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Abstract: In this paper, we discuss netting effects in life insurance policies provided by the natural
hedge between payments that are due when sojourning in a state and when leaving a state. We
uncover potentials for such netting effects with the help of a sensitivity analysis, and we quantify
the effect on solvency reserves with the help of a worst-case analysis. The paper discusses a number
of examples where netting effects occur and shows for which ratios between different benefit types
the netting effects are strongest.
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1 Introduction
Life insurance policies are typically long term contracts whose actuarial assumptions may undergo
significant and unforeseeable changes within the time horizon, thus exposing the insurer to a risk
that is non-diversifiable. Theoretically, this risk can be eliminated by letting the contractual pay-
ments depend on the actual development of the actuarial parameters, e.g. defined contribution
plans. However, in practice insurers often offer policies that also include guarantees in nominal
amounts, e.g. defined benefit plans, since they are - especially in Germany - frequently demanded
by customers, thus exposing the insurer to a considerable part of the non-diversifiable risk.

Though the non-diversifiable risk could theoretically be completely transferred to a third party
by reinsurance or securitisation, most of it is practically still covered by the insurers themselves.
Therefore it is worthwhile to start the risk management already at the earliest stage, the designing of
the contracts, and to make use of netting effects provided by the natural hedge between payments
that are due when sojourning in a state and when leaving a state. The latter method is not a
panacea that solves all the problems that life insurers have with non-diversifiable risks, since the
design of life insurance policies still has to take respect of customer demand. But by optimizing
the ratios between different benefit types within the scope that is left, an insurance company can
significantly reduce its risk load and gain a strategic advantage.

In order to find potential netting effects, we apply the sensitivity analysis concept of Christiansen
(2008). The approach generates graphic images of the fundamental risk structure of a life insurance
product that can be easily interpreted. As the concept is based on derivatives, we have some form
of linearity of the risk structures with respect to benefit and premium payments, and therefore
netting effects can be easily produced by linearly combining insurance contracts with opposite risk
structures.

In order to measure the impact of netting effects on the risk load of an insurer, we quantify
the impact on solvency reserves. It is tempting to use the standard formula of Solvency II, but the
problem is that it produces very poor results just then when policies have strong netting effects.
Therefore, we apply the worst-case concepts of Christiansen (2010) and Christiansen and Denuit
(2010), which can be seen as further developments of the standard formula.
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The structure of the paper is as follows: Section 2 yields a brief introduction into the sensitivity
analysis concept and the worst-case concepts mentioned above. Algorithm 2.1 generalizes an idea
of Christiansen and Denuit (2010) from a two-state model to a multi-state model. Section 3 studies
typical life insurance contracts that show a netting effect. We analyze the risk structures and study
which ratios between different benefit types lead to the strongest netting effects.

2 Methods
Consider a multi-state policy that is issued at time x, terminates at a fixed finite time ω, and is
driven by a right-continuous Markovian jump process (Xt)t with finite state space S. Let J =
{(i, j) ∈ S × S |i ̸= j} be the space of possible transitions. The cash-flows of the contract are
described by the following functions:

(i) The lump sum bij(t) is payable upon transition (i, j) ∈ J at time t.

(ii) Bi(t) gives the accumulated annuity benefits minus premiums that fall due due to a sojourn
in state i up to and including time t.

We write v(s, t) for the value at time s of a unit payable at time t ≥ s and assume that

v(s, t) = e−
∫ t

s φ(u) du .

Function φ is the so-called interest intensity. For the modeling of the probability distribution of
the random pattern of states (Xt)t, in our examples we only have information about the yearly
transition rates

qij
x+n = P (T ij

x+n ≤ n + 1) , n ∈ {0, ..., ω − x− 1} , (i, j) ∈ J ,

where T ij
x+n is the first time to reach state j after starting from state i at time x + n. In order to

obtain a continuous time multi-state model, we assume that (Xt)t has the transition intensities

µij(t) := − ln(1− qij
⌊t⌋) , t ∈ [0, ω) , (i, j) ∈ J .

The prospective reserve Vi(s) at time s in state i is defined as the expected present value of future
benefits minus the expected present value of future premiums given that the policyholder is at
present time s in state i. (We only include payments that occur strictly past time s.) It can be
calculated by solving Thiele’s integral equation system,

Vi(s) = Bi(ω)−Bi(s)−
∫ ω

s
Vi(t−) φ(t) dt +

∑
j:j ̸=i

∫ ω

s
Rij(t) µij(t) dt

with starting values Vi(ω) = 0, where Rij(t) = bij(t) + Vj(t−)− Vi(t−) is the so-called sum at risk
for transition (i, j) at time t. In order to find the unique solution, we decompose the prospective
reserve into

Vi(s) =
(
Vi(s) + Bi(s)

)−Bi(s) =: Wi(s)−Bi(s)

and calculate the differentiable functions Wi by solving the following differential equation system
numerically (e.g. with the Runge-Kutta method),

d
ds

Wi(s) =
(
Wi(s)−Bi(s−)

)
φ(s)−

∑
j:j ̸=i

(
bij(s) + Wj(s)−Bj(s−)−Wi(s) + Bi(s−)

)
µij(s)
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with starting values Wi(ω) = Bi(ω).
Suppose for the moment that the future transition probabilities qij

x+n and discounting factors
v(s, t) are perfectly known. Then the law of large numbers yields that the prospective reserve
equals approximately the average future liabilities per policy for a large homogeneous portfolio of
independent contracts. The only risk is in the approximation error, which can be diversified by
increasing the size of the portfolio. It is a core competence of life insurers and reinsurers to deal
with this diversifiable risk (or unsystematic biometric risk). In this paper we are interested in the
risk that the future transition probabilities qij

x+n evolve differently than anticipated. This risk –
usually denoted as systematic biometric risk – is not diversifiable by just increasing the size of the
portfolio since a change of the qij

x+n has the same effect on all policies. Policy design can have
a great influence on the load of systematic biometric risk that is on the account of the insurer,
and it is the aim of this paper to find policy designs which reduce that risk load. The following
subsection presents a sensitivity analysis concept that helps to study the effect that fluctuations of
the transition probabilities qij

x+n have on prospective reserves Vi(s).

2.1 Sensitivity Analysis
Assume that the transition intensities µij(t) = − ln(1−qij

⌊t⌋) are shifted by hij to µij+hij . According
to Christiansen (2008), in obvious notation we have a generalized first-order Taylor expansion of
the form

Vi(s, µ + h) = Vi(s, µ) +
∑

(j,k)∈J

∫ ω

s
hjk(t) gradµjk

(
Vi(s, µ)

)
(t) dt + o(∥h∥) (2.1)

with generalized gradients

gradµjk

(
Vi(s, µ)

)
(t) = v(s, t) P (Xt = j|Xs = i) Rjk(t) . (2.2)

The quantity gradµjk

(
Vi(s)

)
(t) can be seen as sensitivity of Vi(s, µ) to changes of the transition

intensity µjk at time t. Because the prospective reserve is linear with respect to the payment func-
tions bjk(t) and Bj(t), the sum at risk Rjk(t) is as well, and hence we have that also the sensitivities
gradµjk

(
Vi(s, µ)

)
(t) = v(s, t) P (Xt = j|Xs = i) Rjk(t) are linear with respect to the payment func-

tions. This property is useful when combining different types of insurance policies: The sensitivity
of a linear combination of different insurance contracts is equal to the linear combination of the
sensitivities of the single insurance contracts.

Netting effects occur there where different types of benefit schemes have corresponding sensi-
tivities (2.2) with opposite signs which partly cancel out each other. Hence, in order to create
strong netting effects, we can use the following concept, which makes use of the linearity of the
sensitivities (2.2) with respect to the payment functions:

1. For each type of benefit scheme (e.g., death benefit, disability annuity, old-age pension, ...)
that could be part of a combined insurance contract calculate the sensitivities (2.2) separately.

2. Look for linear combinations of the separate sensitivities that have strong cancelation effects
between positive and negative values.

2.2 Worst-case analysis with bounded transition intensities
The sensitivity analysis concept of above helps to find or create strong netting effects, but it
does not yield a risk measure (for the systematic biometric risk of a policy) that would allow to
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quantify the advantage that we gained from netting effects. For several reasons it seems to be
convenient to use (parts of) the standard formula of Solvency II as risk measure. That means
we measure the systematic biometric risks as the change in the net value of future assets and
liabilities due to transition intensities µij that are much worse than anticipated. Unfortunately, the
standard formula produces very poor results just then when we have strong netting effects, because
it takes only scenarios into consideration where the transition intensities are throughout higher
and throughout lower than anticipated. While this upper und lower scenarios are worst-cases if
the policy has throughout positive and negative sensitivities, respectively, they are mostly not the
crucial scenarios to look at if the sensitivity functions gradµjk

(Vi(s, µ))(t) have sign switches, which
is usually the case for policies with strong netting effects. The inventors of the standard formula
seemed to be aware of that problem when they offered an alternative calculation method (option
2) where policies with mixed character are separated into two contracts. But then we loose the
netting effects that we are looking for in this paper.

A possible solution is to modify the standard formula for policies with mixed character: We
interpret the throughout higher and throughout lower scenarios of the standard formula just as
upper and lower bounds and take as risk measure the maximal change in net value of assets and
liabilities that can occur with respect to all scenarios within the upper and lower bound. With
writing

lij(t) ≤ µij(t) ≤ uij(t) , (i, j) ∈ J , (2.3)

for the lower and upper bounds of the µij , our risk measure is now defined as

max
l≤µ+h≤u

Vi(s, µ + h)− Vi(s, µ) . (2.4)

In order to find that maximum, we can use a method of Christiansen (2010): The maximum
V i(s) := maxl≤µ+h≤u Vi(s, µ + h) can be obtained as the unique solution of an integral equation
system similar to Thiele’s integral equation system,

V i(s) = Bi(ω)−Bi(s)−
∫ ω

s
V i(t−) φ(t) dt

+
∑
j:j ̸=i

∫ ω

s

(
Rij(t)

uij(t) + lij(t)
2 + |Rij(t)| uij(t)− lij(t)

2

)
dt

with starting values V i(ω) = 0. In order to solve the integral equation system, we decompose the
maximal prospective reserve into

V i(s) =
(
V i(s) + Bi(s)

)−Bi(s) =: W i(s)−Bi(s)

and calculate the differentiable functions W i by solving the following differential equation system
numerically,

d
ds

W i(s) =
(
W i(s)−Bi(s−)

)
φ(s)−

∑
j:j ̸=i

(
Rij(s)

uij(s) + lij(s)
2 + |Rij(s)| uij(s)− lij(s)

2

)
with starting values W i(ω) = Bi(ω) and Rij(s) = bij(s)+W j(s)−Bj(s−)−W i(s)+Bi(s−). With
defining µij by

µij(t) :=


uij(t) : Rij(t) > 0

1
2uij(t) + 1

2 lij(t) : Rij(t) = 0
lij(t) : Rij(t) < 0

we have a scenario that corresponds to the maximum V i(s) = Vi(s, µ) for all s and all i.
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2.3 Worst-case analysis with bounded transition intensity increments
The worst-case scenario µ of the previous section looks not very realistic as it jumps between
extremes, in particular if we think of mortality rates. However, such a scenario makes sense in
risk management if one is interested not only in usual but also in extreme future developments.
But still we can ask if it is possible to restrict the worst-case calculation to scenarios which do
not have extreme jumps. Christiansen and Denuit (2010) present an idea to that question for
two-state policies where the only transition is from active to dead. Here we generalize their idea to
a multi-state model:

Instead of bounding the µij by (2.3) for all times t, we bound the µij only at present time s but in
addition limit the increases ∆µij(x+n) := µij(x+n)−µij(x+n−1) = − ln(1−qij

x+n)+ln(1−qij
x+n−1)

at integer times x + n > s,

lij(s) ≤ µij(s) ≤ uij(s) , (i, j) ∈ J ,

∆lij(x + n) ≤ ∆µij(x + n) ≤ ∆uij(x + n) , (i, j) ∈ J , x + n = ⌊s⌋+ 1, ..., ω − 1 .
(2.5)

In order to simplify the notation, we set ∆µij(⌊s⌋) := µij(⌊s⌋), ∆lij(⌊s⌋) := lij(⌊s⌋), ∆uij(⌊s⌋) :=
uij(⌊s⌋) and use the equivalent condition

∆lij(x + n) ≤ ∆µij(x + n) ≤ ∆uij(x + n) , (i, j) ∈ J , x + n = ⌊s⌋, ..., ω − 1 .

(Note that Christiansen and Denuit (2010) assume that the mortality rate is fixed at time s, whereas
we allow here that the µij(⌊s⌋) may vary.) The idea is now to measure the systematic biometric
risk by

max
∆l≤∆(µ+h)≤∆u

Vi(s, µ + h)− Vi(s, µ) . (2.6)

How can we find that maximum? By replacing hjk(t) in (2.1) with hjk(t) =
∑⌊t⌋

m=[s] ∆hjk(m)
and changing the order of summation and integration, we obtain the following first-order Taylor
expansion

Vi(s, µ + h) = Vi(s, µ) +
∑

(j,k)∈J

ω−1∑
m=[s]

∆hjk(m) ∂Vi(s, µ)
∂(∆µjk(m)) + o(∥h∥) (2.7)

with partial differentials of the form

∂Vi(s, µ)
∂(∆µjk(m)) =

∫ ω

s∨m
gradµjk

(
Vi(s, µ)

)
(t) dt .

In the following we write

grad∆µ

(
Vi(s, µ)

)
:=

( ∂Vi(s, µ)
∂(∆µjk(m))

)
m=[s]...ω−1, (j,k)∈J

. (2.8)

With the first-order Taylor expansion (2.7) we can formulate a gradient ascent method in order to
find the maximum in (2.6):

Algorithm 2.1.

1. Choose a starting scenario ∆µ(0) =
(
∆µ

(0)
jk (m)

)
m=[s]...ω−1, (j,k)∈J

.
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2. Calculate a new scenario by using the iteration

∆µ(l+1) := ∆µ(l) + K grad∆µ(l)(Vi(s, µ(l))) ,

where K > 0 is some step size that has to be chosen. If ∆µ(l+1) is above or below the bounds
in (2.5), we cut it off at the ∆uij or ∆lij , respectively.

3. Repeat step 2 until
∣∣Vi(s, µ(l+1))− Vi(s, µ(l))

∣∣ is below some error tolerance.

3 Examples
Here we focus only on the systematic mortality risk part of the systematic biometric risk, that is
the risk that mortality rates may increase (in Solvency II denoted as ’mortality risk’) or decrease
(in Solvency II denoted as ’longevity risk’) or even both at the same time (but not at the same
age). We calculate the following risk measures with respect to the ratio between (opposite) benefit
types:

(R1) systematic mortality risk according to option 1 of the standard formula√
SCR2

mort + SCR2
long + 2 (−0.25) SCRmort SCRlong ,

SCRmort = max{Vi(s, u), 0} , SCRlong = max{Vi(s, l), 0} ,

(R2) systematic mortality risk according to option 2 of the standard formula√
SCR2

mort + SCR2
long + 2 (−0.25) SCRmort SCRlong ,

SCRmort = V death
i (s, u) , SCRlong = V survival

i (s, l) ,

where Vi(s, ·) = V death
i (s, ·) + V survival

i (s, ·) is a decomposition of the insurance contract into
two separate components: one contingent, on the death and the other contingent on the
survival of the insured person,

(R3) systematic mortality risk according to risk measure (2.4),

(R4) systematic mortality risk risk measure (2.6).

In all examples we choose as reference point the beginning of the contract period s = x and the
initial state i = a =’active’ The definition of the standard formula is the latest version given by
the technical specifications of Quantitative Impact Study 4 and Consultation Paper no. 49 of the
Committee of European Insurance and Occupational Pensions Supervisors. (R1) often underes-
timates the systematic biometric risk because it considers only throughout higher or throughout
lower biometric scenarios and does not take respect of mixed scenarios. (R2) allows for netting
effects only via fixed correlation assumptions between different types of systematic biometric risks
and therefore is not able to describe the real netting effects. (R3) and (R4) both allow for mixed
scenarios and take fully respect of netting effects, thus giving a more realistic picture of the true
risks. (R3) is generally greater than (R4) because it considers a wider range of scenarios, in par-
ticular scenarios that change very rapidly (e.g. direct jumps from the lower to the upper bound in
(2.3) and vice versa).

We generally assume that interest is paid with intensity φ(t) = ln(1.0225), which corresponds
to a yearly interest rate of 2.25%.
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3.1 Pure endowment insurance and temporary life insurance

Consider a x = 30 year old male who contracts a combination of a pure endowment insurance and
a temporary life insurance. The policy shall terminate at age 65. A lump sum of 1 is payable in
case of survival, and a lump sum of c > 0 is payable in case of death before age 65. A constant
premium is paid yearly in advance. The mortality rates qad

x+n are taken from the life table 2008 of the
German Federal Statistical Office. The premium level is chosen in such a way that the equivalence
principle holds. Figure 3.1 shows the mortality sensitivities t 7→ gradµad

(
Va(30, µ)

)
(t) of the pure

endowment insurance part and of the temporary life insurance part with c = 1. As the sensitivities
have opposite signs, we expect some netting effect here. As lower and upper bound in (2.3) we
take the longevity shock (−25%) and the mortality shock (+15%) of Solvency II (cf. Consultation
Paper no. 49 of the Committee of European Insurance and Occupational Pensions Supervisors),

lad(t) = −0.75 · ln(1− qad
⌊t⌋) , uad(t) = −1.15 · ln(1− qad

⌊t⌋) ,

and their increments at integer times are used as limits in (2.5). Figure 3.2 shows the systematic
mortality risk measured by (R1) to (R4) with respect to the level c of the death benefit. The risk
measures (R3) and (R4) both yield that the netting effect between survival and death benefits is
strongest for c near to 70%.

40 50 60

K0,2

0,0

0,2

0,4

0,6

0,8

1,0

1× pure endowment ins.

1× temporary life ins.

t

Figure 3.1: Sensitivity of Va(30−) with re-
spect to the mortality intensity µad(t)
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(R4)
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c

Figure 3.2: Systematic mortality risk for a
combination of 1×(pure endowment insur-
ance) and c×(temporary life insurance)

3.2 Annuity insurance and whole or temporary life insurance

Consider a x = 30 year old male who contracts a combination of an annuity insurance and a whole
or temporary life insurance. A constant annuity of 1 is paid yearly in advance from age 65 on till
death. A lump sum of c > 0 is payable

(a) in case of death at any age,

(b) in case of death before age 65.
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A constant premium is paid yearly in advance. Again, the mortality rates qad
x+n are taken from

the life table 2008 of the German Federal Statistical Office. The premium level is chosen in such
a way that the equivalence principle holds. We take the same bounds for (2.3) and (2.5) as in the
previous example.

Figures 3.3 and 3.5 show the mortality sensitivities t 7→ gradµad

(
Va(30, µ)

)
(t) of the annuity

insurance part and of the whole/temporary life insurance part of the policy. For example (a) we
can have netting effects between survival and death benefits for the whole contract period, whereas
example (b) can only have netting effects till age 65. Therefore we expect that example (a) shows
stronger netting effects.

Figures 3.4 and 3.6 show the systematic mortality risk measured by (R1) to (R4) with respect
to the level c of the death benefit. Indeed, example (a) has much stronger netting effects than
example (b). Interestingly, in example (b) the risk measures (R3) and (R4) are greater than (R2)
for c greater than 26 and 76. That means that the Solvency II correlation assumption of −25%
between the risks of rising and falling mortality rates exaggerates the netting effects here.

40 50 60 70 80 90 100
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K3

K2

K1

0

1

1× annuity ins.

1× whole life ins.

t

Figure 3.3: Sensitivity of Va(30−) with re-
spect to the mortality intensity µad(t)
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Figure 3.4: Systematic mortality risk for a
combination of 1×(annuity insurance) and
c×(whole life insurance)

3.3 Disability insurance and temporary life insurance

Consider a x = 30 year old male who contracts a combination of a disability insurance and a
temporary life insurance. In case of disability a constant annuity of 1 is paid yearly in advance
till age 65 or till death, whichever occurs first. A lump sum of c > 0 is payable in case of death
before age 65. A constant premium has to be paid yearly in advance in both states, active and
disabled. The mortality rates qad

x+n and qid
x+n are taken from the life table 2008 of the German

Federal Statistical Office and the life table DAV1997 TI of the German Actuarial Association. For
the transition intensities qai

x+n and qia
x+n we use the finite tables of DAV1997 I and DAV1997 RI.

The premium level is chosen in such a way that the equivalence principle holds. We focus only on
the systematic mortality risk part of the systematic biometric risk by letting µai(t) and µia(t) be
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Figure 3.5: Sensitivity of Va(30−) with re-
spect to the mortality intensity µad(t)
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Figure 3.6: Systematic mortality risk for a
combination of 1×(annuity insurance) and
c×(temporary life insurance)

fixed and allowing for variations of µad(t) and µid(t) within the bounds

lad(t) = −0.75 · ln(1− qad
⌊t⌋) , uad(t) = −1.15 · ln(1− qad

⌊t⌋) ,

lid(t) = −0.75 · ln(1− qid
⌊t⌋) , uid(t) = −1.15 · ln(1− qid

⌊t⌋)

for risk measure (R3) and

∆lad(t) = −0.75 ·∆ln(1− qad
⌊t⌋) , ∆uad(t) = −1.15 ·∆ln(1− qad

⌊t⌋) ,

∆lid(t) = −0.75 ·∆ln(1− qid
⌊t⌋) , ∆uid(t) = −1.15 ·∆ln(1− qid

⌊t⌋)

for risk measure (R4). Practical experience shows that qad
x+n and qid

x+n can evolve differently but
are to some extent correlated. We study here the two extreme cases where

(i) variations of µad(t) and µid(t) are completely independent,

(ii) relative variations of µad(t) and µid(t) are always equal, that is, had(t)
µad(t) = hid(t)

µid(t) for risk measure
(R3) and ∆had(t)

∆µad(t) = ∆hid(t)
∆µid(t) for risk measure (R4).

The maximization methods in sections 2.2 and 2.3 deal only with case (i). In order to find the
maxima (2.4) and (2.6) for case (ii), we use gradient ascent methods analogously to algorithm 2.1
but here with generalized gradient

(x, ω) ∋ t 7→ µad(t) gradµad

(
Va(x, µ)

)
(t) + µid(t) gradµid

(
Va(x, µ)

)
(t)

instead of (2.2) and gradient(
∆µad(m) ∂Va(x, µ)

∂(∆µad(m)) + ∆µid(m) ∂Va(x, µ)
∂(∆µid(m))

)
m=x...ω−1

instead of (2.8). Figures 3.7 and 3.8 show the mortality sensitivities from state active and state
invalid/disabled. Figures 3.9 and 3.10 show the systematic mortality risks for the extreme cases
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(i) and (ii) with respect to the level of the death benefit. We see that the netting effect is much
stronger if the fluctuations of the mortality rates µad and µid are similar in terms of (ii). Note that
in figure 3.10 risk measure (R3) is not always greater than (R4) anymore because the additional
conditions had(t)

µad(t) = hid(t)
µid(t) and ∆had(t)

∆µad(t) = ∆hid(t)
∆µid(t) are not equivalent.
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Figure 3.7: Sensitivity of Va(30−) with re-
spect to the mortality intensity µad(t)
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Figure 3.8: Sensitivity of Va(30−) with re-
spect to the mortality intensity µid(t)
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Figure 3.9: Systematic mortality risk for
a combination of 1×(disability insurance)
and c×(temporary life insurance)
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Figure 3.10: Systematic mortality risk for
a combination of 1×(disability insurance)
and c×(temporary life insurance)
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