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In this article, a linear-quadratic optimal control problem governed by the Helmholtz equa-
tion is considered. For the computation of suboptimal solutions, two different model reduction
techniques are compared: the reduced-basis method (RBM) and proper orthogonal decompo-
sition (POD). By an a-posteriori error estimator for the optimal control problem the accuracy
of the suboptimal solutions is ensured. The efficiency of both model reduction approaches is
illustrated by a numerical example.
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1. Introduction

Optimal control problems for partial differential equations are often hard to tackle
numerically because their discretization leads to very large scale optimization prob-
lems. Therefore, different techniques of model reduction have been developed to
approximate these problems by smaller ones that are tractable with less effort.
Among them, the reduced-basis (RB) and the proper orthogonal decomposition
(POD) method are widely used, also in the context of nonlinear problems.

Some reduced order methods like balanced truncation offer a reliable a-priori
error analysis for optimal control applications, [1, 2]. However, for POD and RB it
is not a-priori clear how far the optimal control of the reduced-order problem is from
the exact one, unless its snapshots are generating a sufficiently rich space, where
sufficiently rich implies that the space contains all possible snapshots. However, we
are able to compensate for the lack of a-priori analysis for the POD and RB method
by utilizing an a-posteriori analysis. This approach is based on a fairly standard
perturbation argument to deduce how far the suboptimal control, computed on the
basis of the reduced-order method, is away from the (unknown) exact one.
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Figure 1. Two-dimensional cross section of an idealized interior Ω of the vehicle, where the boundary
part ΓR consists of parts 4 and 5 (a); impedance values Z = Z< + Z= for melamine 50mm width in the
frequency range from 200 to 500Hz (b).

2. The optimal control problem and optimality conditions

In this section, we introduce the linear-quadratic elliptic optimal control prob-
lem, recall the associated first-order necessary optimality conditions and define a
reduced problem only for the control variable.

The optimal control problem

Suppose that the interior of a car is simplified by the two-dimensional domain Ω
plotted in Figure 1 (a). The boundary Γ = ∂Ω is split into two measurable disjunct
parts ΓR and ΓN .

Denoting the frequency by f , let 0 6= Zf ∈ C (see Figure 1 (b)) be a given
complex impedance. Then, the associated sound pressure p : Ω → C is governed
by the Helmholtz equation

−∆p(x)− k2
f p(x) = u b(x) for all x = (x1, x2) ∈ Ω, (1a)

together with the boundary conditions



%◦ ωf

∂p(x)
∂n

= p(x)
Zf

for all x ∈ ΓR, (1b)



%◦ ωf

∂p(x)
∂n

= 0 for all x ∈ ΓN . (1c)

In (1), %◦ = 1.19985
[ kg

m3

]
is an ambient density, ωf = 2πf is the circle frequency

and kf = ωf/c is the wave number, where the constant c = 343.799
[

m
s

]
denotes

the speed of sound. The right-hand side is a simplified model for a source at the
point xq = (0.21, 1.28) (e.g., a loudspeaker located at xq) with the intensity |u|,
u ∈ C, and shape function

b(x) = exp(−50
(‖x− xq‖2

2
)

for x = (x1, x2) ∈ Ω.

For the normal impedance boundary condition (1b), let  be the imaginary unit
and ∂

∂n denote the derivative in the outward normal direction. All other parts on
the boundary are assumed to be perfectly rigid, see (1c). Throughout the paper,
we suppose the following assumption.
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Figure 2. Measurement points (•) and location of the source (◦) for our numerical examples.

Assumption 1: For all given frequencies f ∈ F := [200Hz, 500 Hz], all given u ∈ C
and the impedance function Zf , plotted in Figure 1 (b), the problem (1) admits a
unique solution p = pf (u).

Remark 1 : Due to the Fredholm theory, [3], we can ensure existence of a solution
provided k2

f is not an eigenvalue of −∆ considered on Ω with Neumann and Robin
boundary conditions on ΓN and ΓR, respectively. ¤

Let pi
f ∈ C, i = 1, . . . , nm, nm ∈ N, be measured sound pressures at different

given observation points xi ∈ Ω∪ΓN , 1 ≤ i ≤ nm; see Figure 2 for given frequency
f ∈ F . We introduce the quadratic cost functional

Jf (p, u) := α

2

nm∑
i=1

∣∣p(xi)− pi
f

∣∣2 + σ

2 |u− u◦f |2,

where u◦f ∈ C is a given reference intensity, |z| is the absolute modulus of a complex
number z, α is non-negative and σ is positive. Then, given f , we consider the
optimal control problem

min Jf (xf ) subject to (s.t.) xf = (pf , uf ) solves (1). (Pf )

Thus, (Pf ) is a linear-quadratic optimal control problem for any frequency f ∈ F .

First-order optimality conditions

The first-order necessary optimality conditions to (Pf ) consist of the state equa-
tion, the adjoint system for the Lagrange multiplier λ∗f

−∆λ∗f (x)− k2
fλ∗f (x) = α

nm∑
i=1

(pi
f − p∗f (xi))δxi

(x) for all x ∈ Ω,



%◦ ωf

∂λ∗f (x)
∂n

= −λ∗f (x)
Zf

for all x ∈ ΓR,



%◦ ωf

∂λ∗f (x)
∂n

= 0 for all x ∈ ΓN
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and the equation for the optimal control u∗f

σ
(
u∗f − u◦f

)− ∫
Ω

b(x)λ∗(x) dx = 0 in C,

where δxi
denotes the Dirac delta distribution satisfying

〈δxi
, ϕ〉 = ϕ(xi) for ϕ ∈ C(Ω ∪ ΓN ) and i = 1, . . . , nm.

As usual z = x− y is the complex conjugate of z = x + y ∈ C. For more details
we refer the reader to [4, 5].

The reduced problem

Motivated by Assumption 1 we introduce the reduced cost functional Ĵ : C →
[0,∞) by

Ĵf (u) = Jf (pf (u), u) for u ∈ C

where pf (u) again denotes the unique solution to (1) for a given control input u
at a given frequency f . Then, (Pf ) is equivalent to the reduced optimal control
problem

min Ĵf (uf ) s.t. uf ∈ C. (P̂f )

If x∗f = (p∗f , u∗f ) is an optimal solution to (Pf ), then u∗f solves (P̂f ). On the other
hand, if u∗f is an optimal solution to (P̂f ), then the pair (pf (u∗f ), u∗f ) solves (Pf ).
The ultimate goal is to determine the optimal control for many values f ∈ F . In
order to avoid a naive and possibly costly evaluation of the elliptic linear-quadratic
optimal control problem for various values of f we introduce a model reduction.
This leads to a reduced-order model for (P̂f ). The accuracy of the reduced-order
model is controlled by an a-posteriori error analysis. This is the focus of the next
section.

3. A-posteriori error estimate for the optimal control problem

In this section we recall some results of the a-posteriori error estimator. For more
details, we refer the reader to [6, 7]. Suppose that u ∈ C is an arbitrary control
input. Then, the difference |u∗f − u| can be estimated without requiring knowledge
of u∗f .

Theorem 3.1 : Let u∗f be an optimal solution to (P̂f ). Let p∗f and λ∗f be the
associated state variable and Lagrange multiplier, respectively. Suppose that u ∈ C
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is chosen arbitrarily, pf = pf (u) solves (1) and λf = λf (pf ) solves

∆λf (x) + k2
fλf (x) = α

nm∑
i=1

(pi
f − pf (xi))δxi

(x), for all x ∈ Ω,



%◦ ωf

∂λf (x)
∂n

= −λf (x)
Zf

, for all x ∈ ΓR,



%◦ ωf

∂λf (x)
∂n

= 0, for all x ∈ ΓN .

(2)

Then, it follows that

∣∣u∗f − u
∣∣ ≤ 1

σ

∣∣ζf

∣∣, (3)

where ζf = ζf (u, λf ) = σ
(
u− u◦f

)− ∫
Ω b(x)λf (x) dx.

Proof : The claim follows from Theorem 3.1, Proposition 3.2, and Remark 3.3 in
[6]. ¤

We will call the right-hand side of (3) an a-posteriori error estimate, since, in the
next two sections, we shall apply it to suboptimal controls u = ûf that have been
computed from a reduced-order model (utilizing the reduced-basis respectively the
POD method). After having computed ûf , we determine the associated state p̂f =
pf (ûf ) and adjoint state λ̂f = λf (p̂f ). Then, we can compute ζ̂f = ζf (ûf , λ̂f ) and
its norm, s.t. (3) gives an upper bound for the distance of ûf to u∗f . In this way, the
error |u∗f − ûf | caused by the reduced-order model can be estimated a-posteriori.
If the error is too large, we have to include more basis functions into the reduced
model.

4. Reduced-order methods

In this section, we introduce the reduced-order modeling for (1) utilizing POD and
RBM. Let us emphasize that the computation of the reduced-order model is only
based on the state equation (1), so that no information from the optimal solution
of (Pf ) is needed.

4.1. Proper orthogonal decomposition

In this subsection, we briefly review the POD method for our problem and derive
the reduced-order model. Let X be either the Lebesgue space L2(Ω) supplied with
the inner product

〈ψ, ϕ〉L2(Ω) =
∫

Ω
ψϕ dx for ψ, ϕ ∈ L2(Ω)

or the Sobolev space H1(Ω) endowed with the common inner product

〈ψ, ϕ〉H1(Ω) =
∫

Ω
(∇ψ · ∇ϕ + ψϕ) dx for ψ, ϕ ∈ H1(Ω).
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Figure 3. Decay of the first 60 POD eigenvalues for X = L2(Ω) (a) and X = H1(Ω) (b).

Note that (1) is a linear elliptic equation and u is a complex number. Thus, by
linear superposition for any frequency f , the solution to (1) is given by a linear
combination of p1 and p2, where p1 solves (1) for u = 1 and p2 is the solution to
(1) for u = .

Let Ξf := {f1, . . . , fn} ⊂ F be a given snapshot grid. We denote by pj =
<(p1(fj)) and pj+n = <(p2(fj))1 the real part of the solution p to (1) for
u = 1 and u = , respectively, at frequency instances fj , j = 1, . . . , n. Let
V< = span {p1, . . . , p2n} ⊂ X with d< := dimV< ≤ 2n. Then, for given ` ≤ 2n
we consider the minimization problem

min
ψ1,...,ψ`∈X

2n∑
j=1

∥∥∥pj −
∑̀
i=1

〈pj , ψi〉X ψi

∥∥∥2

X

s.t. 〈ψi, ψj〉X = δij for 1 ≤ i, j ≤ `.

(4)

Remark 1 : In some applications, the mean value of the snapshots is included
in the POD modeling (see, e.g., in [8]). In our numerical experiments it turns out
that this approach does not give rise to better results.

The solution to (4) is given by the solution of the eigenvalue problem

Rψi =
2n∑

j=1
〈pj , ψi〉X pj = λiψi for i = 1, . . . , `,

where R : X → V< ⊂ X is a linear, bounded, compact, self-adjoint and non-
negative operator; see [8]. Thus, there exists an orthonormal set {ψi}d<

i=1 of eigen-
functions and corresponding non-negative eigenvalues {λi}d<

i=1 satisfying

Rψi = λiψi, λ1 ≥ λ2 ≥ · · · ≥ λd< ≥ 0.

In [9] the dependence of {ψi}`
i=1 and {λi}`

i=1 for ` ≤ 2n on the chosen snapshot
grid {fj}n

j=1 is investigated.
Analogously, a POD basis {φi}`

i=1 for the snapshot space V= =
span {=(p1,1), . . . ,=(p1,n),=(p2,1), . . . ,=(p2,n)} ⊂ X can be introduced. Since the
eigenvalues for the real and for the imaginary parts decay in a similar rate (see

1For z = x + y ∈ C we use the notation <(z) := x and =(z) := y.
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Figure 3), we choose the same number of ansatz functions for the real and for
the imaginary parts. In order to highlight similarities and differences of POD and
RB method we stress, that the modes are linear combinations of all snapshots pj ,
j = 1, . . . , n.

4.2. The reduced-basis method

Before going into detail on the application of the reduced basis method, we
reconsider the snapshot generation of the POD from above. Recall that Ξf

denotes the frequency snapshot grid which we now extend by the control, i.e.
we introduce f̃ = (f, u) ∈ F × C and Ξf̃ := {f̃ = (f, u) : f ∈ Ξf , u ∈ {1, }}.
Then, for POD the snapshots are the solutions pf̃ = pf (u) of (1) for all
f̃ ∈ Ξf̃ . In contrast to this, for the RBM, the Helmholtz equation (1) has
to be solved for only some particular values in Ξf̃ , where the selection pro-
cedure is stated below. As a start, let S`

f̃
:= {f̃∗1 , . . . , f̃∗` } ⊂ Ξf̃ denote the

set of identified values, V `
< := span {ψi := <(pf̃∗i

), 1 ≤ i ≤ `} ⊂ X and
V `
= := span {φi := =(pf̃∗i

), 1 ≤ i ≤ `} ⊂ X. Note, that for algebraic stability
of the reduced order model, the bases {ψi}`

i=1 and {φi}`
i=1 are orthonormalized

w.r.t. ‖ · ‖X by a Gram-Schmidt procedure. Moreover, the modes are a linear
combination of just a few snapshots.

Next, in order to identify frequencies in S`
f̃
, which lead to “good” resulting bases

{ψi}`
i=1 and {φi}`

i=1, we utilize the standard greedy procedure (c.p. [10]) using an
a-posteriori error estimator ∆`

f̃
to be explained later, which reads:

Algorithm 1:
1: Set `max ∈ N, ε > 0 and choose f̃∗1 ∈ Ξf̃ arbitrarily.
2: for l = 1 to `max do
3: Compute ε` := maxf̃∈Ξf̃

∆`
f̃
/‖p̂`

f̃
‖X .

4: if ε` < ε or ` = `max then
5: break.
6: else
7: Set f̃∗`+1 := arg maxf̃∈Ξf̃

∆`
f/‖p̂`

f̃
‖X .

8: Compute pf̃∗`+1
.

9: Set V `+1
< = V `

< ⊕ {<(pf̃∗`+1
)} and V `+1

= = V `
= ⊕ {=(pf̃∗`+1

)}.
10: end if
11: end for

Note, that p̂`
f̃

in Algorithm 1 denotes the reduced order solution of (1) using
V `
< ⊕ V `

= as trial- and testspaces. It is well known, that

∆`
f̃

:= 1
βf̃

‖R`
f̃
‖X ′ . (5)

is a rigorous a-posteriori error estimator for ‖pf̃ − p̂`
f̃
‖X , where ‖ · ‖X := ‖<(·)‖X +

‖=(·)‖X , β(f) is the inf-sup constant of (1) and R`
f̃

is the residual of (1) for the
reduced order solution p̂`

f̃
.

Obviously, for the application in Algorithm 1, ∆`
f̃

should be rapidly evaluable.
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Figure 4. Inf-sup constant βf its approximation β̂2
f as well as f̃∗i identified by Algorithm 1.

While this holds for the dual norm of the residual, which can be evaluated in O(`2)
(c.p. [10]), the evaluation of βf is more involved than solving the actual problem
(1). A possible way out is the application of the so called Successive Constraint
Method (SCM, c.p. [11]) to obtain a lower bound to βf that is rapidly evaluable,
but at the cost of an expensive (offline) precomputation. On the other hand, in
this work, we are interested in û`

f , the suboptimal solution to (P̂f ), for which we
already have an a-posteriori error estimator (c.p. Theorem 3.1), s.t. ∆`

f̃
does not

necessarily need to be rigorous, rather than a good indicator.
Hence, the easiest way to avoid the cost of an expensive (offline) precomputation

is to use β̂1
f = 1. Another possibility is to compute βf for some frequencies (say

n), only, and use the part of the SCM that determines β̂2
f , an upper bound to

βf , in O(n). Figure 4 visualizes βf as well as β̂2
f obtained from computing βf for

equidistant fi, 1 ≤ i ≤ n = 11. Moreover, it shows the by Algorithm 1 identified
values f̃∗i = (f∗i , u∗i ), where f∗i is marked on the bottom (top) axis if u∗i = 1
(u∗i = ). We will investigate the differences resulting from using β̂1

f = 1 and
β̂1

f = 2 as approximations to βf in Section 5. The CPU time needed for computing
β̂2

f is reported in Table 1.

Remark 2 : Note, that for the POD method the bases {ψi}`
i=1 and {φi}`

i=1 are
computed, s.t. the mean error to the snapshots is minimized (c.p. (4)), whereas
for the RBM {ψi}`

i=1 and {φi}`
i=1 are computed, s.t. the maximum error to the

snapshots is minimized (c.p. Algorithm 1).

The a-posteriori error estimator for (P̂f )

The a-posteriori error estimator for (P̂f ) is formulated in Algorithm 2.

Algorithm 2:
1: Choose ` = 2, `max = 60, and ε. Set flag = 0.
2: for f = 200 to 500 do
3:
4: repeat
5: Set ` = max(2, `− 2).
6: Calculate the suboptimal solution û`

f to (P̂f ).
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Figure 5. Run 1: Number ` of POD ansatz functions over the frequency band F for X = L2(Ω) (a) and
for X = H1(Ω) (b) with the tolerance ε = 10−4 for the a-posteriori error estimator.

7: Compute the solutions p̂`
f to (1) for u = û`

f and λ̂`
f to (2) for pf = p̂`

f .
8: Set ζ̂`

f = σ(û`
f − u◦(f))− ∫

Ω b(x)λ̂`
f (x) dx.

9: if |ζ̂`
f | < ε then

10: Set flag = 1.
11: Return flag, `, ū`

f and STOP.
12: else
13: Set ` = ` + 2.
14: end if
15: until ` > `max

16: if flag = 0 then
17: Increase `max and restart the algorithm.
18: break.
19: end if
20: end for

5. Numerical experiments

In this section, we present numerical experiments. One example is constructed in
such a way that the optimal control is known. Thus, we can verify quality of the
estimate (3). In the second example, the (exact) optimal control is unknown. All
coding is done in Matlab using routines from the PDE Toolbox with finite
elements (FE). We apply a standard piecewise linear FE discretization with m =
4957 degrees of freedom.

Run 1: Let the impedance Zf be given for the material melamine with 50mm
depth; see Figure 1. We choose for the cost functional α = 0.1, σ = 1 and

u◦f = 10
(

cos
(π(f − 200)

50

)
+  sin

(π(f − 200)
50

))
.

The measurement points xi, i = 1, . . . , nm with nm = 12 are depicted in Figure 2.
The values pi

f , i = 1, . . . , 12, are given by pi
f = pf (u◦f )(xi), i.e., by the solution to

(1) evaluated at xi for i = 1, . . . , 12 and f ∈ F . Then, the optimal solution to (P̂f )
is u∗f = u◦(f) for f ∈ F . First we apply Algorithm 2 for the tolerance ε = 10−4. In
Figure 5, we present the number of ` of utilized POD basis functions for the choices
X = L2(Ω) and X = H1(Ω). It turns out that the required tolerance is achieved
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Figure 6. Run 1: Number ` of RB ansatz functions over the frequency band F for X = L2(Ω) (a) and for
X = H1(Ω) (b) with the tolerance ε = 10−4 for the a-posteriori error estimator.

for all f ∈ F with ` ≤ 40 basis functions. We observe that the number of POD
basis functions changes over the frequency band F . Moreover, the different choices
for X also influences the value of `. The results for the reduced-basis method are
given in Figure 6.

Compared to the POD approximations, the RB methods needs more basis func-
tions at the beginning, but (significantly) less for f ∈ (300, 350]. The needed CPU
times are presented in Table 1. Note, that for RBM Table 1 contains two columns,
where the first one corresponds to β̂1

f and the second one to β̂2
f for approximating

βf .
Table 1. Run 1: CPU times in seconds.

Snapshot generation with FE 50.9
POD computation 2.4
POD optimization for X = L2(Ω), ε = 10−4 181.4
POD optimization for X = H1(Ω), ε = 10−4 214.4
POD optimization for X = L2(Ω), ε = 10−6 293.6
POD optimization for X = H1(Ω), ε = 10−6 302.8

Approximation of inf-sup constant 0.0 84.9
RBM computation 38.0 38.1
RBM optimization for X = L2(Ω), ε = 10−4 169.9 154.7
RBM optimization for X = H1(Ω), ε = 10−4 160.8 167.5
RBM optimization for X = L2(Ω), ε = 10−6 291.0 280.7
RBM optimization for X = H1(Ω), ε = 10−6 282.2 270.2

Next, we apply Algorithm 2 again with the smaller tolerance ε = 10−6. In Fig-
ure 7, the number ` of utilized POD basis functions is plotted. The results for
the reduced-basis method are given in Figure 8. Again, the required tolerance is
achieved for all variants of the POD and RB method. As expected, more basis
functions have to be included in our reduced-order modeling. Recall, that u∗f de-
notes the optimal solution to (P̂f ) and û`

f ∈ C denotes the suboptimal solution
obtained from using ` basis functions. The decay of maxf∈Ξf

|u∗f − û`
f | is visualized

in Figure 9 for X = L2(Ω) using POD and RBM. Note, that we do not present the
effectivity, i.e., the ratio between the true error |u∗f − û`

f | and its estimator |ζ̂`
f |/σ,

as it turns out to be bounded by 1.1 for all f ∈ Ξf .
Run 2: In the second example, we choose the same parameter as in the first run,
but now u◦f = 0. Thus, the optimal solution to (P̂f ) is not known. We apply
Algorithm 2 with the tolerance ε = 10−6. In Figure 10, the number ` of utilized
POD basis functions is plotted. The results for the reduced-basis method are given
in Figure 11.
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Figure 7. Run 1: Number ` of POD ansatz functions over the frequency band F for X = L2(Ω) (a) and
for X = H1(Ω) (b) with the tolerance ε = 10−6 for the a-posteriori error estimator.
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Figure 8. Run 1: Number ` of RB ansatz functions over the frequency band F for X = L2(Ω) (a) and for
X = H1(Ω) (b) with the tolerance ε = 10−6 for the a-posteriori error estimator.
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Figure 9. Run 1: Decay of maxf∈Ξf
|u∗f − û`

f | for POD and RBM in X = L2(Ω).

6. Conclusion

We have compared RBM and POD for a linear-quadratic optimal control problem
which is constrained by the Helmholtz equation. Thus, the following conclusions
hold for this particular problem only. Moreover, it should be noted that the control
u ∈ C (and thus the parameter for RBM and POD, respectively) is only formally
two-dimensional (real and imaginary part) since we have seen that linear superpo-
sition allows to reduce the parameter dimension.

We have demonstrated that both methods are quite efficient, the differences are
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Figure 10. Run 2: Number ` of POD ansatz functions over the frequency band F for X = L2(Ω) (a) and
for X = H1(Ω) (b) with the tolerance ε = 10−6 for the a-posteriori error estimator.
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Figure 11. Run 2: Number ` of RB ansatz functions over the frequency band F for X = L2(Ω) (a) and
for X = H1(Ω) (b) with the tolerance ε = 10−4 for the a-posteriori error estimator.

more or less marginal. As we can see in Table 1, RBM is a little more efficient
than POD as long as we can avoid the computation of an approximation for the
inf–sup constant. Also the average number of RBM modes is smaller than than the
one for POD as we can deduce by the comparison of Figures 5,6 and Figures 7,8
for Run 1, Figures 10,11 for Run 2 as well as the CPU timings for Algorithm 2 in
Table 1. On the other hand, Figure 9 shows that the true error in L2(Ω) over the
frequency sample Ξf is smaller for POD. This is somehow astonishing since the
POD is known to be the best approximation of the state whereas here we consider
the control. It also seems that POD earlier reaches the asymptotic regime.

Of course, these conclusions have to verified for different examples, in particular
also for higher parameter dimensions.
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