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Abstract

The projection of future mortality experience constitutesa challenge for both actuaries and de-

mographers. Some of the currently used projections have several shortcomings which may pose a

serious threat to insurers and social security systems.

In this paper, we propose a new projection methodology whichovercomes these shortcomings.

Our model allows mortality improvements to depend on age, period, and cohort and provides highly

plausible forecasts. Moreover, it is very flexible with respect to the level of future mortality im-

provements. This allows us to derive coherent projections for several populations simultaneously,

e.g. males and females of the same country or populations from closely related countries. We ob-

serve that the incorporation of information about the mortality experience of other populations can

have a significant impact on the projection for a given population. In order to illustrate our method-

ology, we derive fully specified projections for German males and females as members of a large

reference set of European populations.

∗The authors are very grateful to Jochen Ruß and Hans-Joachim Zwiesler for their valuable comments and support.
†Corresponding Author
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1 Introduction

Longevity risk, i.e. the risk of insured/pensioners living longer than expected, is one of the most serious

insurance risks. It is most relevant for pension funds, annuity providers, and social security systems. In

the past, gains in life expectancy or equivalently, improvements in mortality havebeen underestimated

consistently in most industrialized countries. The revision of mortality projections, i.e. the realization of

longevity risk, has then led to the requirement of additional funds to support increasing liabilities. This

poses a serious threat to any (financial) institution concerned with the provision of survival benefits.

Longevity risk has always been present but its significance has gainedconsiderably in recent decades.

Riskless yields in the financial markets have fallen considerably in many countries leaving less funds

for the provision of additional reserves. At the same time, the size of longevity risk in the private sector

has increased. Benefits from social security systems have been reduced in many countries which in

turn has increased the demand for private annuities and occupational pensions. This demand is often

supported by tax incentives, either for products with mandatory annuitization or to make annuitization

more attractive to the policyholder than taking the lump sum payment.

In order to minimize longevity risk, actuarial and social security institutions have steadily looked to

improve their mortality projections. However, graphical analyses reveal that some currently used pro-

jections still seem questionable. As an example, in Figure 1 we plot the annualmortality improvements

embedded in the standard mortality table for reserving for private annuity business in Germany, i.e. the

table DAV 2004 R. In the left panel, we see historical mortality improvements forWest German males up

to 2008 and projected best estimate improvements thereafter.1 The plot reveals several issues which can

be identified for many existing projections and it indicates very nicely what thefocus in the derivation

of new projections should be on:

• We observe a structural break between historical and forecast mortalityimprovements. In reality,

the transition will almost certainly be smooth.

• The projection assumes a rapid slowdown in mortality improvements over the nextyears which

cannot be motivated from the historical data.

• The historical data contains significant diagonal structures, i.e. cohorteffects, which are not ex-

trapolated into the future.

The right panel of Figure 1 shows the projection of the DAV 2004 R table including margins. The

structure of the projected mortality improvements still looks critical and even with margins, mortality

improvements seem to be underestimated for some ages at least for the next years. One may argue that

the projection should be sufficient for a portfolio of contracts with a widely spread age distribution.

1The historical data is obtained from the Human Mortality Database (2011) and we apply P-splines to smooth the mortality
rates before computing the improvements. To support interpretability andcomparability of different heat charts, here and
throughout this paper, we sometimes cap rather extreme values. We usedata for West Germany only as the projection was
derived from the same data set. The trend parameters in the projection are set toT1 = 10 andT2 = 15. For more details on
this projection and its parameters, we refer to DAV (2004).
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Figure 1: Standard mortality projection for German annuity business

However, regulatory requirements often permit the balancing of profits and losses from different prod-

ucts or product tranches. Thus, a spread of risk over a wide range of ages is often not possible which

underlines the need for an adequate projection for each age and cohort individually. We have made

similar observations for the corresponding projection for German females.

Our observations clearly show that there is still need and space for improved projection methodologies.

The derivation of such a methodology is the goal of this paper. We base our model specification on

historical data patterns thus allowing for age, period, and cohort dependent effects. All parameters have

a clear interpretation and provide a decent fit to various data sets. Moreover, our model allows for a large

flexibility in the level of forecast mortality improvements and we present several ideas how this level

can be fixed, e.g. based on extrapolations of historical life expectancies. The flexibility also allows us to

derive coherent projections. In the past, projections for males and females and/or different populations

have typically been derived independently from each other which often lead to implausible results. We

use demographic insights here to improve plausibility in simultaneous projections but also to improve

reliability of projections for each single population.

We focus on the projection of mortality improvements here instead of the more common approach of

forecasting mortality rates for two reasons: First, we do not have to model the (current) level of mortality

rates but only their changes over time. This reduces the number of required parameters and improves

the interpretation of the remaining parameters. Secondly, the resulting projection can be applied to

a base table, i.e. most recent realized mortality rates, for basically any population for which it seems

adequate. This is particularly convenient as the projection could be derived from an extensive data set,

e.g. for the general population, and then be used for small subpopulations without sufficient data as well,

e.g. the population of a pension fund. As such a group of pensioners is asubpopulation of the general

population, the long-term mortality changes in both populations should be verysimilar (see, e.g., Jarner

and Kryger (2011) and Cairns et al. (2010)). Significant differences in the mortality experience between

the populations may still arise from the base table.

The increasing demand for assessing and managing longevity risk has provoked considerable academic

research in this field – both with respect to deterministic mortality projections and stochastic mortality

modeling. Nevertheless, we are convinced that our approach adds to thisliterature and that some of our
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ideas can also be applied to improve other existing projection models. We refrain from giving a literature

overview here and instead refer to a later section where we compare our projection methodology with

other modeling approaches.

The remainder of this text is structured as follows: In the following section, we analyze historical mor-

tality improvement patterns and deduce the specification of our projection model.We describe the model

fitting and discuss related issues for the example of West German males. Finally, we comment on the

applicability of model simplifications and on the stability of our model. The derivation of mortality

projections is then discussed in Section 3. We start with the case of a single population and then show

how coherent forecasts for several populations can be obtained. Here, several crucial assumptions are

necessary and we provide reasoning for all assumption we make. In the subsequent section, we analyze

uncertainties inherent in our projection model and describe ways to assess and account for these uncer-

tainties. In particular, we show how basis risk can be measured in case the projection is to be applied

to a population different from the one it has originally been derived for.In Section 5, we compare our

model to other projection models and outline how it adds to the existing literature. Finally, Section 6

concludes.

2 Historical Mortality Improvements

As indicated in the Introduction, our projection methodology can be applied to basically any population

with a sufficient data history. For illustrative purposes, here we focus on the male population of West

Germany. We exclude data from East Germany as there seems to be a consensus that the reunification

in 1990 has led to the East German mortality experience moving towards that of West Germany. Thus,

a combined data set may be blurred by this one-off effect.

Mortality data for West Germany is available from the Human Mortality Database (2011) for years 1956

to 2008 and ages 0 to 109 (as of March 2011). However, the data is extrapolated and graduated above

age 95 and therefore we limit the data set to ages up to 95. For simplicity, in the following we will refer

to the West German population as the German population only.

2.1 Model Specification

Figure 2 shows raw mortality improvements

v(x, t) =
q(x, t− 1)− q(x, t)

q(x, t− 1)
= 1−

q(x, t)

q(x, t− 1)
(1)

for German males.2 We clearly observe vertical and diagonal structures which means that mortality

improvements depend on calender year and year of birth or cohort. In theliterature, mortality improve-

ments have been shown to also depend on age which is in fact the dependency most commonly modeled

2Obviously, this definition of mortality improvements is only valid as long asq(x, t − 1) > 0. For a population as large
as the German one, this is always the case but for smaller populations there may well be raw mortality rates of zero. A few
undefined mortality improvements are uncritical for the fitting of our modelthough. As we will see later on, all parameters in
our model are fitted to a considerable number of data points thus omitting a few data points hardly affects the calibration.
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Figure 2: Raw mortality improvements for German males

(see, e.g., Figure 1 or the model of Lee and Carter (1992)). Therefore, it seems reasonable to specify

mortality improvements as a combination of age, period, and cohort effects. The most simple combina-

tion is the following linear one:

v(x, t) = ax + pt + ct−x + ǫ(x, t),

whereax is the age dependent component,pt the calender year component,ct−x the cohort component,

andǫ(x, t) is an error term with mean zero.3 All parameters possess a very clear interpretation which

helps understanding historical improvement patterns.

When calibrating our model two issues arise immediately. The first one is an identification problem. For

instance, increasing all age parametersax by a fixed amount and decreasing all period parameterspt by

the same amount would yield equal fitted mortality improvements. To solve this issue,we impose the

following constraints:

•
∑

t pt = 0

•
∑

t−x ct−x = 0,

i.e. the average period and cohort parameters are equal to zero. Thus, all “substance” in the mortality

improvements is contained in the age parameters. In fact, these two constraintsstill do not guarantee

uniqueness. This can be seen in Cairns et al. (2009) who apply a third constraint to the Age-Period-

Cohort model which, for log mortality rates, has exactly the same structure asour model. However, we

3Obviously, other model specifications would be possible, e.g.v(x, t) = exp {ax + pt + ct−x + ǫ(x, t)}, but results vary
only insignificantly. Therefore, we stick to the most simple specification.
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do not need their third constraint as another issue in our setup makes it superfluous. This issue is the

calibration of the cohort parameters at the boundaries of the data set. Theparameters for the very first

and very last cohorts are fitted to only a few data points and are thus likely to take up random noise

instead of modeling proper cohort effects. Therefore, in line with the second constraint, we set the first

and last cohort parameters to the long-term average of zero.4 The number of affected cohort parameters

at both boundaries is rather subjective and clearly depends on the data set under consideration.

2.2 Model Calibration

In contrast to the model structure, the fitting of our model is not straightforward. The most common

approach of Maximum Likelihood estimation is not possible as the distribution of the mortality improve-

ments is fairly complex. For a sufficiently large population, deaths and mortality rates can be assumed to

be approximately normally distributed. Thus, according to Equation (1), mortality improvements follow

the distribution of the ratio of two normal random variables. Such a distributioncan be specified (see

Hinkley (1969)) but its parameters cannot be expressed by our model parametersax, pt, andct−x. In

order to check for approximate normality in the improvements or the residuals, respectively, we also per-

formed some statistical tests. However, for German males and also females the assumption of normality

was clearly rejected by each test.5

Therefore, we fit our model in iteratively reweighted least squares, i.e.we minimize the expression

∑

x

∑

t

(v(x, t)− ax − pt − ct−x)
2

w(x, t)2
−→ min,

wherew(x, t) are the weights. The need for weighting becomes obvious from Figure 2. The variability

in mortality improvements differs significantly between different age groups and periods. For young

ages or old ages in the earlier years of the data set, the raw mortality improvements fluctuate much

stronger because the numbers of observed deaths are much lower therethan elsewhere. Unfortunately,

the choice of weights is not obvious. The distribution of the mortality improvementsdoes not possess

any moments in general due to its extremely fat tails. In the absence of preferable alternatives, we

nevertheless apply empirical standard deviations of the residuals as a measure of variability. However,

this approach requires an iterative procedure as we need to fit the modelonce before we can compute

weights. Therefore, we start with a first run of unweighted fitting and compute the empirical standard

deviation for each data point from the (up to) 81 residuals in a square around this data point. This choice

for the number and location of residuals is rather subjective but for the data set of German males it

provides a fairly smooth surface of weights. We then repeat the fitting with iteratively updated weights

until convergence in the model parameters is reached. For German males weneed six runs to get changes

in all parameter values below 0.1%.

4Actually, as soon as we set two cohort parameters equal to zero we could also drop the second constraint. However, the
overall fit of the model would hardly change and it is convenient for theprojection to not have any substance in the cohort
parameters. We therefore keep this constraint.

5Note that this also impacts the derivation of confidence intervals for the model parameters. Due to the extremely fat tails
of the ratio distribution, confidence intervals based on normal approximations may be much too narrow.
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Figure 3: Fitted mortality improvements for German males

Figure 3 shows the resulting fitted mortality improvements for German males with parameters for the

first 10 and last 27 cohorts set equal to zero.6 The structure of the plot looks very similar to that in Figure

2 and our model just seems take some noise out of the raw data. This indicatesthat our model fits the

data well which we will analyze in more detail in the following section. Figure 4 contains plots for the

age, period, and cohort parameters – both as fitted to the raw data and graduated using P-splines. The

graduated parameter values will be particularly relevant for the projectionlater on. From the plots, we

observe that the period and cohort parameters lie around zero and thatthus all substance is contained

in the age parameters. We also see that variability in the age parameters is significantly smaller than

for the other two parameter sets. This is why we were not able to detect a dependency of the mortality

improvements on age in Figure 2 in the first place.

The panel with the cohort parameters contains two sets of raw parameter values. Those plotted in green

stem from a preliminary model fit which included all cohorts in the data set. Here, we observe large

variability in the boundaries which is most probably due to noise. Moreover,it typically takes some

time until a cohort effect develops. Thus, it is questionable whether one should assume the existence of

cohort effects for cohorts who are still very young today. Therefore, we decide to set the first 10 and the

last 27 cohort parameters equal to zero in our final model fit. The resulting parameters are plotted in red.

6A reasoning for this constraint on the cohort parameters is given below.
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Figure 4: Fitted and smoothed parameter values for German males

2.3 Residual Analysis, Optimal Fitting Period, Model Stability, and Model Simplifica-
tions

In Figure 5, the standardized residuals for the model fit for German males are plotted.7 There is only

very little structure contained in the plot which suggests our model is capable of explaining historical

mortality improvements. Significant structure only remains for calender yearsup to 1970 where period

dependent effects seem to differ between younger and older ages sometimes. For instance, in 1968 we

observe very small residuals for ages around 80 but significantly positive residuals for most younger

ages. In the following year, this relation is inversed. Our model is obviouslynot able to allow for such

effects. However, these effects seem to be only temporary and rather irrelevant for a projection. Fur-

thermore, omitting data before 1970 would reduce the number of data points age and cohort parameters

are fitted to. Therefore, it seems desirable to keep the fitting period as largeas possible and to ignore

the remaining period structures in the residuals. For significantly longer datasets a limitation may be

appropriate though.

In order to check the stability and robustness of our model, we nevertheless additionally fitted it to

data starting from 1970. We do not show a plot of the fit here but it is verysimilar to the one for the

full data set. The values for some of the individual model parameters change but the fitted mortality

improvements for both model fits only differ by 0.26% on average.8

As another robustness check, we omitted data for young ages from our model fitting. This is a typical

setting for annuities or pensions where data on child mortality or even young adult mortality is very

sparse. For the rather extreme case of omitting all ages below 60, the fitted mortality improvements

7We standardized the residuals using the empirical standard deviations from the fitting.
8Note that, regarding the differences between the model fits, we only considered data points for which cohort parameters

are calibrated in both cases. Otherwise, the difference can easily be significant which again suggests using the full data set.
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Figure 5: Standardized residuals for German males

change by 0.43% on average.9 Most significant changes occur for years up to 1969. This is due to the

sometimes opposing period effects for young and old ages in those years and the period parameters now

fully taking up the effects for old ages instead of some “average”. For years starting from 1970, the

average change in the fitted mortality improvements is only 0.26%, as for the full age range.

Finally, we analyze whether our model can be simplified for the German data set. To this end, we fit

reduced models consisting of only two of the three parameters sets. In Figure 6, we exemplarily show

the fitted improvements and the standardized residuals when omitting the cohort parameters. There

clearly is diagonal structure missing in the fitted values compared to Figure 2 and certainly too much

diagonal structure in the residuals. Similar observations can be made when excluding the age or period

parameters. The fit is significantly worse in each case and therefore, weconclude that, at least for

German males, the model should not be simplified.10 Obviously, results may be different for other

populations.

3 Projection of Mortality Improvements

In the previous section, we have seen how our model can be calibrated to historical data. Now we

derive projections based on the calibrated model. We start with a projection for a single population and

explain different approaches for forecasting each of the three parameter sets. Then we turn to coherent

projections for several populations and show which modifications should or must be applied to the

9Again, we disregard data points for which cohort parameters are zerofor restricted model fit.
10A statistical test on the significance of the parameters in the full model is notstraightforward. The commonly used

likelihood ratio test requires normal residuals which we do not have.
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Figure 6: Results for a model fit without cohort parameters

approaches for a single population. Here, we do not try to achieve totally coherent projections for each

individual mortality improvement as this is hardly possible. The goal rather is tohave plausible forecasts

at a more aggregated level, e.g. coherent life expectancy extrapolations.

3.1 Projection of Mortality Improvements for a Single Population

We commence with the forecast of future age parameters. The most obviousapproach is to simply

maintain the parameter values as calibrated to the historical data. In order to reduce the remaining noise

they should be smoothed. Unfortunately, we can fit age parameters only for ages with available data

history, i.e. for ages below 95 in our case. The limiting age of a new projectionshould be considerably

larger though, e.g. 120. Thus, we need a different approach to derive parameter values for those very old

ages.

An extrapolation of the existing age parameters is not obvious. Therefore, we try to extract as much

information as possible from the original data set. We extrapolate mortality ratesup to age 120 for each

year using different curves, i.e. the laws of Gompertz and Kannisto as well as a logistic curve.11 From the

resulting artificial mortality improvements, we can then derive age parameters.For all mortality curves

and different populations, we observed that the parameter values tend tozero or become even slightly

negative for ages towards 120. Negative age parameters and thus ongoing mortality deterioration at

very old ages does not seem plausible. But the results indicate that – based on the historical data – the

existing age parameters should be extrapolated such that a value of zero isobtained at the limiting age.

Our findings are in line with those of Gampe (2010) who analyzes available data for supercentenarians

worldwide. In Figure 4, we applied a cubic function for the extrapolation withfunction value and first

two derivatives at age 120 being zero and a function value at age 95 according to the graduated age

parameter from the actual data.

At this point it should be mentioned that – given the steady increase in life expectancy in the past – it

seems possible that mortality improvements at very old ages may increase considerably in the future.

Some authors have already tried to predict such an increase using frailty models (see Jarner and Kryger

11For details on these mortality curves, we refer to Thatcher et al. (1998).
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(2011) and references therein). Therefore, it might be worthwhile adjusting some age parameters, also

based on epidemiological insights, instead of solely relying on historical dataextrapolations. Similar

arguments may hold for other age groups of a specific population, e.g., in case historical mortality

improvements have been significantly driven by one-off effects. We do not observe such effects in our

data set but they could be corrected for easily in our model.

For the fitted cohort parameters, we proceed as for the age parameters by simply graduating them (see

Figure 4). For future cohorts, we do not have any information available.Therefore, it is most plausible

to simply set parameters for such cohorts equal to the long-term average of zero (as for the cohorts at

the boundaries of the data set).

The future period parameters are most difficult to forecast. They determine the overall level of mortality

improvements in the future and are thus the most crucial set of parameters. For their projection, several

approaches with potentially significantly different outcomes are possible. The most simple approach is

to set future period parameters to their long-term historical average of zero. However, in Figure 4, we can

observe an increasing trend in the historical period parameters for German males. At least for the next

decades, it is thus also plausible to forecast period parameters according to this trend. A third possibility

is to calibrate future period parameters to a reasonable extrapolation of an aggregated mortality statistic

like the period life expectancy at birth. All three approaches appear equally plausible and it is impossible

to state which one may provide the most reasonable projection in general. In Figure 7 we see period

life expectancies at birth for German males projected according to the three approaches.12 Starting from

1969, historical life expectancies show a rather linear pattern. Therefore, a linear extrapolation seems

to be a reasonable basis for deriving future period parameters.13 The resulting parameter values must

be positive because the linear trend is steeper than the slope in the life expectancies based on period

12Life expectancies are computed based on mortality rates up to age 120 with mortality rates for ages above 95 obtained
from Kannisto extrapolations.

13There is an extensive literature on the question whether life expectancy can increase infinitely or whether there is some
biological limit. From an actuarial perspective, we think it is dangerous to assume a limit. History tells us that previously
assumed limits have been surpassed rather quickly (cf. Oeppen and Vaupel (2002)).
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parameters of zero. However, linearly extrapolated life expectancies are still significantly smaller than

life expectancies which are derived from a linear trend in the historical period parameters. In 2060,

the difference between the three projections is already more than 9 years which clearly shows the huge

uncertainty associated with mortality projections.

This uncertainty can usually be reduced by projecting mortality for different populations simultaneously.

All three projections for German males look plausible on their own but they may not when related to

possible projections for German females or male populations from other countries. Even if one is only

interested in a projection for a single population it is thus worthwhile considering other populations

as well. Data from those populations can provide valuable insights and help distinguish between sus-

tainable and rather temporary effects in the mortality evolution. Therefore, we extend our projection

framework to coherent modeling in the next subsections.

3.2 Coherent Projections of Age and Cohort Parameters

The age parameters prevail until infinity and thus differences in the age parameters for two populations

yield steadily diverging mortality rates (assuming similar period and cohort parameter values for both

populations). In particular for the case of males and females in the same country who are exposed to the

same social, political and economic environment, such a scenario seems highly implausible in general.

Mortality rates may be significantly different also in the long run but they should not diverge until infin-

ity. Therefore, we need to impose the constraint of equal long-term age parameters for both genders on

our model. This could be done by introducing a functional structure into the age parameters which inter-

polates between the fitted values for each gender and some kind of “average long-term value”. However,

this functional structure would clearly increase complexity and thus reduceinterpretability of our model.

We could also fit our model to a combined set of historical data allowing for possibly different cohort

and period parameters for both genders but demanding equal age parameters. Alternatively, we could

simply average the individually fitted age parameters for males and females andassume the resulting

parameter values for both genders in the future. Obviously, this is only validif the structures in the

age parameters for both genders are rather similar. This should in general be the case and, according to

Figure 8, it is for our example of German males and females. We therefore proceed using this approach.
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For populations from different countries, it is not obvious whether ageparameters should be adjusted.

This depends on the social, political and economic differences between thecountries as well as the

significance of differences in the age parameters in the first place. However, Edwards and Tuljapurkar

(2005) show that the distributions of deaths often differ between countries. They also detect differences

in the variances of life spans – in the level as well as in the trend of the variances. Thus, (slightly) differ-

ent age parameters seem acceptable even for populations in closely related countries and we therefore

refrain from adjusting age parameters based on cross-country information.

The cohort parameters describe only temporary effects. Thus, even ifthey differ for two populations

mortality rates will not automatically diverge in the long run. MacMinn and Weber(2009) also show

that cohort effects do not necessarily appear for males and females simultaneously and find no convinc-

ing evidence of correlated cohort effects in different countries. Consequently, we stick to the cohort

parameters fitted to each population individually.

3.3 Coherent Projections of Period Parameters

The goal of this subsection is to derive a methodology for the calibration of period parameters such

that projections for different populations become coherent at an overall level. To be able to include

information from other populations, we require some flexibility in the forecastsof period parameters for

each single population. Thus, of the three forecasting approaches presented in Section 3.1, the fitting

to extrapolated life expectancies is most promising as the life expectancy extrapolations can basically

have any shape. A linear extrapolation looked plausible in Figure 7 but in general, we can use any

curve for the extrapolation. In short, we determine projections of mortality improvements by deriving

coherent forecasts of period life expectancies at birth for all populations and then fitting the future period

parameters for each individual population to the corresponding life expectancies.14

In order to explain our approach in more detail and to illustrate solutions to somecaveats, we proceed

with our example for German males. A reasonable set of reference populations is the set of male and

female populations from Austria, Belgium, Denmark, Finland, France, Germany, Ireland, Italy, the

Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, and the United Kingdom. We do not take

into account any Eastern European countries because their mortality experience was somewhat different

in the past but seems to have been moving towards that of Western European countries since the fall of

the Soviet Union (see, e.g., Li and Lee (2005)). Whether non-European countries like the US, Canada,

Japan or Australia should be included in the analysis is very difficult to tell. Similarities in the mortality

evolutions between those countries and Germany are not necessarily as strong as between Germany and

its European “neighbors”. As the number of populations under consideration is already fairly large, we

have therefore decided to disregard any non-European countries here. We also disregard countries like

Iceland and Luxembourg as they are too small to have a significant impact.

Figure 9 shows historical life expectancies for both males and females in the aforecited countries and

the total male and female populations.15 For both genders, we observe convergence in life expectancies

14Obviously, one could also use life expectancies at other ages, e.g. 65,or even annuity present values as the aggregated
mortality statistic. However, the life expectancy at birth certainly is the most intuitive statistic.

15For each population, mortality data is obtained from the Human Mortality Database (2011) for years 1956 to 2006. We
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Figure 9: Historical life expectancies at birth in Europe

over time and, clearly, a common trend between countries. Clearly, extrapolations of life expectancies

for each country should be related to this common trend. Therefore, we proceed by extrapolating the

trends for the total populations – coherently for males and females – and by analyzing deviations between

the total populations’ mortality experiences and those of some exemplary singlepopulations.

Life expectancies for the total populations have evolved pretty much linear over recent decades (for

males starting from 1969) and have converged slightly. Hence, it seems obvious that coherent projections

can be obtained by simply extrapolating these linear trends. Unfortunately, this is not quite the case. In

Figure 10, we see historical differences in life expectancies between males and females and differences

as projected by such linear extrapolations (blue line). In 2006, the extrapolations already miss the actual

difference in life expectancy by more than 0.6 years. Thus, even thoughthe extrapolation for each gender

looks plausible stand-alone, in combination with the other gender it does not. Life expectancies should

restrict ourselves to this time period because, at the time of writing, only forthose years data was available for all countries.
For simplicity, we compute life expectancies from the HMD data up to ages 110instead of extrapolating mortality rates for
each population as we did for German males in Section 3.1. The differences should be negligible though. The life expectancies
for the total population are derived from weighted averages of mortality rates for the individual populations.
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be extrapolated such that also the projected difference between genders is plausible.

Figure 10 clearly shows shrinking differences starting from the mid-1990’s. However, we can hardly

expect the current trend in life expectancy differences to continue untilinfinity. Somewhere around

2060, male life expectancy would surpass female life expectancy which seems fairly unrealistic. It is

more reasonable to assume further shrinking differences for the next years which level off at a certain

long-term difference above zero but below today’s difference. Thisis in line with the convergence in

lifestyles which has been observed for males and females in many Europeancountries over the last

decades. For instance, the consumption of tobacco has increased significantly for females but decreased

for males thus narrowing the gap between the genders (see, e.g., European Commission (2009)). The

same holds for the share of women in employment compared to the corresponding share of men (see

OECD (2010)). The latter trend, in particular, is very likely to continue. So what might be a lower

bound for the difference in life expectancies? Luy (2002) analyzes themortality experience of nuns and

monks who live under very similar socio-economic conditions and finds only about one year difference

in remaining life expectancy in young adult ages. Thus, most of the currently observed difference for the

general population seems to be related to socio-economic factors and a considerable further shrinkage

may well be attainable. Nevertheless, we regard the assumption of a total convergence in lifestyles and

a long-term difference of about one year as very bold. Therefore,we assume a long-term difference

between European male and female life expectancies of three years in our example.

We now need to adjust the linear life expectancy extrapolations from aboveaccording to this supposed

long-term difference. In fact, we need to fix a common long-term trend formales and females such

that the long-term difference in life expectancies remains constant, and weneed to specify how life

expectancies move towards this trend and this difference over the next decades. Figure 11 shows how this

can be done. The orange lines are the historical long-term trends for males (dashed) and females (solid),

the green lines represent long-term asymptotes for male and female life expectancies, respectively, and

the blue lines represent our actual life expectancy extrapolations. The graphs are constructed based on

the following considerations:

• We assume a long-term difference in life expectancy between males and females of∆ = 3 years.

• The common trend has a slopes according to the average slope of the long-term historical trends

for males and females, i.e.s = 0.2385 as the average of 0.2473 (males) and 0.2296 (females).

Alternatively, the slope could be fixed according to the historical slope foreither males or females
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which might be useful for a scenario analysis. The average slope also lies right between the slopes

Oeppen and Vaupel (2002) find for worldwide maximum life expectancies for males (0.222) and

females (0.243) between 1840 and 2000. Even though, under our assumptions, male life expectan-

cies in some European countries will surpass the supposed long-term maximum sometime in the

(far) future, we regard our forecast as plausible. Since our assumption of a convergence between

genders contrasts somewhat with the (very long-term) divergence observed by Oeppen and Vaupel

(2002), a simultaneous full coherence with their extrapolations for both genders is unachievable

per se.

• As the trend in life expectancy differences changes in the mid-1990’s, trends for male and/or

female life expectancies must (slightly) change at that time as well. Therefore, we identify the

current slopes in life expectancy increases by a regression to historical life expectancies from

1995 onwards. The current trend for males is stronger than the long-term trend, i.e. the current

slope is 0.3052 compared to 0.2473 in the long run. For females, the currentslope is lower, i.e.

0.2099 compared to 0.2296. Our life expectancy extrapolations are set to start at the current life

expectancy values and slopes for both genders.

• We assume that the extrapolated life expectancies for each gender can bewritten as a straight line

(the long-term asymptote) plus/minus a difference term which decreases to zero exponentially

with time, i.e.

lem(t) = dm + s(t− 2006)− exp {gm(t− 2006) + hm}

and

lef (t) = (dm +∆) + s(t− 2006) + exp {gf (t− 2006) + hf} ,

where·m indicates male and·f female. The asymptote for females differs from that for males

only by the fixed value∆ and time is shifted simply for convenience.

• We want both life expectancy curves to converge to their asymptotes equallyfast. To achieve this,
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Parameters dm ∆ s gm = gf hm hf
79.0874 3.0 0.2385 -0.0386 0.5485 -0.3008

Table 1: Parameter values for coherent life expectancy extrapolations

the slope parameters in the exponential terms,gm andgf , must coincide.

• These specifications and constraints leave us with a set of uniquely identifiable parameters whose

values are summarized in Table 1.

After extrapolating life expectancies for the male and female total populations,we now need to specify

how country specific life expectancies may evolve relative to these extrapolations. In Figure 9, we ob-

served convergence in life expectancies for males and females across Europe which indicates that best

estimate life expectancies may be equal for all countries in the long run (see also Jarner and Kryger

(2011) and references therein). In that case, only transitions from current life expectancies to the com-

mon long-term life expectancies would have to be specified for each population. However, convergence

seems to stop around 1980. Therefore, it is not directly clear whether theremaining variability in life

expectancies is simply due to random fluctuations or whether some populationshave consistently expe-

rienced longer life spans than others.

Figure 12 shows how life expectancies of selected countries have deviated from those of the total popu-

lations in the past. We have chosen these countries as we can observe significantly different patterns in

their deviations which are somewhat exemplary. Regarding the question from above, the deviations for

Switzerland are fairly conclusive. For both genders, they are significantly positive over the whole data

period. The reason for this might be above average socio-economic conditions in Switzerland. Thus,

Swiss actuaries should feel rather uncomfortable with projecting local life expectancies as being equal

to the European average, even in the long run. Instead, data hints at assuming a sustainable difference

of about 1.5 years and introducing a transition to that level over the next decade or so. An analogous

conclusion can be drawn for Finish males where average European life expectancies seem overly con-

servative for a (best estimate) projection.

Opposing trends can be observed for Italy and Denmark. Italian life expectancies were below average at

the beginning of the data period but have risen significantly above towardsthe end. Life expectancies in

Denmark, on the other hand, have increased by 5 to 6 years less than the European average. Here, we see

how valuable coherent projections can be. Forecasting of life expectancies according to historical trends

would almost certainly yield implausible long-term projections for both countries. We would move

away from the European average rapidly and continuously. Instead, itis more reasonable to assume a

leveling-off in the deviations at the current level or somewhat closer to zero.

For the Netherlands, we observe a fairly linear downward trend for mostof the data period. Over the

last years, this trend seems to have bottomed out though – at about the European average for males and

about one year below average for females. Thus, assuming sustainabledifferences at these levels and a

long-term difference in life expectancies of three years between the genders in Europe would imply a

long-term difference of only two years between Dutch males and females. This can well be possible but
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Figure 12: Differences between life expectancies of the total populationsand selected countries

may also require additional demographic justification.

Finally, we have a closer look at the deviations for Germany as this is the final step to completing our

example. We see in Figure 12 that, from about 1985, fluctuations become rather small around a fixed

level of about -0.3 for males and -0.5 for females. Therefore, the most obvious forecast for German life

expectancies is to assume the forecast for the total populations, slightly shifted downwards according to

the observed deviations. We then fit the future period parameters to these life expectancies and obtain

coherent projections as plotted in Figure 13.16 The historical data is smoothed either using P-splines or

our model. In the latter case, the charts also contain ages beyond 95.

We observe that our model smoothes the data more strongly than the P-spline method does. This then

obviously leads to a break between the historical and the projected data in theP-spline case. In general, it

is difficult to tell which level of smoothing is most appropriate. More importantly,however, the general

structure in the historical data is the same for both smoothing methods.

Accepting that our model provides adequate smoothing for historical mortalityimprovements, the pro-

jection looks highly plausible for both males and females. In particular, all cohort dependent structures

are carried forward appropriately. The very slight break in 2009 is due to the use of average age effects

16We show results also for German females here for completion. The projection for females has been constructed completely
analogous to that for males.
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Figure 13: Coherent mortality projections for German males and females

in the projections. It is most obvious for ages around 10 where the age parameters differ most between

the genders (see Figure 8) and where no cohort effects cover this difference. For males, projected mor-

tality improvements are slightly lower than the historical data suggests and for females they are slightly

larger.

4 Modeling Uncertainties and Margins

Modeling and forecasting of mortality always involves a considerable amount of uncertainty. One can

never be sure whether a model’s fit to the available data is adequate and whether extrapolations of

historical trends into the future are appropriate. In this section, we discuss uncertainties related to our

model and how they may be quantified and accounted for.

4.1 Model Uncertainty and Risk of Changes

From our point of view, the most significant model uncertainty in our projection is related to the specifi-

cation of future period parameters. We calibrate these parameters based on the assumption of an ongoing

(fairly linear) increase in life expectancies. But this assumption need not hold true. We have also out-

lined alternative approaches for specifying future period parameters and any one of those approaches

may be closer to reality. However, the approach of linear life expectancy extrapolations is rather con-
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servative compared to the most common approach of projecting mortality improvements based on fixed

age and possibly cohort parameters. The latter approach coincides with setting future period parameters

equal to zero in our setting which lead to smaller values for future life expectancies at least for German

males (see Figure 7).

Model uncertainty or the risk of changes, respectively, is also inherent in the assumptions on how the

mortality evolutions of different populations may relate to each other. We assume that the mortality ex-

periences for males and females become very similar when we average age parameters for the projection.

Moreover, we postulate narrowing life expectancies between both genders. The supposed long-term dif-

ference of three years is nothing else but an informed guess though. Similarly, we assume an equal

long-term trend in life expectancies for all populations in Europe. In fact,life expectancies in Europe

might diverge again with a significantly steeper increase for at least some countries. On the other hand,

mortality experiences in Europe may become even more similar with pretty much equal age parameters

for all populations in the long run. Not necessarily related to the issue of convergence or divergence

is the general possibility of changes in the age dependency of mortality improvements with time. We

already mentioned this uncertainty in the previous section.

We think the most effective way to account for the aforecited uncertaintiesis to increase the slope of

assumed life expectancy gains. It can be carried out easily and inducesmargins for all ages increasing

with time which is in line with the nature of the uncertainties. For the next years, weare rather well

informed about the forthcoming mortality evolution (as long as no mortality/longevityshock occurs) but

in the long run uncertainty becomes considerable. Specifying an adequately steeper slope however is

not that simple. Possibly, the historical slopes for individual populations can provide some insight into

the possible range of future slopes for the total population.

Another significant model uncertainty may be contained in the smoothing, in particular the smoothing

of the cohort parameters. If the portfolio of a pension fund or an annuityprovider consists of only a

few cohorts with extraordinary mortality improvements the smoothing may hide the actual mortality

experience and lead to insufficient reserves. Therefore, for verydistinct portfolios it may be necessary

to analyze the risk situation based on a mortality projection which is not or only partially graduated.

The general inclusion of margins in a graduated projection to account forsuch a case does not seem

imperative though.

All the highlighted issues underline the significance of model uncertainties and their increase with time

– not only in our model but in any model for the projection of future mortality experience. Obviously,

margins can help mitigate these uncertainties but the most effective approachcertainly is to update

mortality projections regularly.

4.2 Parameter Uncertainty

All parameters in our model are only fitted to a limited number of data points which arealso blurred

by noise to some extent. This induces parameter uncertainty which should be accounted for in a con-

servative projection. In general, parameter uncertainties seem rather negligible compared to the model

uncertainties and the risk of changes. This holds in particular for the parameters fitted to the historical



AGE, PERIOD, AND COHORT DEPENDENTMORTALITY IMPROVEMENTS 21

data. For instance, if we underestimated age parameters this would be somewhat compensated for by

larger period parameters in the projection given a fixed life expectancy extrapolation. However, for the

sake of completeness, we still want to outline how parameter uncertainties may be quantified.

For the age and cohort parameters a bootstrap could be performed.17 Koissi et al. (2005) and Brouhns et

al. (2004) describe a residual bootstrap or a parametric bootstrap, respectively, for the Lee-Carter model

which could be applied in our setting as well. The parameter uncertainty in the future period parameters

stems from the uncertainty in fitting the regression line to historical life expectancies. Here confidence

bounds for the regression parameters can be derived analytically.

4.3 Basis Risk

A risk not related to the construction of the projection but to its application is basis risk. Basis risk arises

from the use of a projection for a population different from the one it hasoriginally been constructed

for. In this paper, we have derived a projection for the general population of German males but we might

want to apply it to a population of insured or pensioners.18

If one population is a subpopulation of the other, as the insured are a subpopulation of the general

population, future mortality evolutions should not diverge until infinity. However, over the next years

mortality improvements may differ as we have observed for European populations in the previous sec-

tion. Stronger improvements of the subpopulation would be critical in particular. The challenge is now

to quantify this difference. Here, we need to distinguish two cases.

If no data is available for the subpopulation it is hardly possible to measure basis risk and to adjust

the projection accordingly. One would have to rely on expert opinion or, possibly, information from

other (sub)populations. If some data is available but not sufficient for the derivation of a full projection

our setup allows to quantify basis risk. We can carry age and cohort parameters from the reference

population over to the subpopulation and fit only the period parameters to the subpopulation’s limited

data. These period parameters are possibly more volatile than those for the typically larger reference

population but the average level of both parameter sets should be very similar. Significantly different

levels in the period parameters, on the other hand, would indicate the need for an adjustment to the

projection according to the difference. If one questions the adequacy of the age parameters or the cohort

parameters basis risk in these parameters could be measured analogously.

5 Comparison with other Projection Models

In this section we compare our projection model to alternative models and showhow our approach adds

to the existing literature. We focus on qualitative aspects as most existing projection models describe

the future evolution of mortality rates instead of mortality improvements. Thus, a direct quantitative

comparison is difficult and may be misleading. However, one general advantage of our approach in many

17In our case, the bootstrap would only work for age parameters up to age95. Above, expert opinion would be required, as
for the calibration of the parameters in the first place.

18Note that, here, we focus on the projection and thus differences in the future changes in mortality rates only. Differences
in the levels of mortality rates are accounted for by using appropriate basetables.
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situations is that we model mortality improvements directly. For the derivation of (standard) projections,

the modeling of the level of mortality is redundant. It only binds some of the modelparameters and thus,

in general, requires a more complex model to provide comparable results.

A very popular projection model is the P-spline model of Currie et al. (2004) which we have already

used above for smoothing mortality data. In the previous section, we saw thatthe fit to historical data

is comparable with the fit of our model in the sense that both models detect verysimilar structures in

the data. However, our model offers advantages in the projection of mortality improvements. We are

very flexible in projecting the level of future mortality improvements which is valuable for two reasons:

We can derive coherent forecasts for several populations and we can easily specify alternative scenarios,

e.g. with and without margins. In the P-spline model, the level of future mortality improvements is fixed

by model assumptions. This level may or may not be reasonable and cannotbe adjusted according to

information from other populations.

Mortality projections have also often been derived as the central trajectories of stochastic mortality

models. Starting with the model of Lee and Carter (1992), a bunch of such models has been proposed

over the last two decades and some of them have also been extended to yieldcoherent projections (see,

e.g., Li and Lee (2005) and Cairns et al. (2010)). However, most of the models do not allow for cohort

effects which are significant and thus highly relevant for many populations. If they do incorporate a

cohort component like the Lee-Carter extension of Renshaw and Haberman (2006) the fitting often

becomes unstable. Moreover, these models are generally specified as parsimonious as possible to speed

up simulations. This obviously worsens the model fit and thus the quality of the projection. As an

example, we cite the age dependent parameters in the Lee-Carter model which are multiplied by the

time index. These parameters determine the level of mortality improvements as well as the volatility in

simulated mortality rates. Thus, they are not fitted as to provide the most plausiblecentral projection in

general. Moreover, Lee and Miller (2001) show that the Lee-Carter model has tended to underpredict

life expectancy gains for most countries. This is due to the assumption of linear changes in log mortality

rates over time which is an assumption underlying most of the commonly used mortalitymodels. Thus,

this seems to be a general issue with those models and it is critical when deriving projections for actuarial

purposes.

In the previous sections, we have already cited Jarner and Kryger (2011) who also propose a model for

coherent projections. However, they allow for less variability between thepopulations as they derive

one projection for the total population and model random fluctuations around this projection for the

individual populations. Moreover, they pay less attention to details in the mortality structure by fitting a

much more parsimonious model without a cohort component.

Finally, we compare our model to the Continuous Mortality Investigation (2010,CMI) mortality pro-

jection model. Both models are quite similar in structure and flexibility as they allow forage, cohort,

and time dependent mortality improvements. However, we show how our model can be fully calibrated

whereas the CMI leaves the derivation of parameter values to the user. Inparticular, we provide ideas

how long-term mortality improvements can be obtained and the fitting to extrapolatedlife expectancies

determines changes in mortality improvements over time automatically. The user of theCMI model has

to decide over which time horizon age and cohort dependent mortality improvements move from their
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current level to the expected long-term level. Thus, our methodology provides additional insights which

can be informative for the calibration of the CMI model as well.

In conclusion, we think our model adds to the literature on mortality projections as it eliminates several

drawbacks of existing projection models. Moreover, our methodology is very intuitive which clearly

helps motivating the use of a particular projection.

6 Conclusion

Projections of future mortality evolutions are particularly necessary for thecomputation of reserves and

risk management in the insurance business and for population forecasts for social security systems.

The derivation of reliable projections, however, is very sophisticated and some projections which are

currently used in practice seem questionable. In this paper, we develop aprojection methodology which

provides highly plausible extrapolations of historical mortality improvement patterns. Our model is

very flexible in terms of changes in the future level of improvements and we present different ideas for

fixing this level. The most promising idea is the fitting of future period parametersto extrapolated life

expectancies. The extrapolation of historical life expectancies is usually much more obvious than the

extrapolation of individual mortality rates or mortality improvements. At the same time,this approach

provides a measure for the strength of a projection in just one aggregatedstatistic. But most importantly,

it allows for the incorporation of information from other populations. Coherent extrapolations of life

expectancies for different populations induce coherent and plausibleprojections for those populations

at an overall level. As we have seen in Section 3, the simultaneous consideration of several populations

can have a significant impact on the resulting projection for each single population.
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