|||Gh,jv̂h|||2
)1/2

≤
√

2C5 |||v̂h|||.

To prove the lower bound, we note that Lemma 4.2 implies v̂h =
∑N

j=0 λjϕj with λ0 := 1,
ϕ0 := Ihv̂h, and appropriate coefficients λ1, . . . , λN ∈ R. Therefore, the Cauchy inequality
proves

|||v̂h|||2 =
N∑

j=0
〈〈v̂h , λjϕj〉〉 =

N∑
j=0
〈〈Gh,j v̂h , λjϕj〉〉 ≤

( N∑
j=0

|||Gh,jv̂h|||2
)1/2( N∑

j=0
|||λjϕj |||

)1/2
,

and it remains to dominate the second sum on the right-hand side by |||v̂h|||. Lemma 4.4
proves

( ∑N
j=1 |||λjϕj |||2

)1/2 ≤ C4
∣∣∣∣∣∣ ∑N

j=1 λjϕj

∣∣∣∣∣∣ = C4|||(1− Ih)v̂h|||, whence

N∑
j=0

|||λjϕj|||2 ≤ |||Ihv̂h|||2 + C2
4 |||(1− Ih)v̂h|||2 ≤ 2|||v̂h|||2 + (2 + C2

4)|||(1− Ih)v̂h|||2.

Now, Lemma 4.3 provides( N∑
j=0

|||λjϕj |||2
)1/2

≤ (
2 + (2 + C2

4)C2
3
)1/2|||v̂h|||

and thus concludes the proof of (4.4). Finally, we simply apply (4.4) for v̂h = ûh− uh ∈ X̂h,
where the term for j = 0 vanishes due to Ghûh = uh. This proves (4.1), and it only remains
to verify (4.2): The second equality 〈〈ûh−uh , ϕj〉〉 = 〈f−Wuh , ϕj〉 follows from the Galerkin
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equation (2.10) for X̂h and the definition of the energy scalar product. The first equality
in (4.2) follows from the explicit representation of the orthogonal projection Gh,j which reads

Gh,jv = 〈〈v , ϕj〉〉
|||ϕj|||2 ϕj for all v ∈ H.

This concludes the proof. �

5. Error Estimation by Averaging on Large Patches

The estimators ηS and ηT from Section 3 and 4 are unsatisfactory in the sense that we have
to compute the Galerkin data for X̂h, but we only control the error with respect to Xh. This
is different for the averaging error estimator discussed in this section, where X̂h = S1

0 (Th/2)
and where we aim to control |||u − ûh|||: For a given partition Th = {T1, . . . , TN} of Γ and
Th/2 its uniform refinement, we use the spaces

Xh/2 := S1
0 (Th/2) and Xh := S2

0 (Th)(5.1)

with corresponding Galerkin solutions uh/2 ∈ Xh/2 and uh ∈ Xh, respectively. We consider
the error estimator

ηA := |||uh/2 −Ghuh/2|||,(5.2)

where Gh denotes the Galerkin projection onto Xh. We stress, however, that because of Gh,
this error estimator is computationally expensive. The following theorem is proven in [7, 8].

Theorem 5.1. We define the constants

qA := |||u− uh|||
|||u− uh/2||| and λA := max

vh∈Xh

min
vh/2∈Xh/2

|||vh − vh/2|||
|||vh||| .(5.3)

Then, the error estimator ηA is efficient
ηA ≤ (1 + qA) |||u− uh/2|||.(5.4)

Provided that λ2
A + q2

A < 1, there even holds reliability

|||u− uh/2||| ≤ 1√
1− λ2

A − qA
ηA. �(5.5)

Remark 3. Note that λ2
A + q2

A < 1 is a strong assumption which can hardly be checked in
practice. If the exact solution u is sufficiently smooth or if the mesh is appropriately graded
towards the singularities of u, there holds, however, qA → 0. Moreover, instead of Th/2, one
might consider TH obtained from ℓ uniform refinements of Th, i.e. ‖H/h‖L∞(Γ) = 2−ℓ. In
this case, Lemma 2.2 proves

max
vh∈Xh

min
vH∈XH

|||vh − vH |||
|||vh||| = max

vh∈Xh

|||(1−GH)vh|||
|||vh||| ≤ 2−ℓ/2 CinvCapx < 1

for ℓ sufficiently large. The numerical experiments in [7] give experimental evidence that
ℓ = 1, i.e. H = h/2, is sufficient. �

The same arguments as in the proof of Theorem 3.2 apply to the localization of the
averaging error estimator ηA. We stress that the estimates (5.7) as well as equivalence of
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ηA and µA have already been proven in [7, Corollary 4.3, 4.4] and [8, Theorem 7.2]. In
the preceding works, equivalence of ηA and µ̃A, however, is only observed numerically. The
proof of which as well as the equivalence of ηA and the h− h/2-error estimator ηSH is a new
contribution.

Theorem 5.2. Besides the averaging error estimator ηA, we define
µA := ‖h1/2(uh/2 −Ghuh/2)′‖L2(Γ) and µ̃A := ‖h1/2(u′h/2 − Πhu

′
h/2)‖L2(Γ),(5.6)

where Πh denotes the L2-orthogonal projection onto the space P1(Th) of Th-piecewise affine
functions. Then, there holds

µ̃A ≤ µA ≤
√

2Cinv ηA.(5.7)
Moreover, with the h− h/2-error estimators

ηSH := |||uh/2 − uh||| and µ̃SH := ‖h1/2(uh/2 − Ihuh/2)′‖L2(Γ)(5.8)
there holds

ηA ≤ ηSH ≤ Capxµ̃SH as well as µ̃SH = 2 µ̃A.(5.9)
In particular, all error estimators are equivalent.
Proof. To prove (5.7), we recall the arguments of [8, Theorem 7.2]: Note that Ghuh/2 ∈
S2

0 (Th) and thus (Ghuh/2)′ ∈ P1(Th). Since Πh is even the Th-elementwise orthogonal pro-
jection onto piecewise affine functions, this proves

hTj
‖u′h/2 − Πhu

′
h/2‖L2(Tj) ≤ hTj

‖u′h/2 − (Ghuh/2)′‖L2(Tj) for all Tj ∈ T ,
whence µ̃A ≤ µA. The estimate µA ≤ √

2CinvηA follows from the inverse estimate applied
to S2

0 (Th/2). This concludes the verification of (5.7), and we proceed with the proof of (5.9):
According to uh ∈ S1

0 (Th) ⊂ S2
0 (Th), the best approximation property of the Galerkin projec-

tion Gh onto S2
0 (Th) implies ηA ≤ ηSH , and ηSH ≤ Capxµ̃SH has been proven in Theorem 3.2

above. It thus only remains to prove µ̃SH = 2 µ̃A. Recall that (Ihv)′ = Πhv
′, where Πh

denotes the L2-orthogonal projection onto Th-piecewise constant functions. Therefore, we
only need to show the Th-elementwise equality

‖u′h/2 − Πhu
′
h/2‖L2(Tj) = 2 ‖u′h/2 − Πhu

′
h/2‖L2(Tj) for all Tj ∈ T .

This equality, however, has been verified for any ψh/2 ∈ P0(Th/2) in [15, Proof of Theorem
5.5], for instance, for ψh/2 = u′h/2. �

6. Implementational Aspects

6.1. Computation of Galerkin Solutions. The entries of the Galerkin matrix are
computed by use of

〈Wu, v〉 = 〈V u′ , v′〉 for all u, v ∈ H1(Γ).(6.1)
For uh, vh ∈ Xh = S1

0 (Th), the arc-length derivatives satisfy u′h, v′h ∈ P0(Th). To compute the
Galerkin matrix A, one thus has to compute double integrals of the type Ijk =

∫
Tj

∫
Tk

log |x−
y| dsy dsx, for two elements Tj, Tk ∈ Th with lengths hj, hk > 0, respectively. Although
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these entries can be computed analytically [21], the analytic formulae appear to become
numerically unstable for min{hj, hk} ≪ max{hj, hk} due to cancellation effects. We thus
found that it is an issue of stability to use numerical quadrature for the outer integral for
certain farfield entries: To be more precise, we ensure hk ≥ hj for the corresponding element-
widths by changing the order of integration, if necessary. Provided that the Euclidean
distance between Tj and Tk satisfies dist(Tj, Tk) ≥ hj , we use a Gaussian quadrature rule
for the outer integral over Tj , whereas the inner integral is computed analytically [21]. In
case of dist(Tj, Tk) < hj , we use the analytic formulae of [21] to compute the double integral.
By use of common techniques, it can be shown that this procedure leads to an approximate
matrix Ã, such that the approximation error ‖A−Ã‖F tends to zero exponentially fast with
the order p of the Gaussian quadrature. Throughout, we used p = 16.

If Γ $ ∂Ω is an open boundary piece, there holds N := #Th = #Kh − 1. Let Kh =
{z0, . . . , zN} with z0, zN ∈ ∂Γ. Then, a basis of S1

0 (Th) is given by B := {φ1, . . . , φN−1},
where φk ∈ S1(Th) is the hat function associated with zk ∈ Kh.

If Γ = ∂Ω is closed, there holds N := #Th = #Kh. With Kh = {z1, . . . , zN}, a basis of
S1

0 (Th) is again given by B := {φ1, . . . , φN−1}.
As basis of S1

0 (Th/2) or S2
0 (Th), we use the hierarchical basis B̂ := {φ1, . . . , φN−1, ϕ1, . . . , ϕN},

where ϕj are the functions from Section 4, cf. Figure 1: In case of S1
0 (Th/2), ϕj ∈ S1

0 (Th/2)
denotes the hat function with respect to the midpoint mj ∈ Kh/2 of some element Tj ∈ Th. In
case of S2

0 (Th), ϕj = φkφℓ denotes the element bubble associated with some element Tj ∈ Th

with nodes zk, zℓ ∈ Kh.

6.2. Overview on Introduced Error Estimators. Let Th = {T1, . . . , TN} be a given
triangulation of Γ and Th/2 be a uniform refinement of Th. Together with the spaces

Xh = S1
0 (Th), Xh/2 = S1

0 (Th/2), and Xh = S2
0 (Th)

and corresponding Galerkin solutions uh, uh/2, and uh, respectively, we have considered the
following thirteen error estimators:

• h− h/2-based error estimators (Section 3 with X̂h = Xh/2)

ηSH = |||uh/2 − uh|||, µSH = ‖h1/2(uh/2 − uh)′‖L2(Γ),

η̃SH = |||uh/2 − Ihuh/2|||, µ̃SH = ‖h1/2(uh/2 − Ihuh/2)′‖L2(Γ),

• h− h/2-based two-level error estimator (Section 4 with X̂h = Xh/2)

ηTH =
( ∑

T∈Th

η2
TH,j

)1/2
with ηTH,j = |〈f −Wuh , ϕj〉|

|||ϕj||| ,

• averaging-based error estimators (Section 5)
ηA = |||uh/2 −Ghuh/2|||, µA = ‖h1/2(uh/2 −Ghuh/2)′‖L2(Γ),

µ̃A = ‖h1/2(u′h/2 − Πhu
′
h/2)‖L2(Γ),

• p− (p+ 1)-based error estimators (Section 3 with X̂h = Xh)
ηSP = |||uh − uh|||, µSP = ‖h1/2(uh − uh)′‖L2(Γ),

η̃SP = |||uh − Ihuh|||, µ̃SP = ‖h1/2(uh − Ihuh)′‖L2(Γ),

14



• p− (p+ 1)-based two-level error estimator (Section 4 with X̂h = Xh)

ηTP =
( ∑

T∈Th

η2
TP,j

)1/2
with ηTP,j =

|〈f −Wuh , ϕj〉|
|||ϕj |||

.

Here, Ih denotes the nodal interpolation operator, Πh denotes the L2-orthogonal projection
onto the space P1(Th), and Gh denotes the Galerkin projection onto Xh. The two-level basis
functions ϕj ∈ Xh/2 and ϕj ∈ Xh are visualized in Figure 1. Note that the eight estimators
µSH , µ̃SH, ηTH , µA, µ̃A, µSP , µ̃SP , and ηTP can be used for the marking step of the adaptive
mesh-refining algorithm, whereas the other five global estimators ηSH , η̃SH , ηA, ηSP , and η̃SP

are only used for error estimation.

6.3. Implementation of Error Estimators. One major advantage of the error estimators
under consideration is their easiness of implementation. Besides the Galerkin data, all ex-
pressions can be calculated analytically. This is a great advantage over, e.g., residual-based
error estimators, where the implementation usually needs certain appropriate quadrature
rules to compute the L2-norm of the weakly-singular residual, cf. [2, 3, 4, 5, 6, 9, 10, 16].
In particular, the implementation of the error estimators from Section 3–5 does not need
the finite-part integral representation of the hypersingular integral operator. The purpose
of this section is to underline the simplicity of implementation.

6.3.1. Estimators by Space Enrichment. We assume that the data associated withXh and X̂h

are computed with respect to the basis B of Xh and the hierarchical basis B̂ of X̂h, introduced
in Section 6.1. This leads to Galerkin matrices A ∈ R(N−1)×(N−1)

sym and Â ∈ R(2N−1)×(2N−1)
sym

as well as to right-hand side vectors b ∈ RN−1 and b̂ ∈ R2N−1, with entries given by

Akℓ = 〈〈φk , φℓ〉〉 = Âkℓ and bk = 〈f , φk〉 = b̂k

and
Âk,N−1+j = 〈〈φk , ϕj〉〉 = ÂN−1+j,k , ÂN−1+i,N−1+j = 〈〈ϕi , ϕj〉〉 , and b̂N−1+i = 〈f , ϕi〉

for all indices i, j = 1, . . . , N and k, ℓ = 1, . . . , N − 1. Throughout this section, we identify
a vector x ∈ RN−1 with its trivial extension x ∈ R2N−1 if necessary.

Let x ∈ RN−1 be the coefficient vector of the computed solution uh ∈ Xh with respect
to B, or with respect to B̂ if we consider its trivial extension, i.e. uh =

∑N−1
k=1 xkφk and

Ax = b. Let x̂ ∈ R2N−1 be the coefficient vector of the computed solution ûh ∈ X̂h with
respect to B̂, i.e ûh =

∑N−1
k=1 x̂kφk +

∑N
j=1 x̂N−1+jϕj and Âx̂ = b̂. Note that the coefficient

vector y ∈ RN−1 of the nodal interpolation Ihûh is given by yj := x̂j for j = 1, . . . , N − 1.
With the introduced notation, the error estimators ηS and η̃S simply read

η2
S = 〈〈ûh − uh , ûh − uh〉〉 =

(
Â(x̂− x)

) · (x̂− x
)

and η̃2
S =

(
Â(x̂− y)

) · (x̂− y
)
,

where the dot denotes the Euclidean scalar product in R2N−1. The computation of the error
estimators µS and µ̃S is done elementwise

µ2
S =

N∑
j=1

µ2
S,j and µ̃2

S =
N∑

j=1
µ̃2

S,j,
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where the local refinement indicators are given by
µ2

S,j := hj‖(ûh − uh)′‖2
L2(Tj) and µ̃2

S,j := hj‖(ûh − Ihûh)′‖2
L2(Tj)

with hj > 0 the length of Tj ∈ Th. Let T j = conv{zk, zℓ} with zk, zℓ ∈ Kh. Note that
the computation of the H1-seminorm on Tj only involves the hat functions φk, φℓ ∈ Xh

as well as the hierarchical basis function ϕj. Let v̂h ∈ {ûh − uh, ûh − Ihûh} satisfy v̂h =
z(j)

1 φk + z(j)
2 φℓ + z(j)

3 ϕj on Tj . Then, hj‖v̂′h‖2
L2(Tj) = z(j) ·Mz(j) with the matrix

M = hj

 ‖φ′k‖2
L2(Tj) 〈φ′k , φ′ℓ〉L2(Tj) 〈φ′k , ϕ′j〉L2(Tj)

〈φ′k , φ′ℓ〉L2(Tj) ‖φ′ℓ‖2
L2(Tj) 〈φ′ℓ , ϕ′j〉L2(Tj)

〈φ′k , ϕ′j〉L2(Tj) 〈φ′ℓ , ϕ′j〉L2(Tj) ‖ϕ′j‖2
L2(Tj)

 ∈ R3×3
sym.

Elementary calculations for X̂h = S1
0 (Th/2) and X̂h = S2

0 (Th) yield

M =

 1 −1 0
−1 1 0
0 0 4

 resp. M =

 1 −1 0
−1 1 0
0 0 1

3

 .

Note that the local coefficient vector reads z(j) = (x̂k − xk, x̂ℓ − xℓ, x̂N−1+j) in case of
v̂h = ûh − uh, whereas z(j) = (0, 0, x̂N−1+j) for v̂h = ûh − Ihûh. In particular, this results in
µ̃S,j = 2 |x̂N−1+j| for X̂h = S1

0 (Th/2) and µ̃S,j =
√

1/3 |x̂N−1+j | for X̂h = S2
0 (Th), respectively.

6.3.2. Two-Level Error Estimators. The computation of the local contributions of the two-
level error estimator ηT simply reads

ηT,j = |〈f , ϕj〉 − 〈〈uh , ϕj〉〉|
|||ϕj||| = |b̂N−1+j − (Âx)N−1+j |

(ÂN−1+j,N−1+j)1/2
= |(b̂− Âx)N−1+j|

(ÂN−1+j,N−1+j)1/2
,

where we use the same notation as in Section 6.3.1.

6.3.3. Averaging Error Estimators. Contrary to the previous estimators, the implementa-
tional treatment of the averaging error estimators ηA and µA needs both refined spaces
X̂h := S1

0 (Th/2) as well as Xh := S2
0 (Th). With respect to the mesh Th, we denote by

ϕj ∈ X̂h the hat functions for the element midpoints, whereas ϕj ∈ Xh denote the element
bubble functions. Using the same ideas as in Section 6.3.1, we obtain hierarchical bases B̂
and B. This leads to Galerkin data Â, b̂ with respect to X̂h, and the coefficient vector
of ûh solves Âx̂ = b̂. To compute the Galerkin projection Ghûh ∈ Xh, we assemble the
Galerkin matrix A with respect to B as well as the (non-symmetric) Galerkin-type matrix
B ∈ R(2N−1)×(2N−1) defined by

Bkℓ = 〈〈φℓ , φk〉〉, BN−1+i,ℓ = 〈〈φℓ , ϕi〉〉, Bk,N−1+j = 〈〈ϕj , φk〉〉, BN−1+i,N−1+j = 〈〈ϕj , ϕi〉〉,
for i, j = 1, . . . , N and k, ℓ = 1, . . . , N−1. Note that all but the last block have already been
assembled for either Â or A. Then, the identities 〈〈Ghûh , φk〉〉 = 〈〈ûh , φk〉〉 and 〈〈Ghûh , ϕi〉〉 =
〈〈ûh , ϕi〉〉 prove that the coefficient vector x of Ghûh solves Ax = Bx̂.

Due to the Galerkin orthogonality, there holds

η2
A = |||ûh −Ghûh|||2 = |||ûh|||2 − |||Ghûh|||2 = x̂ · Âx̂− x ·Ax = x̂ · (b̂−BT x).
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Analogously to µS, the error estimator µA is computed elementwise by

µ2
A =

∑
Tj∈Th

µ2
A,j, where µ2

A,j := hj‖(ûh −Ghûh)′‖2
L2(Tj).

Let Tj ∈ Th be a fixed element with nodes zk, zℓ. Then, we have ûh−Ghûh = z(j)
1 φk +z(j)

2 φℓ +
z(j)

3 ϕj+z(j)
4 ϕj on Tj with the coefficient vector z(j) = (x̂k−xk, x̂ℓ−xℓ, x̂N−1+j ,xN−1+j). Then,

µ2
A,j = z(j) · M̂z(j) with the matrix

M̂ := hj


‖φ′k‖2

L2(Tj) 〈φ′k , φ′ℓ〉L2(Tj) 〈φ′k , ϕ′j〉L2(Tj) 〈φ′k , ϕ′j〉L2(Tj)
〈φ′k , φ′ℓ〉L2(Tj) ‖φ′ℓ‖2

L2(Tj) 〈φ′ℓ , ϕ′j〉L2(Tj) 〈φ′ℓ , ϕ′j〉L2(Tj)
〈φ′k , ϕ′j〉L2(Tj ) 〈φ′ℓ , ϕ′j〉L2(Tj) ‖ϕ′j‖2

L2(Tj) 〈ϕ′j , ϕ′j〉L2(Tj)
〈φ′k , ϕ′j〉L2(Tj ) 〈φ′ℓ , ϕ′j〉L2(Tj) 〈ϕ′j , ϕ′j〉L2(Tj) ‖ϕ′j‖2

L2(Tj)

 =


1 −1 0 0
−1 1 0 0
0 0 4 1
0 0 1 1

3

 .

Finally, it remains to compute the error estimator

µ̃2
A =

∑
Tj∈Th

µ̃2
A,j, where µ̃2

A,j = hj‖ûh − Πhûh‖2
L2(Tj).

By use of the local relation of µ̃A,j and the h− h/2-based error estimator µ̃SH,j, we obtain

µ̃2
A,j = 1

4 µ̃
2
SH,j = |x̂N−1+j |2,

cf. the proof of Theorem 5.2 and Section 6.3.1 above.

6.4. Galerkin Errors and Experimental Saturation Constants. Throughout, the
Galerkin errors are computed by use of the Galerkin orthogonality

|||u− uh|||2 = |||u|||2 − |||uh|||2.(6.2)

The squared energy norm of a Galerkin solution uh reads |||uh|||2 = Ax · x with the Galerkin
matrix A and the coefficient vector x corresponding to uh. If the exact solution u ∈ H is
unknown, the energy |||u|||2 is extrapolated by Aitkin’s ∆2-method as follows: For a sequence
T (k)

h of uniformly refined meshes, we compute the sequence of energies Ek = |||u(k)
h |||2, where

u
(k)
h denotes the discrete solution corresponding to the triangulation T (k)

h . We found that
∆2-extrapolation of the sequence Ek then yields a sufficiently accurate approximation of
|||u|||2.

In particular, (6.2) allows to compute the experimental saturation constants

qSH :=
|||u− uh/2|||
|||u− uh||| , qSP := |||u− uh|||

|||u− uh||| , and qA := |||u− uh|||
|||u− uh/2||| = qSP/qSH .(6.3)

The computation of the constant λA from (5.3) leads to a generalized eigenvalue problem

λ2
A = max

vh∈Xh

|||vh −Gh/2vh|||2
|||vh|||2 = max

vh∈Xh

|||vh|||2 − |||Gh/2vh|||2
|||vh|||2 ,(6.4)

which is solved by use of the Matlab function eig. We refer to [15, Section 6.2] for details.
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6.5. Adaptive Algorithm. In the numerical experiments below, we compare uniform
mesh-refinement with some indicator-steered mesh-refinement. For element marking, we use
some local error estimation strategy ̺ in the sense that

̺2 =
∑

Tj∈Th

̺2
j .

Then, the adaptive algorithm reads as follows:

Algorithm 6.1. Input: Initial mesh Th, parameter 0 < θ ≤ 1, error estimation strategy ̺.
(i) Compute Galerkin solution.
(ii) Compute refinement indicators ̺j for all Tj ∈ Th = {T1, . . . , TN}.
(iii) Choose the minimal set Mh ⊆ Th such that

θ
∑

Tj∈Th

̺2
j ≤

∑
Tj∈Mh

̺2
j .(6.5)

(iv) Refine at least all marked elements Tj ∈Mh, generate a new mesh Th, and goto (i).
Output: Sequence of certain Galerkin approximations and error estimators ̺. �

Possible choices for ̺ are the error estimators µS, µ̃S, ηT , µA, and µ̃A. The marking
criterion (6.5) was introduced in [13] and it is nowadays used to prove convergence and
optimality of adaptive FEM [11]. Convergence of adaptive BEM is widely open. The re-
cent work [17] shows that the saturation assumption yields convergence of the µSH- and
µ̃SH-steered adaptive algorithms for the h− h/2-strategy in the sense that the (computed)
discrete solutions converge towards the (unknown) exact solution. Their arguments apply to
the p − (p + 1)-strategy without (other but notational) modifications. Convergence for the
µ̃A-based adaptive BEM immediately follows from the identity 2µ̃A,j = µ̃S,j proven in The-
orem 5.2 above. Even if the saturation assumption fails to hold in general, the new concept
of estimator reduction proves that Algorithm 6.1 steered by µSH , µ̃SH , µSP , µ̃SP , µA, or µ̃A

drives the respective error estimator to zero [1]. Only convergence of the ηTH-steered and
ηTP -steered adaptive algorithms remains in this sense mathematically open.

Note that the local mesh-ratio κ(Th) enters critically in our localization estimate from
Lemma 2.2 in the sense that Capx may tend to infinity together with κ(Th). Therefore, we
additionally refine elements in step (iv) of Algorithm 6.1 to ensure that κ(Th) stays bounded.

7. Numerical experiments

We consider three numerical examples for the hypersingular integral equation (1.1) for
the Laplace operator on different domains. We compare uniform mesh-refinement with
an indicator-based adaptive mesh-refinement. For adaptive mesh-refinement, we use Algo-
rithm 6.1 steered by the local contributions of µSH with θ = 0.5.

7.1. Slit Problem. In our first experiment, we consider
Wu = 1 on Γ = (−1, 1)× {0}.(7.1)

The exact solution u of (7.1) is known and reads

u(x, 0) = 2
√

1− x2 for all − 1 < x < 1.
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Figure 2. Galerkin errors eh = |||u−uh||| and eh/2 = |||u−uh/2||| as well as five global error
estimators in Slit Problem 7.1 for uniform (unif.) and µSH-adaptive mesh-refinement
(adap.). We observe an optimal grading of the adaptive meshes in the sense that the
optimal order O(N−3/2) of convergence is observed for the Galerkin errors. Moreover,
we stress that eh = |||u−uh||| is accurately estimated by ηSH , η̃SH , ηSP , and η̃SP , whereas
ηA is asymptotically accurate to estimate eh/2 = |||u− uh/2|||.

Direct computation yields |||u|||2 = π. The uniform initial mesh consists of four elements.
Figure 2 shows the curves of the errors |||u−uh||| and |||u−uh/2||| as well as the five global error
estimators for both, uniform and adaptive mesh-refinement. We plot the experimental results
over the number of elements N , where both axes are scaled logarithmically. Therefore, a
straight line g with a slope −α corresponds to a dependence g = O(N−α). Whereas uniform
mesh-refinement leads to a poor order of convergence O(N−1/2), the adaptive strategy leads
to O(N−3/2) which is optimal for the lowest-order boundary element discretization. For the
adaptive strategy, Figure 3 visualizes the remaining eight error estimators.

Note that our theory is confirmed in the sense that, for one fixed mesh-refining strategy, the
curves of all error estimators are parallel, i.e., all error estimators are equivalent. Moreover,
we observe that the estimator curves are parallel to the error curves. By others, this gives
empirical evidence for the saturation assumption.

Figure 4 shows the experimental efficiency constants. We note that the constant for the
non-local estimators tends to 1, which is also observed in Figure 2. Finally, the experi-
mental saturation constants are plotted in Figure 5. We empirically confirm the theoretical
assumptions that these constants are < 1.

We stress that Algorithm 6.1 steered with any ̺ ∈ {µ̃SH, µSP , µ̃SP , ηTH , ηTP , µA, µ̃A} in-
stead of ̺ = µSH leads to the same qualitative behaviour (not displayed).
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Figure 3. Galerkin errors eh = |||u−uh||| and eh/2 = |||u−uh/2||| and local error estimators
in Slit Problem 7.1 for µSH-adaptive mesh-refinement.

10
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µSP

µ̃SP

µSH

µ̃SH̃

µA

µA

ηSP

η̃SP

ηSH

η̃SH

ηTP

ηTH

ηA

Figure 4. Experimental efficiency constants Ceff of error estimators for µSH-adaptive
mesh-refinement in Slit Problem 7.1: Note that the intervals indicate the range of the
efficiency constant Ceff , whereas the circle indicates the precise value of Ceff in the final
step of the adaptive computation. For the h − h/2-based and p − (p + 1)-based error
estimators, we consider the ratio of error estimator and |||u− uh|||, e.g., Ceff = ηSH/|||u−
uh|||. Since the averaging error estimators are expected to estimate |||u−uh/2|||, we consider
the ratio of estimator and |||u− uh/2||| instead, e.g., Ceff = ηA/|||u− uh/2|||.

7.2. Angle Problem. In the second experiment, we consider (1.1) with right-hand side
f(x, y) = (x+ 1)(y − 1) on Γ,(7.2)
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Figure 5. All experimental saturation constants (cf. Section 6.4) in Slit Problem 7.1
are uniformly bounded < 1, which yields reliability of all error estimators. We stress that
all constants appear to depend on the smoothness of the unknown solution u in the sense
that they are improved in case of µSH-adaptive mesh-refinement.

on an angle domain Γ = (−1, 0) × {0} ∪ {0} × (0, 1). Since the exact solution u of (1.1) is
unknown, the energy |||u|||2 = 1.324965092745831 is obtained by extrapolation, cf. Section 6.1.

The uniform initial mesh consists of four elements. Since the numerical observations are
similar to those in Section 7.1, Figure 6 only shoes the Galerkin errors and the error esti-
mators µSH , ηSH , and ηA. We observe that the adaptively generated meshes (not displayed)
show some refinement towards both tips as well as to the interior angle at the point (0, 0).

7.3. L-Shape Problem. In our last experiment, we consider (1.1) with right-hand side

f(x, y) = x− c on Γ,(7.3)

where Γ = ∂Ω is the boundary of the L-shaped domain Ω = (−1, 1)2\[0, 1]2. The con-
stant c = −1/8 is chosen such that

∫
Γ f ds = 0. The uniform initial mesh consists of 8

elements. The exact solution u of (1.1) is unknown, and we use the extrapolated value
|||u|||2 = 12.95241880428523.

Again, the outcome of our numerical experiments is similar to those of Section 7.1, and
Figure 7 only shows Galerkin errors and some error estimators for uniform and adaptive
mesh-refinement.
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Figure 6. Galerkin errors eh = |||u − uh||| and eh/2 = |||u − uh/2||| as well as some error
estimators in Problem 7.2 for uniform (unif.) and µSH-adaptive mesh-refinement (adap.).

Figure 8 shows some adaptively generated meshes. We observe a strong refinement towards
all five corners of Γ, and particularly to the reentrant corner at the point (0, 0) between
element T4 and T5 of Figure 8.
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