
 
 
 

Adaptive Wavelet Methods on

Unbounded Domains

Sebastian Kestler und Karsten Urban

Preprint Series: 2011-14

Fakultät für Mathematik und Wirtschaftswissenschaften

UNIVERSITÄT ULM

ADAPTIVE WAVELET METHODS ON UNBOUNDED DOMAINS

SEBASTIAN KESTLER AND KARSTEN URBAN

Abstract. In this paper, we introduce an adaptive wavelet method for oper-
ator equations on unbounded domains. We use wavelet bases on R

n to equiv-
alently express the operator equation in terms of a well-conditioned discrete
problem on sequence spaces. By realizing an approximate adaptive operator
application also for unbounded domains, we obtain a scheme that is convergent
at an asymptotically optimal rate. We show the quantitative performance of
the scheme by various numerical experiments.

1. Introduction

Operator equations on unbounded domains are relevant in various fields where
no boundary conditions, but only the asymptotic behavior of the solution is known.
Examples include radiation or wave propagation processes as well as valuation prob-
lems in finance. In many cases, the asymptotic nature of the solution allows to trun-
cate the computational domain to a bounded one and to perform all computations
by standard methods on that bounded domain. Obviously, this requires a careful
compromise of accuracy (sufficiently large truncation domain) and computational
complexity (possibly small truncation domain). However, in more complex situa-
tions (like for complex structured financial products), such an a priori truncation
is not straightforward.

There are several methods to treat problems on unbounded domains such as
Infinite Elements, Inverted Finite Elements, FEM-BEM coupling and others. In
this paper, we introduce an adaptive wavelet method for operator equations on
unbounded domains. For the ease of presentation, we describe the idea and the
analysis for the univariate case. Note that the approach is by no means restricted
to 1d as we will later also describe in more detail. The key ingredient are Riesz
wavelet bases for Sobolev spaces Ht(R). Given a Riesz basis for L2(R) consisting
of dilations and integer translates of a locally supported mother wavelet ψ,

(1.1) ΨR := {ψj,k : j, k ∈ Z}, ψj,k(x) := 2j/2ψ(2jx− k), j, k ∈ Z, x ∈ R,

one can show (e.g. [5, 11, 32] and the references therein) that ΨR
t := {ψj,k ×

‖ψj,k‖
−1
Ht(R) : j, k ∈ Z} is a Riesz basis for Ht(R) for t ∈ (−γ̃, γ) and γ, γ̃ depending

on the choice of ψ. Thus, as stated in [7, p.210], one can transform the original
operator equation Au = f onH−t(R) into an equivalent well-posed problem Au = f

Date: November 7, 2011.
2000 Mathematics Subject Classification. 65T60,35Q68.
Key words and phrases. Wavelets, adaptive numerical methods, unbounded domains.
This work has been supported by the Deutsche Forschungsgemeinschaft within the Research

Training Group (Graduiertenkolleg) GrK1100 Modellierung, Analyse und Simulation in der
Wirtschaftsmathematik at the University of Ulm and within the priority program DFG-SPP 1324
Mathematical methods for extracting quantifiable information from complex systems.

1

2 SEBASTIAN KESTLER AND KARSTEN URBAN

on sequence spaces ℓ2 for the wavelet coefficients. This idea has been used e.g. in [2,
6, 7, 12, 15, 18, 26] (see also [32]) where the focus was always on operator equations
on bounded domains. It results in adaptive wavelet methods that have been proven
to converge at an optimal rate as compared with the best N -term approximation
w.r.t. the same basis. To highlight the differences to bounded settings, let us
mention that a wavelet basis on an interval Ω = (a, b) ⊂ R typically takes the form

(1.2) ΨΩ := {ψΩ
j,k : j ≥ j0, k ∈ Ij},

where |supp ψΩ
j,k| ∼ 2−j, but ψΩ

j,k may not result by scaling and translating mother

wavelets, e.g. [4, 10, 13, 15]. Both ΨR and ΨΩ consist of infinitely many basis
functions. Whereas ΨR consists of all dilates and translates, ΨΩ has a fixed minimal
level j0 (depending on Ω as well as the type of wavelets) and the location index
k ∈ Ij ranges over a finite index set Ij with cardinality #Ij ∼ 2j .

If we can manage to design an adaptive wavelet method that is able to select
appropriate subsets out of Z×Z, then we can –in principle– use the same adaptive
schemes as on Ω. This is precisely the path we follow in this paper. We introduce an
adaptive selection procedure on unbounded domains and derive an asymptotically
optimal adaptive wavelet method. This approach offers some interesting features:

• Though possible, the construction of wavelet bases on general domains Ω is
technically challenging. Here, we completely circumvent the need of constructing
a basis on a possibly complicated domain and use the most simple situation that
is possible for wavelets, namely, the shift-invariant case.

• Adaptive methods are particularly favorable if the solution has local effects like
a singularity of the derivative at a single point. Such effects can result from three
different sources, namely the domain, the operator or the right-hand side. The
first source does not appear for problems on R

n. For the remaining two, certain
a priori information is available. In fact, for example in the case A = −∆+I, the
wavelet decomposition of the right-hand side f is already a good prediction for
the relevant coefficients of the solution. Thus, this can be used as initial index
set in order to improve the efficiency of the method.

• We do not need to truncate the domain, the scheme automatically detects the
significant wavelets and determines a ‘computational domain’. Thus, our method
allows to solve a PDE problem on an unbounded domain by a compactly sup-
ported and locally refinable basis.

• This idea concerning the treatment of unbounded domains can be generalized to
higher space dimensions [26], nonlocal operators or nonlinear problems [8].

Nevertheless, it is a priori not clear how actually the resolution of the asymptotic
boundary conditions realized by adaptive wavelet schemes look like. As we have
to take into account an infinite number of translation indices on each level (recall
that in a bounded setting, this number is finite), the question arises how fast the
asymptotic behavior of the best N-term approximation is reached by the algorithm.

The remainder of this paper is organized as follows. In Section 2, we review the
main ingredients of adaptive wavelet methods. Section 3 contains the modification
and extension to unbounded domains of the adaptive scheme from [18]. A second,
heuristic adaptive scheme and a comparison of the two algorithms shall be described
in Section 4. The extension to higher space dimensions is described in Section 5.

ADAPTIVE WAVELET METHODS ON UNBOUNDED DOMAINS 3

2. Adaptive Wavelet Methods

2.1. Elliptic operator equations. Let H ⊂ L2(R
n) be a Hilbert space (e.g.

H1(Rn)) and H ′ its dual w.r.t. L2(R
n) (e.g. H−1(Rn)) where we denote by 〈·, ·〉

the duality pairing in H×H ′. For a linear, self-adjoint operator A : H → H ′ and a
right-hand side f ∈ H ′, we consider the operator equation: Find u ∈ H such that

(2.1) A[u] = f in H ′.

We assume that the bilinear form a(·, ·) := 〈 · ,A[·]〉 : H ×H → R is symmetric,
continuous and coercive, i.e., there exist constants cA, CA > 0 such that

(2.2) cA‖v‖
2
H ≤ a(v, v), ∀v ∈ H, |a(w, v)| ≤ CA‖w‖H‖v‖H , ∀v, w ∈ H.

Throughout this section, we focus on the one-dimensional case H = Ht(R) and A
a differential operator of order 2t for t ∈ N0.

2.2. Wavelets. For the discretization of (2.1), we require a Riesz basis Ψ0 := {ψλ :
λ ∈ J } for L2(R) which, properly scaled by scaling factors Dt

λ,

(2.3) Ψt := {Dt
λψλ : λ ∈ J },

is also a Riesz basis for Ht(R), i.e., there exist constants cΨt , CΨt > 0 such that

(2.4) cΨt‖d‖ℓ2(J) ≤ ‖dTΨt‖Ht(R) ≤ CΨt‖d‖ℓ2(J), ∀d ∈ ℓ2(J).

Here, we denoted by v := dTΨt the expansion of a function v ∈ Ht(R) in Ψt when
viewing Ψt formally as an (infinite) column vector.

According to the remarks after (1.1), one can use the wavelet basis ΨR
0 := ΨR

on R as long as γ > t and rescale it to obtain a Riesz basis for Ht(R),

(2.5) ΨR

t := {Dt
λ ψλ : λ ∈ J R}, Dt

λ := ‖ψλ‖
−1
Ht(R),

with λ := (j, k), J R := Z×Z. In the sequel, we suppress the superscript R and set
Ψt,−∞ := ΨR

t , J−∞ := J R to underline that there is no lower bound for levels j.

As diam(supp ψλ) ∼ 2−|λ|, |λ| := j, grows exponentially with decreasing level,
one can avoid arbitrarily coarse levels j → −∞ by fixing a minimal level −∞ <
j0 <∞ and consider the collection

(2.6) Ψt,j0 := {Dt
λψλ : λ ∈ Jj0} := Φj0 ∪ {ψj,k/‖ψj,k‖Ht(R) : j ≥ j0, k ∈ Z},

with Jj0 := {j ≥ j0 − 1, k ∈ Z} and (Ht(R)-normalized) scaling functions (cf. [24])

Φj0 := {ϕj0,k/‖ϕj0,k‖Ht(R) : k ∈ Z}, ϕj0,k(x) := 2j0/2ϕ(2j0x− k), x ∈ R,

where ϕ is a refineable function. To simplify notations, we set ψj0−1,k := ϕj0,k.
With Φj0 being stable in Ht(R), Ψt,j0 is also a Riesz basis for Ht(R) (cf. e.g.
[11, 23]). We shall assume that ϕ, ψ are locally supported as well as that Φj0 is

exact of order d and that ψ has d̃ ≥ d vanishing moments. Both parameters depend
on the particular choice of ϕ and ψ and also influence the values for γ, γ̃. Particular
instances of ψ are biorthogonal B-splines wavelets as constructed in [9]. Here, ϕ is
a cardinal B-spline of order d and γ = d− 1

2 .

Remark 2.1. We can also use Dt
λ = min{1, 2−t|λ|} ∼ ‖ψλ‖

−1
Ht(R) in (2.5) (e.g. [3,

Teorema 3.1]) since for t ∈ N0, ‖ψλ‖2
Ht(R) ∼ ‖ψλ‖2

L2(R) + |ψλ|2Ht(R). Then, by a

homogeneity argument, we have ‖ψλ‖L2(R) ∼ ‖ψ‖L2(R) as well as |ψλ|Ht(R) ∼ 2t|λ|.
Observe that in bounded domain settings (where j0 ≥ 0), the scaling factors simplify
to Dt

λ = 2−t|λ| which is often used in the literature.

4 SEBASTIAN KESTLER AND KARSTEN URBAN

2.3. Wavelet discretization. Now we use a wavelet basis Ψt ∈ {Ψt,j0 : j0 ≥ −∞}
(where j0 = −∞ refers to (2.5)) to transform (2.1) into a well-conditioned discrete
operator equation. By (2.4), we infer that there exists a unique u ∈ ℓ2(J) with
u = uTΨt for the solution u of (2.1). This means that u is the (unknown) sequence
of wavelet coefficients of u. Thus, (2.1) is equivalent to the infinite linear system

(2.7) Au = f , with A := 〈Ψt,A[Ψt]〉, f := 〈Ψt, f〉.

Note, that (2.7) is well-posed on ℓ2(J): by (2.2) and (2.4), the symmetric bilinear
form a(v,v) := 〈v,Av〉ℓ2 = a(vTΨt,v

TΨt) satisfies for c1 := c2ΨtcA, c2 := C2
Ψt
CA

(2.8) c1‖v‖
2
ℓ2 ≤ a(v,v) ≤ c2‖v‖

2
ℓ2 , ∀v ∈ ℓ2(J).

Therefore, a(· , ·) is coercive and, by an analogous reasoning using (2.2), also con-
tinuous. For this reason, the operator A : ℓ2(J) → ℓ2(J) is symmetric, continuous
and coercive. Moreover, (2.8) implies that A is boundedly invertible with

‖A‖ := sup
v∈ℓ2(J)

‖Av‖ℓ2
‖v‖ℓ2

≤ c2, ‖A−1‖ := sup
v∈ℓ2(J)

‖A−1v‖ℓ2
‖v‖ℓ2

≤ c−1
1 .

The condition number κ(A) = c2
c1

of A is bounded which is in fact a crucial property

for the numerical treatment. Setting ‖v‖a := a(v,v) for v ∈ ℓ2(J), we see that
the energy norm ‖ · ‖a is equivalent to ‖ · ‖ℓ2 , i.e., ‖v‖a ∼ ‖v‖ℓ2 . We can also define
another equivalent norm for v ∈ ℓ2(J) by ‖v‖A := ‖Av‖ℓ2 ∼ ‖v‖ℓ2 . To avoid the
use of various constants, we write C . D if there exists a constant c > 0 such that
C ≤ cD. Analogously, we define &. We use C ∼ D if C . D and C & D.

In the sequel, we shall need the restriction of infinite matrices and infinite vectors
to finite index sets Λ ⊂ J . To this end, we define for v ∈ ℓ2(J) the projection
PΛv := v|Λ and set vΛ := PΛv. By IΛ : ℓ2(Λ) → ℓ2(J), we denote the extension
of a vector v ∈ ℓ2(Λ) by zeros. Thus, we obtain the finite Galerkin system

(2.9) AΛuΛ = fΛ, with AΛ := PΛAIΛ, fΛ := PΛf .

One possible interpretation of many adaptive schemes is to find a sequence of index
sets Λ(0),Λ(1),Λ(2), . . . so that the corresponding Galerkin solutions uΛ(k) of (2.9)
converge possibly fast towards u with as few active wavelet coefficients as possible.

2.4. Nonlinear approximation theory. The analysis of adaptive schemes leads
to nonlinear approximation theory. Since we want to approximate the unknown
solution u with as few wavelet coefficients as possible, the optimum would be a best
N-term approximation uN of u where # supp uN = N , ‖u− uN‖ℓ2 = σN (u) and

(2.10) σN (u) := inf
w∈ΣN

‖u− w‖ℓ2 .

Here, ΣN := {v ∈ ℓ2(J) : # supp v ≤ N} is a nonlinear manifold in ℓ2(J).
In order to define (quasi-)optimality, we collect all sequences whose best N -term

approximation converges with rate s > 0 in the approximation class

(2.11) As := {v ∈ ℓ2 : σN (v) . N−s}, s > 0.

A (quasi-)norm on As is given by |v|As := supN≥0(N + 1)s‖v − vN‖ℓ2 , where vN
is a best N -term approximation of v. In other words, given u ∈ As for s > 0 and

ε > 0, setting N := ⌈ε−1/s|u|
1/s
As ⌉ yields ‖u − uN ||ℓ2 ≤ |u|AsN−s ≤ ε (cf. [30, Eq.

(3)]). This shows that for any ε > 0, u can be approximated by u(ε) s.t.

(2.12) ‖u− u(ε)‖ℓ2 ≤ ε, #supp u(ε) . ε−1/s |u|
1/s
As .

ADAPTIVE WAVELET METHODS ON UNBOUNDED DOMAINS 5

This sets the benchmark and we call an adaptive wavelet method (quasi-)optimal if
for u = uTΨt with u ∈ As and ε > 0, the scheme produces an output u(ε) satisfying
(2.12) with linear complexity in arithmetic operations and storage requirements.

The next question is of course, under which conditions on u or u, one actually
has u ∈ As. As far as the sequence u of the wavelet coefficients is concerned,
it is well-known that certain decay rates are needed in order to ensure a certain
rate of approximation. This decay is expressed by the so called weak ℓτ (J)-spaces
defined as follows (cf. [14]). For each 0 < τ < 2 and v ∈ ℓ2(J), we define
|v|ℓwτ := supk≥1 k

1/τv∗k, where v∗k is the k-th largest entry in modulus of v and v∗ :=
(v∗k)k∈N. Then, we set ℓwτ (J) := {v ∈ ℓ2(J) : |v|ℓwτ < ∞} with the corresponding
norm ‖v‖ℓwτ := |v|ℓwτ + ‖v‖ℓ2 , v ∈ ℓwτ . It is known that ℓτ →֒ ℓwτ →֒ ℓτ+δ for any
δ ∈ (0, 2 − τ] explaining the notion ‘weak’-ℓτ . With this notation at hand, σN (u)
decays with a fixed rate s > 0 if and only if u ∈ ℓwτ (J) for

(2.13)
1

τ
= s+

1

2
.

In particular, ‖ · ‖As ∼ ‖ · ‖ℓwτ (J) and it holds for all v ∈ ℓwτ (J) that

(2.14) σN (v) ≤ Cτ‖v‖ℓwτ N
−s,

where the constant Cτ > 0 depends only on τ (cf. [6, Proposition 3.2]). On the
basis of (2.14), we refer to the largest value of s for which u ∈ ℓwτ (with τ defined in
(2.13)) as the best nonlinear approximation rate. It turns out that this rate is related
to the Besov regularity of the underlying function and the polynomial order d of
the wavelets (cf. [5, 14]). More precisely, if s < d− t and u ∈ Ht(R)∩Bt+sτ (Lτ (R))
with τ = (s+ 1

2)−1, then u ∈ As, respectively u ∈ ℓwτ (J).

2.5. Optimality and locality. In order to obtain a best possible method, it is not
enough to generate a scheme which converges with the same rate as a best N -term
approximation. In fact, we also need to be able to compute such an approximation
within linear complexity. One key ingredient is that wavelets allow for a compression
of a large class of operators due to their locality and their vanishing moments.

Definition 2.2 ([7, Definition 5.8] & [19, Definition 1.1]). Let s∗ > 0. An operator
A : ℓ2(J) → ℓ2(J) is said to be in the class Bs∗ (or s∗-compressible) if for each
0 < s < s∗ and for some positive, summable sequence (αj)j≥0, there exists for each
j ∈ N0 a matrix Aj with at most O(2jαj) nonzero entries per row and column s.t.

(2.15) ‖A− Aj‖ ≤ αj2
−js.

Moreover, an operator A ∈ Bs∗ is called s∗-computable if each column in Aj can
be computed within O(2j) operations.

In the remainder of this section, we shall assume that there exists s∗ > 0 such
that A is s∗-computable. Compression estimates which fit into the setting of (2.15)
have been discussed in detail for different types of operators (cf., e.g., [19, 26, 29]).
We consider such estimates for operators and wavelet bases on unbounded domains
later in Section 3.1. The compressibility of A can be used for the design of efficient
algorithms as we shall review now. If we define v[j] as a best 2j–term approximation

to v ∈ ℓwτ (J) (e.g. the first 2j entries of v∗), then it holds

(2.16) ‖v − v[j]‖ℓ2 ≤ 2−js |v|As ,

6 SEBASTIAN KESTLER AND KARSTEN URBAN

if s is chosen as in (2.13). It can be shown that A ∈ Bs∗ is a bounded operator on
ℓwτ (J) with τ = (s + 1

2)−1 when s < s∗ (cf. [7, Proposition 5.9]) and also derive a
method for approximating an infinite matrix-vector product Av (cf. [6, 7]).

2.6. An optimal adaptive wavelet algorithm. Now, we describe the adaptive
wavelet scheme ADWAV from [18] which we use as a basis for our extension to
unbounded domains. The core scheme is shown in Algorithm 1. We start with an
initial error estimator ν−1 ∼ ‖f‖ℓ2 and a desired tolerance ε > 0. Finally, we need
to choose constants α, γ, θ, ω such that:

• 0 < ω < α < 1 such that α+ω
1−ω < κ(A)−

1
2 ,

• 0 < γ < 1
6κ(A)−1/2 α−ω

1+ω and θ > 0.

Algorithm 1 [u(ε),Λ(ε)] = ADWAV[ν−1, ε]

1: Λ(0) = ∅, k := 0, w(0) := 0
2: while with [Λ(k+1), νk] = GROW[w(k), θνk−1, ε], νk > ε do
3: g(k+1) = PΛ(k+1)(RHS[γνk])
4: w(k+1) = GALSOLVE[Λ(k+1),g(k+1),w(k), (1 + γ)νk, γνk]; k = k + 1
5: end do
6: u(ε) = w(k), Λ(ε) = Λ(k)

Before we detail the subroutines, let us recall the properties of ADWAV.

Theorem 2.3 ([18, Theorem 2.7] & [16, Theorem 5.5.1]). The output w = u(ε) of
the routine ADWAV[ν−1, ε] satisfies ‖Aw−f‖ℓ2 ≤ ε. If we assume that u ∈ ℓwτ (J)
for some s < s∗ (1

τ = s+ 1
2), ν−1 ∼ ‖f‖ℓ2 & ε, and that gη can be computed s.t.

(2.17) ‖f − gη‖ℓ2 ≤ η, #supp gη ≤ Cs η
−1/s, 0 < η ≤ ‖f‖ℓ2 ,

within O(η−1/s) operations for some constant Cs > 0, then #supp w . ε−1/s(|u|
1/s
ℓwτ

)

and the number of arithmetic operations and storage locations is bounded by

O(ε−1/s(|u|
1/s
ℓwτ

+ Cs)). �

The routine GROW (cf. Algorithm 2) computes Λ(k+1) ⊃ Λ(k) such that

(2.18) ‖PΛ(k+1)(AuΛ(k) − f)‖ℓ2 ≥ β‖AuΛ(k) − f‖ℓ2 ,

for some 0 < β < 1 (this is sometimes also called saturation property). Then,
due to Galerkin orthogonality (cf. [6, Lemma 4.1]), one has the error reduction
‖u− uΛ(k+1)‖a ≤ (1 − c1

c2
β2)1/2 ‖u− uΛ(k)‖a with the constants c1, c2 from (2.8).

Algorithm 2 GROW[w, ν̄, ε] → [Λ, ν]

1: Define ζ := 2 ων̄
1−ω .

2: do ζ := ζ/2, r :=RHS[ζ/2]−APPLY[w, ζ/2].
3: until ν := ‖r‖ℓ2 + ζ ≤ ε or ζ ≤ ω‖r‖ℓ2.
4: if ν > ε then determine a minimal set Λ ⊃ supp w s.t. ‖PΛr‖ℓ2 ≥ α‖r‖ℓ2 .
5: else set Λ := ∅.
6: end if

Under the same assumptions as in Theorem 2.3 and if w ∈ ℓwτ (J), the number of
operations and storage locations required by [Λ, ν] = GROW[w, ν̄, ε] is bounded

ADAPTIVE WAVELET METHODS ON UNBOUNDED DOMAINS 7

by some absolute multiple of min{ν̄, ν}−1/s[|w|
1/s
ℓwτ

+ |u|
1/s
ℓwτ

+ ν̄1/s(# supp w + 1)].

Moreover, we have ν ≥ ‖Aw − f‖ℓ2 and, if ν > ε, the saturation property

(2.19)
α− ω

1 + ω
ν ≤ ‖PΛ(Aw − f)‖ℓ2 , #(Λ\supp w) . ν−1/s|u|

1/s
ℓwτ
,

holds with the constants α and ω described above.
The routine RHS[η] produces an approximation gη to f such that ‖f−gη‖ℓ2 ≤ η.

To preserve the linear complexity of ADWAV, the length of gη as well as the

corresponding computational cost are assumed to be of order O(η−1/s). We shall
detail a concrete version of RHS in Section 3.

For a given approximation gΛ of fΛ, GALSOLVE computes w̃Λ with ‖AΛw̃Λ−
fΛ‖ ≤ η starting with an initial guess wΛ satisfying ‖AΛwΛ − fΛ‖ ≤ δ.

Algorithm 3 GALSOLVE[Λ,gΛ,wΛ, δ, η] → [w̃Λ]

1: Determine AJ in the sense of (2.15) with minimal J = J(η) s.t. ‖A−AJ‖ ≤ η
3 .

2: Assemble B := PΛ[12 (AJ + A∗
J)]IΛ with A∗

J being the adjoint of AJ .
3: Compute r0 := gΛ − PΛ(APPLY[wΛ,

η
3]).

4: Find x with ‖Bx−r0‖ℓ2 ≤ η
3 by, e.g., conjugate gradients and set w̃Λ = wΛ+x.

One key ingredient both in GROW and GALSOLVE is the routine APPLY
shown in Algorithm 4 which is an adaptive approximate application of the biinfinite
operator A to a given compactly supported input v with the following properties.
The output w = APPLY[v, η] satisfies ‖Av − w‖ℓ2 ≤ η as well as supp w .

‖v‖
1/s
ℓwτ
η−

1
s (cf. [6, Properties 6.4]). We remark that necessary sorting operations

in GROW and APPLY which are not of linear complexity can be replaced by
approximative sorting procedures introduced in [1, 15].

Algorithm 4 APPLY[v, η] → w

1: Set N := #supp v and k(η) as the smallest integer such that 2k(η) ≥ η−
1
s ‖v‖

1
s

ℓwτ
.

2: Compute v[0],v[i] − v[i−1] for i = 1, . . . , ⌊logN⌋ and set v[i] := v for i > logN .
3: for k = 1 to k(η) do

4: Rk := c2{‖v − v[k]‖ℓ2 + αk2
−ks‖v[0]‖ℓ2 +

∑k−1
ℓ=0 αℓ2

−ℓs‖v[k−ℓ] − v[k−ℓ−1]‖ℓ2}
5: if Rk ≤ η exit
6: end for
7: Compute w := wk := Akv[0] + Ak−1(v[1] − v[0]) + · · · + A0(v[k] − v[k−1]).

Remark 2.4. Note that the actual rate s of the best nonlinear approximation is
often not known in a given situation. However, it is bounded by d− t, see Section
2.4. This means for applying ADWAV, we have to require s∗ > d− t in order to
ensure optimality.

Remark 2.5. The symmetry of A (which is induced by the fact that A is self-
adjoint) is not a necessary condition for ADWAV (cf. [18, p.617]). In fact, if A is
not symmetric, one can apply ADWAV to the normal equations ATAu = AT f .
Here, for simplicity, we only consider the symmetric case and refer to [7, 18] for
more details on the non-symmetric case.

8 SEBASTIAN KESTLER AND KARSTEN URBAN

3. An optimal adaptive wavelet algorithm on unbounded domains

Having reviewed all ingredients of the scheme ADWAV, we can now identify the
modifications that are necessary in order to treat problems on unbounded domains.
In particular, we have to verify that A ∈ Bs∗ for s∗ > d− t and that a realization
of RHS for both basis types Ψt,−∞ and Ψt,j0 (j0 > −∞) is available. Note that
GROW, GALSOLVE and APPLY do not have to be modified. Optimality and
convergence of the scheme on unbounded domains follow directly from Theorem
2.3. For the ease of presentation, we collect all proofs of this section in Appendix
A.

3.1. Compressibility of differential operators on unbounded domains. We
assume that A : Ht(R) → H−t(R) for t ∈ N0 can be written in the form

〈v,A[w]〉 =
∑

α≤t

∫
R
gα(x) ∂αv(x) ∂αw(x) dx, v, w ∈ Ht(R),

with sufficiently smooth coefficients gα ∈ L∞(R) for 0 ≤ α ≤ t and 1/gα > 0
for α ∈ {0, t} (which implies that |〈v,A[v]〉| ∼ ‖v‖2

Ht(R) for all v ∈ Ht(R)). The

wavelet representation of A is then given by A := (aλ,λ′)λ,λ′∈J (cf. (2.7)) with

(3.1) aλ,λ′ :=
∑

α≤t a
(α)
λ,λ′ , a

(α)
λ,λ′ := Dt

λDt
λ′

∫
R
gα(x) ∂αψλ(x) ∂

αψλ′(x) dx.

To show s∗-compressibility of A for s∗ > d − t (cf. Remark 2.4), we use results
from [15, 26] that were proven for bounded domains. To this end, we review the
differences between bounded and unbounded domain settings that we have to take
into account.

First, we note that infinitely many translation indices per level do not cause
problems. Since A is a local operator and ψλ has local support, aλ,λ′ = 0 when
|supp ψλ ∩ supp ψλ′ | = 0. Hence, in analogy to bounded domains, we have for the
number of nonzeros #N(λ, ℓ′) of A for row λ ∈ J and for a column level ℓ′ that

#N(λ, ℓ′) . 2max{0,ℓ′−|λ|}, N(λ, ℓ′) := {λ′ ∈ J : |λ′| = ℓ′, aλ,λ′ 6= 0}.

Secondly, for j0 < 0, we also have to treat negative levels. In particular, we can
split A into four blocks w.r.t to the sign of the levels of index pairs (λ, λ′)

(3.2) A =

(
A+− A++

A−− A−+

)
,

where, e.g., A+− := (aλ,λ′)|λ|≥0,|λ′|<0. We shall see below that required estimates

of the matrix entries a
(α)
λ,λ′ may depend on the block.

To derive such estimates, as it was pointed out in [26], one replaces the scaling

factors Dt
λ by 2−α|λ| and analyzes the compressibility of B(α) := (b

(α)
λ,λ′)λ,λ′∈J by

deriving estimates for the matrix entries

(3.3) b
(α)
λ,λ′ := 2−α|λ| 2−α|λ

′|
∫

R
gα(x) ∂αψλ(x) ∂

αψλ′ (x) dx, ∀λ, λ′ ∈ J ,

for 0 ≤ α ≤ t. Since |Dt
λ| . 2−α|λ| for all λ ∈ J (cf. Remark 2.1), one can then

deduce the compressibility of A from the compressibility of B(α). Here, we will
have to distinguish between constant coefficients, i.e., gα ≡ cα ∈ R (0 ≤ α ≤ t) and
non-constant coefficients.

Before we go further, we need to review some basic assumptions on the wavelets
ψλ where we follow the lines of [26, Section 3].

ADAPTIVE WAVELET METHODS ON UNBOUNDED DOMAINS 9

3.1.1. Wavelet assumptions. As already stated above, a key requirement is the
local support of ψλ, diam(�λ) ∼ 2−|λ|, �λ := supp ψλ. Moreover, we assume that
wavelets are piecewise polynomials of order d, i.e., there exist κ ∈ N disjoint, open
subdomains Ξλ,1, . . . ,Ξλ,κ with diam(Ξλ,i) ∼ 2−|λ| such that

(3.4) supp ψλ = ∪κi=1Ξλ,i and ψλ|Ξλ,i ∈ Pd−1, ∀λ ∈ J ,

Pp denoting the polynomials of degree up to p ∈ N0. Moreover, we suppose that

(3.5) ψλ ∈ Cr(R), r := d− 2.

The singular support of ψλ is then given by singsupp ψλ = ∪κi=1∂ Ξλ,i. Additionally,

we assume vanishing moments of order d̃ ≥ d, i.e., (ψλ, p)L2(R) = 0 for all p ∈ Ped−1.

Since |〈ψλ, f〉| ≤ ‖ψλ‖L1 infp∈P
ed−1

‖f − p‖L∞(�λ) and ‖ψλ‖L1 ≤ 2−
1
2 |λ|‖ψ‖L1, this

property yields by a Whitney type estimate ([5, Theorem 25.2]) for f ∈ W τ,∞(R):

(3.6) |〈ψλ, f〉| ≤ Cψ,f 2−(τ+1
2)|λ|, ∀λ ∈ J , τ ∈ [0, d̃],

where Cψ,f := CW |supp ψ|τ+
1
2 ‖ψ‖L1|f |W τ,∞(R) and CW > 0 is a constant arising

from the Whitney estimate. Finally, we require that (cf. [26, Eqs. (3.2) & (3.3)])

|ψλ|W τ,∞(R) . 2(1
2 +τ)|λ|, ∀λ ∈ J , τ ∈ [0, d− 1],(3.7)

|ψλ|W τ,∞(Ξλ,i) . 2(1
2 +τ)|λ|, ∀λ ∈ J , τ ≥ 0, i ∈ {1, . . . , κ},(3.8)

as well as that ‖ψλ‖L2(R) = 1 for all λ ∈ J . Note that all requirements are met e.g.
by the wavelets constructed in [9] and are by no means a restriction.

3.1.2. Compressibility. In order to exploit the fact that wavelets ψλ are piecewise

polynomials on subdomains Ξλ,i and have vanishing moments of order d̃, we define
for the case �λ,λ′ := supp ψλ ∩ supp ψλ′ 6= ∅,

i(λ, λ′) := 0 when

{
dist(singsupp ψλ,�λ′) > 0, or
dist(singsupp ψλ′ ,�λ) > 0,

and i(λ, λ′) := 1 otherwise (cf. [26, p. 82]).

Constant coefficients. Let now gα ≡ cα ∈ R for all α ≤ t and Ψt ∈ {Ψt,j0 : j0 ≥

−∞}. In this case, the term b
(α)
λ,λ′ in (3.3) simplifies to

b
(α)
λ,λ′ = 2−α|λ| 2−α|λ

′|
∫

R
cα ∂

αψλ(y) ∂
αψλ′(y) dx, λ, λ′ ∈ J .

Due to the fact that gα is constant, we can proceed as in [15, Section 3] using (3.5)
and (3.7). Since Dt

λ . 2−α|λ| for all 0 ≤ α ≤ t and all λ ∈ J , we infer that

|a
(α)
λ,λ′ | . |b

(α)
λ,λ′ | . 2−(d− 1

2−α)||λ|−|λ′|| and in particular, for all λ, λ′ ∈ J ,

|aλ,λ′ | . 2−(d− 1
2−t)δ(λ,λ

′), δ(λ, λ′) :=
∣∣|λ| − |λ′|

∣∣.
Note that this estimate holds for both negative and non-negative levels |λ|, |λ′|.
It depends only on the level difference and is independent of the block in (3.2).
Moreover, due to vanishing moments in conjunction with (3.4) and diam(�λ) .

2−|λ|, aλ,λ′ = 0 whenever i(λ, λ′) = 0 (cf. [15, Proposition 5.3.3]), so that we have

(3.9) #N(λ, ℓ′) = #S(λ, ℓ′) . 1, S(λ, ℓ′) := {λ′ ∈ J : |λ′| = ℓ′, i(λ, λ′) = 1},

uniformly in λ ∈ J and ℓ′ ∈ Z. Finally, as ψλ is assumed to be piecewise polynomial
(cf. (3.4)) and the coefficients gα are constant, any entry aλ,λ′ can be computed
exactly in O(1). Now, one can deduce the following result from [15, Section 5.3]:

10 SEBASTIAN KESTLER AND KARSTEN URBAN

Theorem 3.1. Let Ψt ∈ {Ψt,j0 : j0 ≥ −∞} and define Aj by dropping all entries
in A when δ(λ, λ′) > j and i(λ, λ′) = 1. Then, the number of nonzeros in each row
and column of Aj is of order O(j) and

(3.10) ‖A− Aj‖ . 2−(d−1
2−t)j , ∀j ∈ N.

In particular, A is s∗-compressible and s∗-computable with s∗ = ∞.

Proof. See Section A. �

Non-constant coefficients. Let us now consider the general case where gα is not
necessarily constant. Here, obviously, aλ,λ′ does not automatically vanish when
i(λ, λ′) = 0. But, taking into account that as for bounded domains, we have

(3.11) #U(λ, ℓ′) . 2max{0,ℓ′−|λ|}, U(λ, ℓ′) := {λ′ ∈ J : |λ′| = ℓ′, i(λ, λ′) = 0},

the following result from [26] also holds in an unbounded setting:

Theorem 3.2 ([26, Theorem 4.1]). Let Ψt ∈ {Ψt,j0 : j0 ≥ −∞} and assume that
the entries aλ,λ′ in A satisfy an estimate of the following type for α ≤ t:

(3.12) |a
(α)
λ,λ′ | .

{
2−(3

2+r−α)δ(λ,λ′)‖gα‖W r+1−α,∞(R), i(λ, λ′) = 1,

2−(1
2+ed+α)δ(λ,λ′)‖gα‖W ed+α,∞(R)

, i(λ, λ′) = 0.

Then, the matrix Aj which is obtained by dropping nonzero entries from A when

(3.13) δ(λ, λ′) · z(i(λ,λ′)) > j,

where z(0) := d̃+ t and z(1) := 3
2 + r− t, satisfies ‖A−Aj‖ . 2−j, s∗ := t+ d̃ and

r defined in (3.5). Moreover, the number of non-zeros per row and column in Aj

is of order O(2j/s
∗

) showing that A is s∗-compressible.

Proof. See Section A. �

Let us now comment on the validity of estimates of type (3.12). To this end,
for possibly negative levels j, j′ ∈ Z and λ = (j, k), λ′ = (j′, k′), by applying the
transformation of variables y := 2−ℓx and by introducing the notation λ + ℓ :=
(j + ℓ, k), λ′ + ℓ := (j′ + ℓ, k′), we have that

(3.14) b
(α)
λ,λ′ = 2−α(|λ|+ℓ) 2−α(|λ′|+ℓ)

∫
R
gα(2ℓy) ∂αψλ+ℓ(y) ∂

αψλ′+ℓ(y) dy.

Here, we choose ℓ = max{0,−min{|λ|, |λ′|}} such that, on one hand, only wavelets
on non-negative scales appear under the integral, and, on the other hand, a trans-
formation of variables is only applied if at least one of the levels |λ|, |λ| is negative.
Now, we can apply [26, Lemma 3.1] to (3.14) which yields:

(3.15) |b
(α)
λ,λ′ | .

{
2−(3

2+r−α)δ(λ,λ′) 2(r+1−α)ℓ ‖gα‖W r+1−α,∞(R), i(λ, λ′) = 1,

2−(1
2+ed+α)δ(λ,λ′) 2(ed+α)ℓ ‖gα‖W ed+α,∞(R)

, i(λ, λ′) = 0,

where we used that ‖gα(2ℓ ·)‖Wp,∞(�λ+ℓ,λ′+ℓ)
. 2pℓ ‖gα‖Wp,∞(R) for p ∈ N. In

particular, since |a
(α)
λ,λ′ | . |b

(α)
λ,λ′ | for all λ, λ′ ∈ J , (3.15) yields a uniform estimate

for matrix entries in A++, i.e., for |λ|, |λ′| ≥ 0. However, for the other blocks, we
require an upper bound on ℓ in order to obtain a uniform estimate in the sense of
(3.12). For j0 > −∞ the following result can be deduced from (3.15):

ADAPTIVE WAVELET METHODS ON UNBOUNDED DOMAINS 11

Proposition 3.3. Let Ψ = Ψt,j0 for j0 ∈ Z. If gα ∈ Wα+ed,∞(R) for α ≤ t, then

(3.16) |a
(α)
λ,λ′ | ≤ Cj0

{
2−(3

2+r−α)δ(λ,λ′)‖gα‖W r+1−α,∞(R), i(λ, λ′) = 1,

2−(1
2+ed+α)δ(λ,λ′)‖gα‖W ed+α,∞(R)

, i(λ, λ′) = 0,

for a constant Cj0 ∼ max{1, 2−(t+ed)j0} and r defined in (3.5).

Proof. See Section A. �

Remark 3.4. Proposition 3.3 in conjunction with Theorem 3.2 shows that when

Ψt = Ψt,j0 for j0 ∈ Z, A is s∗-compressible for s∗ = t + d̃. Moreover, we remark
that s∗-computability of A can then be proven as in [26, Theorem 6.2].

Concerning Ψt = Ψt,−∞ where we permit arbitrary coarse scales |λ|, |λ′| < 0 in
(3.15), here, we do not have an upper bound on ℓ. So, we do not obtain a uniform
estimate in the sense of (3.12) which only depends on the level difference δ(λ, λ′)
and the compression results from [26] do not permit to show A ∈ Bs∗ for s∗ > d− t
when j0 = −∞ and gα non-constant for α ≤ t. Unfortunately, the same holds true
for other results in this field, e.g., [29]. As, moreover, the numerical experiments at
the end of this section indicate that the use of a minimal level is advantageous, we
did not further investigate s∗-compressibility in this case.

Remark 3.5. In this section, for the ease of presentation, we only considered self-
adjoint differential operators. Note that in view of Remark 2.5, following the lines
of [26], the results above can be extended to operators of the form 〈v,A[w]〉 =∑
α,β≤t

∫
R
gα,β(x) ∂

αv(x) ∂βw(x) dx for v, w ∈ Ht(R).

3.2. RHS on unbounded domains. The main idea of RHS can be described
as follows. For a given tolerance η, one has to construct an index set ∇η such that

‖f−f |∇η‖ℓ2 ≤ η and #∇η = O(η−1/s̄) where, for the same reasons given in Remark
2.4, s̄ ≥ d − t. On a bounded domain, it suffices to control the maximal level in
such a set ∇η. In our case, nevertheless, we also need to bound the translation
indices and, for Ψt = Ψt,−∞ also the minimal level in ∇η. In order to reach this
goal, we need some assumptions of f , which, however, are not too restrictive.

Assumption 3.6. We assume that f = f1 + f2 can be split into a smooth part

f1 and a singular part f2. For some σ ∈ (0, d̃], we suppose that f1 ∈ W σ,∞(R) ∩
L2(R) ∩ L1(R) and satisfies

(3.17) ‖f1 − f1,R‖L2(R) ≤ Cf1R
−β, ∀R > R0, f1,R := f1|[−R,R],

for constants β > 0, R0 > 0, Cf1 > 0. Moreover, f2 is assumed to be a finite sum
of delta distributions f2 =

∑m
i=1 ci δxi for c1, . . . , cm ∈ R and x1, . . . , xm ∈ R.

Let us assume now that t ∈ N and Assumption 3.6 holds. Then, we can consider
the smooth part f1 := 〈f1,Ψt〉 and the singular part f2 := 〈f2,Ψt〉 separately. Since
f = f1 + f2, it then suffices to set up index sets ∇i,η such that ‖fi − fi|∇i,η‖ℓ2 ≤ η
(i ∈ {1, 2}). We point out that it is also sufficient to construct fi,η ∈ ℓ2(J) such

that ‖fi − fi,η‖ℓ2 ≤ η and #supp fi,η . η−1/s̄ where fi,η is not necessarily the
restriction of fi to some finite index set ∇i,η (i ∈ {1, 2}).

3.2.1. The case j0 = −∞. We start by considering Ψt = Ψt,−∞ where we assume
that Ψt satisfies the requirements from Section 3.1.1 and show how to adapt these
results to the case j0 > −∞ later.

12 SEBASTIAN KESTLER AND KARSTEN URBAN

Singular part. The approximation of the singular part f2 bases upon two observa-
tions. Firstly, by Remark 2.1 in conjunction with ‖ψλ‖L2(R) = 1 for all λ ∈ J , it

holds for i = 1, . . . ,m with dt := max{1, |ψ|−1
Ht} (t ∈ N)

(3.18)

|Dt
λψλ(xi)| ≤ ‖Dt

λψλ‖L∞
≤

2|λ|/2‖ψ‖L∞√
1 + 22t|λ||ψ|2Ht

≤ dt

{
2(1

2−t)|λ| ‖ψ‖L∞
, |λ| ≥ 0,

2|λ|/2 ‖ψ‖L∞
, |λ| < 0.

Secondly, since diam(supp ψλ) = 2−|λ|diam(supp ψ), the number of ψλ with |λ| = j
whose supports contain a given y ∈ R can be bounded independent of j and y, i.e.,

(3.19) #{λ ∈ J : |λ| = j, y ∈ supp ψλ} ≤M ∈ N, ∀j ∈ Z, ∀y ∈ R.

Now, for a tolerance η > 0, we define maximum levels J
(i,+)
2 (η) and minimum levels

−J
(i,−)
2 (η) associated to ciδxi (i ∈ {1, . . . ,m}) by

J
(i,+)
2 (η) := (| log2(2m

2c2i d
2
t‖ψ‖

2
L∞

M(1 − 2(1−2t))−1)| + 2| log2 η|)/(2t− 1),(3.20)

J
(i,−)
2 (η) := | log2(4m

2c2i d
2
t ‖ψ‖

2
L∞

M)| + 2| log2 η|,(3.21)

as upper and lower level bounds on λ ∈ J with xi ∈ supp ψλ.

Lemma 3.7. Let η > 0. For i = 1, . . . ,m, we set f i2 := (Dt
λ ciψλ(xi))λ∈J as well

as f2,η := f1
2 |∇1

2,η
+ · · · + fm2 |∇m2,η , ∇2,η := ∪mi=1∇

i
2,η and

(3.22) ∇i
2,η := {λ ∈ J : xi ∈ supp ψλ,−J

(i,−)
2 (η) ≤ |λ| ≤ J

(i,+)
2 (η)}.

Then, we have ‖f2 − f2,η‖ℓ2 ≤ η and #supp f2,η = #∇2,η . 1 + | log2 η|.

Proof. See Section A. �

To compute ∇2,η, we only have to take into account wavelets whose supports
contain at least one of the points x1,. . ., xm. Thus, no further bound on the
translation indices is required.

Smooth part. We now consider the smooth part f1 of f . In order to compute an
approximation f1,η to f1, we need to define some quantities:

(3.23) D1 := (Cf1c
−1
Ψt
C2

Ψt)
1/β , D2 := 4C2

ψ,f1 d
2
t (1 − 2−2(σ+t))−1,

with the involved quantities as defined in (2.4), (3.6), (3.17) and Assumption 3.6.
Next, we set for M defined in (3.19)

Rη := D1η
−1/β , D3 := 2 (2M + 1)‖f1‖

2
L1(R)‖ψ‖

2
L∞(R),(3.24)

J+
1 (η) := max{[(2 + 1

β)| log2 η| + log2(D1D2)]/(2(σ + t)), log2(MR−1
η), 0},(3.25)

J−
1 (η) := max{2| log2 η| + | log2D3|, 1 + | log2(2D1)| + |β−1 log2 η|}.(3.26)

These quantities permit us to set up an approximation to f1 by, firstly, consider-
ing only indices λ ∈ J with |supp ψλ ∩ [−Rη, Rη]| > 0 and, secondly, using J+

1 (η)
and J−

1 (η) as upper and lower levels bounds for these indices:

Lemma 3.8. Let η > 0 and let Assumption 3.6 hold. Then, by setting

∇+
1,η := {λ ∈ J : 0 ≤ |λ| ≤ J+

1 (η), |�λ ∩ Iη| > 0},(3.27)

∇−
1,η := {λ ∈ J : −J−

1 (η) ≤ |λ| < 0, |�λ ∩ Iη| > 0},(3.28)

ADAPTIVE WAVELET METHODS ON UNBOUNDED DOMAINS 13

where Iη := [−Rη, Rη], the vector f1,η := f+
1,η + f−1,η with

(3.29) f+
1,η := f1|∇+

1,η
, f−1,η := f1,Rη |∇−

1,η
, f1,R := 〈Ψt, f1,R〉,

satisfies ‖f1 − f1,η‖ℓ2 ≤ η. With s̃ := β(t+σ)

σ+β+t+ 1
2

and s̄ := min{β, s̃}, it holds that

#∇+
1,η . η−1/es, #∇−

1,η . η−1/β and #∇1,η . η−1/s̄ for ∇1,η := ∇+
1,η ∪∇−

1,η.

Proof. See Section A. �

We emphasize that the truncation of f1 to f1,Rη in (3.29) is due to the fact that

for |λ| → −∞, diam(supp ψλ) ∼ 2−|λ| → +∞. The diameter of Iη is independent of

|λ|, diam(Iη) ∼ η−1/β . So, this approach is of advantage when numerical quadrature
is required to approximate entries in f1,η. We comment this in Section 3.2.4.

Now, we can collect the results from Lemmata 3.7 and 3.8 to obtain:

Theorem 3.9. Let η > 0 and let Assumption 3.6 hold. Then, gη := f1,η/2 + f2,η/2
with f1,η/2, f2,η/2 from Lemmata 3.7, 3.8 satisfies for s̄ defined in Lemma 3.8

(3.30) ‖f − gη‖ℓ2 ≤ η, #supp gη . η−1/s̄. �

For optimality of ADWAV, as stated above, we require that s̄ ≥ d − t. In
particular, (3.30) shows that the parameters β and σ have to be sufficiently large.

Assuming exemplarily that f1 decays exponentially and σ = d̃, we infer from The-

orem 3.9 that for any s̄ < t + d̃, there exist constants β > 0, Cf1 , R0 such that

f1 satisfies (3.17) and f satisfies (3.30). The limit case s̄ = t + d̃ (which can be
attained on bounded domains, see [18]) is excluded which is due to the additional
bound on the translation indices which depends on η.

3.2.2. The case j0 > −∞. Let now Ψt = Ψt,j0 for j0 < 0 (the case j0 ≥ 0 is treated
analogously). As j0 − 1 is a natural lower bound for levels, we only have to replace

J
(i,−)
2 (η) (i ∈ {1, . . . ,m}) in (3.21) and J−

1 (η) in (3.26) by j0 − 1 where we recall
that ψj0−1,k := ϕj0,k (k ∈ Z). Going through the corresponding proofs, this can
be seen by taking into account that the basic estimates (A.8) (for Lemma 3.8) and
(3.18) (for Lemma 3.7) also hold in an analogous form for scaling functions.

3.2.3. Realization. Let us now discuss a possible numerical realization of RHS.
Based on Theorem 3.9, we use approximations gηk to f with

(3.31) ‖f − gηk‖ℓ2 ≤ ηk, #supp gηk . η
−1/s̄
k , ηk := 2−k, k ∈ N,

which can be computed within O(η
−1/s̄
k) operations (see also Section 3.2.4). These

discrete tolerances ηk are used since in praxis, it is in general not possible to set up
gη for any η even though the minimal tolerance for which RHS is called in GROW,
can be bounded by η > εmin

{
1
2ω(1 + ω)−1, γ

}
(see [18, Proof of Theorem 2.4]).

The idea of RHS in Algortihm 5 is as follows. Let η̄ be a current target tolerance
and gη̄ be a corresponding approximation satisfying ‖f − gη̄‖ℓ2 ≤ η̄. If RHS is
called with a tolerance η < η̄, we compute the largest ηk ≤ η and gη̄ := gηk such

that ‖f −gη̄‖ℓ2 ≤ ηk ≤ η within O(η−1/s̄) operations. If RHS is called with η ≥ η̄,
then we compute gη as a threshold of gη̄ satisfying ‖gη̄−gη‖ℓ2 ≤ η− η̄ which yields
‖f − gη‖ℓ2 ≤ ‖f −gη̄‖ℓ2 + ‖gη̄ −gη‖ℓ2 ≤ η. Even though thresholding here requires

O(η̄−1/s) instead of O(η−1/s) operations which is, theoretically, not optimal, we
observed that this strategy is faster than recomputing gηk and requires less storage
than storing all gηk for ηk ≥ η̄.

14 SEBASTIAN KESTLER AND KARSTEN URBAN

Algorithm 5 RHS[η] → gη

% Before the first call, fix some η̄ > η0 and gη̄ := 0.

1: if η̄ > η then determine k ∈ N minimal s.t. ηk ≤ η̄.
2: Compute gη̄ := gηk , set η̄ = ηk and return gη̄.
3: else Compute gη s.t. supp gη ⊆ supp gη̄ and ‖gη̄ − gη‖ℓ2 ≤ η − η̄.
4: end if

3.2.4. Computability. So far, we have neglected the issue of computing entries in
gη. As the computation of the singular part is trivial, we focus on the smooth
part of f by setting f2 ≡ 0 and consider a composite quadrature rule of order p
for an interval Ω = ∪Ni=1Ωi with N equally spaced subintervals Ωi, i.e.,

∫
Ω
g dx ≈

QΩ
N(g) :=

∑N
i=1

∑
j ω

Ωi
j g(xΩi

j) for finite sequences of weights (ωΩi
j) and abscissae

(xΩi
j) on Ωi. Using the fact that ψλ is piecewise polynomial, we define for κ and

Ξλ,i, i = 1, . . . , κ from (3.4) approximations to the entries gη,λ in gη = (gη,λ)λ∈∇1,η ,

g̃η,λ := Dt
λ

∑κ
i=1Q

Ξi
N (ψλ f1) ≈ gη,λ =

∫
supp ψλ

Dt
λψλf1 dx, λ ∈ ∇+

1,η,

g̃η,λ := Dt
λ

∑κ
i=1Q

Ξi∩Iη
N (ψλ f1) ≈ gη,λ =

∫
Iη

Dt
λψλf1 dx, λ ∈ ∇−

1,η.

Assuming that f1 ∈W p,∞(R) for p ∈ N, the following error estimate

(3.32) |gη,λ − g̃η,λ| .

{
N−p 2−(1

2+p−d∗)|λ|, |λ| ≥ 0,
(2Rη)

1+pN−p, |λ| < 0,
d∗ := d− 1 − t,

can be derived from [19, Propositions 2.5 & 4.3]. By choosing N as well as p in
dependence of |λ|, these estimates permit to set up a computable approximation
g̃η := (g̃η,λ)λ∈∇1,η of gη in the sense of (2.17) using techniques from [15, 19].

For convenience, we detail this exemplarily for j0 = −∞ in the following result:

Proposition 3.10. Assume that gη from Theorem 3.9 satisfies (3.30) with s̄ ≥ d−t
and β from Assumption 3.6 satisfies β > 2s̄. Moreover, let f1 ∈ W p,∞(R) for a

sufficiently large p > d̃. Then, g̃η can be computed within O(η−1/s̄) operations such
that ‖gη − g̃η‖ℓ2 . η.

Proof. See Section A. �

3.3. Numerical examples. We give some examples in 1D, namely instances of
the following reaction-diffusion problem in weak formulation: Find u ∈ H1(R) with

(3.33) (∂v, ∂u)L2(R) + (v, u)L2(R) = 〈v, f〉, ∀v ∈ H1(R),

for f ∈ H−1(R). We use biorthogonal B-splines wavelet bases described in [9]. All
examples (also those presented in Sections 4 and 5 below) are realized in C++ using
the software libraries FLENS and LAWA, [22, 31]. We consider three different
choices for the right-hand side f which permit a continuous reference solution with
unbounded support in closed form (see Figure 3.1):

(P1) Smooth solution, exponential decay.
(P2) One peak, large significant domain, exponential decay.
(P3) Two peaks, decay: polynomial (x→ −∞), exponential (x→ ∞).

ADAPTIVE WAVELET METHODS ON UNBOUNDED DOMAINS 15

3.3.1. Parameters. For the realization of ADWAV, good estimates of the con-
stants c1 and c2 in the norm equivalence (2.8) are necessary for different polynomial

orders d, vanishing moments d̃ and different minimal levels. The values we used
can be found in Table 3.1. In order to ensure a good performance of ADWAV, we

used ω = 0.01 and chose the parameter α < (1−ω)κ(A)−
1
2 −ω as large as possible.

Moreover, we used γ = 1
12κ(A)−

1
2
α−ω
1+ω and θ = 2

7 . Note that these parameters

satisfy the optimality and convergence condition stated in [18].

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

-10 -5 0 5 10

x

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

-80 -60 -40 -20 0 20 40 60 80

x

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-40 -20 0 20 40 60

x

Figure 3.1. Solutions ui for (P1)–(P3) from left to right.

j0 0 −1 −2 −4 −6 −20 −∞

d = 2, d̃ = 2
c1 0.37 0.56 0.56 0.44 0.34 0.21 0.19
c2 2.10 2.10 2.10 2.10 2.10 2.10 2.10

d = 3, d̃ = 3
c1 0.43 0.39 0.29 0.15 0.11 0.04 0.03
c2 1.94 2.03 2.24 2.55 2.61 2.65 2.70

d = 3, d̃ = 5
c1 0.45 0.41 0.32 0.18 0.16 0.15 0.15
c2 1.96 2.10 2.38 2.80 2.85 2.85 2.85

Table 3.1. Estimated bounds for c1, c2 from (2.8) for ADWAV.

Remark 3.11. Concerning the values in Table 3.1, to our knowledge, there is no
method to compute these values analytically. Nevertheless, bounds for c1, c2 can
be computed numerically. We describe the case j0 = −∞ since j0 > −∞ can
be treated analogously. It suffices to consider the finite collections ΨR,J−,J+ :=
{Dt

λψλ : supp ψλ ∩ [−R,R] 6= ∅, −J− ≤ |λ| ≤ J+} for R > 0, J−, J+ ≥ 0 and to
compute c1, c2 in terms of eigenvalues of the finite matrices AR,J−,J+ obtained by
replacing Ψt by ΨR,J−,J+ in (2.7). For R → ∞, J+, J− → +∞, one can observe
that the computed eigenvalues converge.

3.3.2. Choice of a minimal level. The bounds for c1 and c2 given in Table 3.1
already indicate that the choice of a minimal level j0 is not trivial as we might
have two conflicting goals: On one hand, we want to be free in the choice of a
minimal level j0 to represent both small and large supports of the numerical solution
with only few degrees of freedom. On the other hand, the condition number κ(A)
depends strongly on j0 where small κ(A) is favorable. We choose j0 = |λ| where

f̂λ is an estimate of the largest coefficient in modulus of f that can be derived
analytically using (3.6) and (3.18). We will further discuss this issue below.

16 SEBASTIAN KESTLER AND KARSTEN URBAN

3.3.3. Convergence rates. The results of our experiments concerning the conver-
gence are shown in Figure 3.2 both for j0 = ∞ and j0 > −∞ as well as wavelet

bases with d = 2, d̃ = 2 and d = 3, d̃ = 5. The latter choice is due to the much
better condition number κ(A) if j0 = −∞ (cf. Table 3.1). We measure the error
in H1(R) and do not show the error estimator νk since they basically coincide with
the true error. Recall that the best nonlinear approximation s for which u ∈ As

is bounded by d − 1 (cf. Section 2.4). Observe that this rate is asymptotically
attained. For d = 3, we even observe superconvergence for moderate values of N .

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000

N

s=1

s=2

d=2,d
~

=2
d=3,d

~
=5

(a) (P1) with j0 = −∞.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000

N

s=1

s=2

d=2,d
~

=2
d=3,d

~
=5

(b) (P2) with j0 = −∞.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 1 10 100 1000

N

s=1

s=2

d=2,d
~

=2
d=3,d

~
=5

(c) (P3) with j0 = −∞.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 1 10 100 1000

N

s=1

s=2

d=2,d
~

=2
d=3,d

~
=5

(d) (P1) with j0 = −2.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 1 10 100 1000

N

s=1

s=2

d=2,d
~

=2
d=3,d

~
=5

(e) (P2) with j0 = −4.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 1 10 100 1000

N

s=1

s=2

d=2,d
~

=2
d=3,d

~
=5

(f) (P3) with j0 = −3.

Figure 3.2. H1(R)-error vs. the degrees of freedom N .

3.3.4. Discussion of the numerical results. Despite the same asymptotic conver-
gence rates for j0 = −∞ and j0 > −∞, there are some important quantitative
differences between the two approaches that we illustrate in Figure 3.3. As an ex-
ample, we consider (P3). We observe that the use of scaling functions on a minimal
level j0 significantly reduces the number of degrees of freedom for a given target
accuracy. This is due to the fact that few scaling functions suffice to approximate
the polynomial part of the solution, whereas, in the case j0 = −∞, we also need
wavelets on very low levels which results in a higher number of degrees of freedom.
Moreover, although we have a very simple structure in the basis for j0 = −∞ (we
do not have to distinguish between wavelet and scaling functions), this advantage
does not pay off as we can see from the computation times in Figure 3.3 b).

Next, we compare the influence of j0 and the number of vanishing moments for
(P2) in Figure 3.4. We observe in Figure 3.4 a) that the slope does not depend on

d̃ and that the minimal level j0 = 0 results in worse results compared to j0 = −4.
However, if we take the required computation time into account (cf. Figure 3.4
b)), we observe that, due to a better condition number, the scheme converges
asymptotically faster for j0 = 0. Moreover, due to the fact that wavelets with

d̃ = 3 have shorter support and fewer singular points than the one with d̃ = 5, the

computation times are faster for d̃ = 3.
Our numerical results indicate that the use of j0 > −∞ is favorable. We em-

phasize that a better performance of ADWAV can be attained by increasing the

ADAPTIVE WAVELET METHODS ON UNBOUNDED DOMAINS 17

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 1 10 100 1000

N

s=1

s=2

j0 = -3 (d=2,d
~

=2)
j0 = -∞ (d=2,d

~
=2)

j0 = -3 (d=3,d
~

=5)
j0 = -∞ (d=3,d

~
=5)

(a) N vs. error reduction for (P3).

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 1 10 100

CPU time (sec.)

s=1

s=2

j0 = -3 (d=2,d
~

=2)
j0 = -∞ (d=2,d

~
=2)

j0 = -3 (d=3,d
~

=5)
j0 = -∞ (d=3,d

~
=5)

(b) Time vs. error reduction for (P3).

Figure 3.3. H1(R)-error for j0 = ∞ and j0 > −∞.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000

N

s=2

j0 = -4 (d=3,d
~

=5)
j0 = -4 (d=3,d

~
=3)

j0 = 0 (d=3,d
~

=3)

(a) N vs. error reduction.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100

CPU time (sec.)

s=2

j0 = -4 (d=3,d
~

=5)
j0 = -4 (d=3,d

~
=3)

j0 = 0 (d=3,d
~

=3)

(b) Time vs. error reduction.

Figure 3.4. Influence of the minimal level j0 and comparison

between d = 3, d̃ = 3 and d = 3, d̃ = 5 for (P2).

value of α (cf. also [15, Section 5.6]). Doing so, however, we loose the guaranteed
convergence. As moreover, the APPLY-routine is quantitatively demanding and
the set up of RHS may be difficult, we present a heuristic algorithm in the next
section which does not require these two routines.

4. A simplified adaptive wavelet algorithm

The simplified adaptive wavelet algorithm we present in this paragraph is a
modification of the algorithm proposed in [2, 32]. To our knowledge, there is no
proof of convergence or optimality. Nevertheless, numerical experiments have shown
that this algorithm performs very well in practice. The simplified algorithm passes
on the usage of the routines RHS as well as APPLY and provides an alternative
routine LINSOLVE to GALSOLVE. Instead of GROW, a heuristic approach
is used to determine Λ(k+1) from Λ(k) explicitly. Moreover, we do not need to
consider the normal equations ATAu = AT f if A is not self-adjoint (cf. Remark
2.5). Motivated by the numerical results from Section 3, we consider from now on
exclusively the case Ψt := Ψt,j0 (cf. (2.6)) for j0 ∈ Z.

4.1. Algorithm. We start by describing the main components of the algorithm.

4.1.1. Numerical solution of the Galerkin system. As for ADWAV, we have to
solve the Galerkin system (2.9) for an index set Λ ⊂ Jj0 in each iteration. But, as

18 SEBASTIAN KESTLER AND KARSTEN URBAN

in the case of GALSOLVE, it is sufficient to solve a perturbed linear system

(4.1) ÃΛũΛ = f̃Λ, ‖fΛ − f̃Λ‖ℓ2 ≤ ηf‖fΛ‖ℓ2 , ‖AΛ − ÃΛ‖ ≤ η̃A‖A‖ =: ηA,

with 0 < ηf , η̃A < 1 given tolerances. Here, perturbations may arise from ma-
trix compression or from the approximation of the right-hand side by numerical
quadrature (cf. Section 3.2.4 or, alternatively, [2, Section 3.4]).

Within ADWAV, we used absolute tolerances in order to obtain an residual
estimator νk within some relative tolerance (see lines 2 and 3 in GROW). For the
heuristic scheme, in analogy to [2], we shall work (mostly) with relative errors w.r.t.
‖fΛ‖ℓ2 and explain why we use in some places also absolute tolerances.

Proposition 4.1. Let Λ ⊂ Jj0 be finite, ‖AΛ−ÃΛ‖ ≤ ηA, ηA ≤ 1
2 c1 and ‖fΛ‖ℓ2 &

1, ‖fΛ − f̃Λ‖ℓ2 ≤ ηf‖fΛ‖ℓ2 for ηf < 1. Then, ÃΛ, Ã−1
Λ are uniformly bounded and

(4.2) ‖uΛ − ũΛ‖ℓ2 . ηA‖fΛ‖ℓ2 + ηf‖fΛ‖ℓ2 ,

where uΛ is the solution of (2.9) and ũΛ is the solution of (4.1).

Proof. From the assumptions, we infer from (2.8) that |〈wΛ, ÃΛvΛ〉ℓ2 | ≤ (1
2c1 +

c2)‖wΛ‖ℓ2‖vΛ‖ℓ2 for all wΛ,vΛ with c1, c2 from (2.8). Moreover, we have

(4.3) 1
2c1‖vΛ‖2

ℓ2
≤ (c1 − ηA)‖vΛ‖2

ℓ2
≤ |〈vΛ, ÃΛvΛ〉ℓ2 |.

with c1 from (2.8). Now, by (2.8), the following estimate is straightforward:

‖uΛ − ũΛ‖
2
ℓ2 ≤ 2c−1

1 |〈uΛ − ũΛ,AΛuΛ − ÃΛũΛ + ÃΛũΛ − AΛũΛ〉ℓ2 |

≤ 2c−1
1

(
‖(AΛ − ÃΛ)ũΛ‖ℓ2‖uΛ − ũΛ‖ℓ2 + |〈uΛ − ũΛ, fΛ − f̃Λ〉ℓ2 |

)
,

which yields ‖uΛ − ũΛ‖ℓ2 ≤ 2c−1
1 (ηA‖ũΛ‖ℓ2 + ηf‖fΛ‖ℓ2) Then, we have

(4.4) ‖ũΛ‖ℓ2 ≤ 2c−1
1 ‖f̃Λ‖ℓ2 ≤ 2c−1

1 (1 + ηf)‖fΛ‖ℓ2 ≤ 4c−1
1 ‖fΛ‖ℓ2 ,

where we used (4.3) and ηf < 1. This yields the claim. �

Remark 4.2. We remark that ellipticity is not a necessary condition for estimate
(4.2). The proof of Proposition 4.1 remains essentially the same if we only require
that the norms of A, A−1 and their perturbations are uniformly bounded.

From Proposition 4.1, we infer that there is no gain if one of the tolerances ηf
or ηA is much smaller than the other. So, for a given tolerance tol iter, we set

ηf := tol iter and ηA := min{ 1
2c1, tol iter},

so that (4.2) can be replaced by ‖uΛ − ũΛ‖ℓ2 . tol iter ‖fΛ‖ℓ2 when ‖fΛ‖ℓ2 & 1. In
particular, we have in mind to use a compressed matrix AJ,Λ = PΛAJIΛ whenever
A ∈ Bs∗ for some s∗ > 0 using the compression results from Section 3. Then, we
can use the routine LINSOLVE (Algorithm 6) to solve (2.9) approximately.

Algorithm 6 LINSOLVE[Λ,wΛ, tol iter] → ũΛ

1: Estimate J = J(tol iter) ∈ N such that ‖AΛ − AJ,Λ‖ℓ2 ≤ min{ 1
2c1, tol iter}.

2: Compute f̃Λ such that ‖fΛ − f̃Λ‖ℓ2 ≤ tol iter‖fΛ‖ℓ2 .
3: Use a linear system solver like CG or GMRES with initial guess wΛ to compute

ũΛ such that ‖AJ,ΛũΛ − f̃Λ‖ℓ2 ≤ tol iter‖AJ,ΛwΛ − f̃Λ‖ℓ2 .

ADAPTIVE WAVELET METHODS ON UNBOUNDED DOMAINS 19

4.1.2. Residual computation. In GROW, we computed the residual estimator ν
(cf. line 4 of Algorithm 2) by using APPLY and RHS. Instead, we now follow a

heuristic strategy by constructing a so called security zone Λ̂ ⊃ Λ using Algorithm
7 (cf. [32, p.235]). For a constant c > 0, let �λ = supp ψλ =: [aλ, bλ] and

(4.5) C(λ, c) := {µ ∈ Jj0 : |�µ ∩ c · �λ| > 0, |λ| ≤ |µ| ≤ |λ| + 1},

where c · �λ := [c aλ + (1 − c)zλ, c bλ + (1 − c)zλ], zλ := 1
2 (aλ + bλ). Observe

that not only wavelets on higher levels are inserted into the security zone, but also
further scaling function indices for |λ| = j0 − 1. Moreover, no indices λ with levels
|λ| < j0 − 1 are inserted. Since both scaling functions and wavelets on level j0 − 1
are linear combinations of scaling functions on level j0, this would result in an
over-determined system. Due to the locality of ψλ, #C(λ, c) . 1. Therefore, the
cardinality of the output of C[Λ, c] as well as its complexity are both of order O(Λ).

Algorithm 7 C[Λ, c] → Λ̂

1: Λ̂ := ∅.
2: for λ ∈ Λ do Λ̂ := Λ̂ ∪ C(λ, c).
3: end for

To estimate the residual AuΛ − f , we can now consider the expressions

(4.6) rbΛ := PbΛ(AΛuΛ − f), r̃bΛ := PbΛ(AJ,ΛũΛ − f̃),

where Λ̂ is the output of C[Λ, c]. Here, using the compressed matrix AJ,Λ and an
approximate solution ũΛ from (4.1), r̃bΛ becomes an approximation to rbΛ.

Proposition 4.3. Let Λ, Λ̂ be finite subsets of Jj0 with Λ̂ ⊃ Λ, ‖fΛ‖ℓ2 & 1 and

suppose that the assumptions from Proposition 4.1 hold for both Λ, Λ̂. Then, by

setting ÃbΛ := AJ,bΛ for sufficiently large J , we have ‖r̃bΛ − rbΛ‖ℓ2 . tol iter ‖fbΛ‖ℓ2 .

Proof. We shall need the following notation: For a vector vΛ with support Λ, we

denote by vbΛ its extension by zeros to Λ̂. Thus, we have ‖vbΛ‖ℓ2 = ‖vΛ‖ℓ2 and,
moreover, AbΛvbΛ = PbΛAvΛ. This yields the following estimate:

‖(AbΛubΛ − fbΛ) − (AJ,bΛũbΛ − f̃bΛ)‖ℓ2 ≤ ‖uΛ‖ℓ2‖AbΛ − AJ,bΛ‖

+ ‖AJ,bΛ‖‖ũΛ − uΛ‖ℓ2 + ‖fbΛ − f̃bΛ‖ℓ2 .

From Proposition 4.1 we get that ‖ũΛ − uΛ‖ℓ2 . tol iter ‖fΛ‖ℓ2 . Moreover, as in
(4.4), we see that ‖uΛ‖ℓ2‖AbΛ − AJ,bΛ‖ . tol iter ‖fΛ‖ℓ2 which yields the claim. �

In view of (2.18), RESIDUAL is a heuristic approach as there is no proof of the
existence of 0 < β < 1 independent of Λ such that ‖PbΛ(AuΛ−f)‖ℓ2 ≥ β‖AuΛ−f‖ℓ2 .
A fixed error reduction as for ADWAV can therefore not be guaranteed.

Algorithm 8 RESIDUAL[Λ̂, ũΛ, tol iter] → r̃bΛ

1: Estimate J = J(tol iter) ∈ N such that ‖AbΛ − AJ,bΛ‖ℓ2 ≤ min{ 1
2c1, tol iter}.

2: Compute f̃bΛ s.t. ‖fbΛ − f̃bΛ‖ℓ2 ≤ tol iter‖fbΛ‖ℓ2 and return r̃bΛ according to (4.6).

20 SEBASTIAN KESTLER AND KARSTEN URBAN

Remark 4.4. The complexity of the routines LINSOLVE and RESIDUAL is in
general dominated by the computation of matrix vector products of type AJ,ΛvΛ

where J = J(tol iter) depends on tol iter. For simplicity, we consider the case where
A is a constant coefficient differential operator and A ∈ Bs∗ with s∗ = ∞. Thus,
we can apply the compression scheme from Theorem 3.1 and infer that the matrix
vector product can be computed within O(J(tol iter) · #Λ) operations. To provide
linear complexity for any tolerance tol iter > 0 and any finite index set Λ, one has to
prove the existence of a constant C > 0 independent of Λ such that J(tol iter) ≤ C
for all tol iter > 0. But, as opposed to GALSOLVE, J cannot be chosen inde-
pendent of the current target tolerance tol iter (even when s∗ = ∞). Note that
decreasing tol iter successively is necessary for the convergence of S-ADWAV as
we shall explain in Section 4.1.4 below. So, the compression level J is a decreasing
function of tol iter, i.e., J(tol iter) → ∞ when tol iter → 0 (cf., e.g., line 1 in Al-
gorithm 6). For these reasons, a scheme using LINSOLVE/RESIDUAL can in
general not expected to be asymptotically of linear complexity.

4.1.3. Coefficient thresholding. Obviously, if we call iteratively Λ(k+1) = C(Λ(k), c)
starting with some initial set Λ(0), the sizes of the index sets (Λ(k))k∈N may grow
exponentially fast. For this reason, we have to keep the index sets for which we
call C small. This is realized by the routine THRESH (cf. Algorithm 9) which
thresholds the wavelet coefficients in ũΛ(k) and in the estimated residual r̃Λ(k) .
More precisely, given δ > 0 and a finitely supported vector v, THRESH returns
a vector v̄ such that ‖v − v̄‖ℓ2 ≤ δ. Here, also approximate sorting procedures
from [1, 15] can be used, so that THRESH can be realized in linear complexity.
Note that at least one scaling function index remains in the thresholded output of
THRESH[v, δ] (which is therefore never empty). This is important since if Λ does
not contain scaling function indices, also C[Λ, c] does not contain any.

Algorithm 9 THRESH[v, δ] → v̄

1: Sort v = (vλ)λ∈supp v by decreasing order to obtain v∗ = (v∗
(i,λi)

)i=1,...,N

where N := #supp v and (i, λi) for i = 1, . . . , N indicate the ordering in v∗

and the corresponding index in supp v. Within this sorting, find the index λ∗S
corresponding to the largest scaling function coefficient in modulus in v.

2: Compute ‖v‖ℓ2 and set v := (vλi)i=1,...,K ∪ {vλ∗

S
} where K is the smallest

integer such that
∑K
i=1 |v

∗
(i,λi)

|2 ≥ ‖v‖2
ℓ2
− δ2.

Now, we investigate the effect of THRESH. Under the assumptions of Proposi-
tion 4.1, let uΛ be the solution of (2.9) and ũΛ := LINSOLVE[Λ,wΛ, tol iter].
Then, as ‖uΛ − ũΛ‖ℓ2 . tol iter‖fΛ‖ℓ2 , it holds for ū =THRESH[ũΛ, tol iter]
that ‖uΛ − ū‖ℓ2 . tol iter(1 + ‖fΛ‖ℓ2), where supp ū ⊆ Λ. Hence, we get an
approximation of order tol iter to uΛ with, in general, a smaller support. This
observation can also be made for the residual computation. Let rbΛ be the resid-

ual defined in (4.6) and r̃bΛ =RESIDUAL[Λ̂, ũΛ, tol iter]. Then, by Proposition
4.3, ‖rbΛ − r̃bΛ‖ℓ2 . tol iter‖fbΛ‖ℓ2 . Thus, for r̄ =THRESH[r̃bΛ, tol iter], it holds
‖rbΛ − r̄‖ℓ2 . tol iter(1 + ‖fbΛ‖ℓ2) and, as above, supp r̄ ⊆ supp r̃bΛ.

4.1.4. The simplified algorithm S-ADWAV. With all necessary routines at hand,
we can describe the complete algorithm. In each iteration of S-ADWAV (cf.

ADAPTIVE WAVELET METHODS ON UNBOUNDED DOMAINS 21

Algorithm 10), we compute an approximate solution ũ(k) to AΛcand.
k

uΛcand.
k

= fΛcand.
k

where Λcand.
k is referred to as the set of candidate indices, i.e., indices that can be

activated in the current iteration. The target precision for solving this Galerkin
system is tol iter. Next, we threshold the vector ũ(k) to obtain the active wavelet
coefficients u(k) that satisfy ‖u(k) − ũ(k)‖ℓ2 ≤ tol iter. We refer to Λ(k) := supp u(k)

as the set of active indices. Around Λ(k), the security zone Λ̂k is constructed using
the routine C and the residual r(k) is computed by RESIDUAL. If ‖r(k)‖ℓ2 ≤

ε‖f̃bΛk
‖ℓ2 , we accept u(k) as solution. Otherwise, a new candidate set of activable

indices Λcand.
k+1 is constructed by thresholding rbΛ.

As we always use the same tolerance tol iter for thresholding and the numerical
solution of the Galerkin system, the approximation errors we generate are all of
order tol iter (see Propositions 4.1 and 4.3 as well as Paragraph 4.1.3). But if we
fix this tolerance, it may happen that the algorithm stagnates before the target
accuracy ε is reached. Namely, by thresholding the approximate Galerkin solution
ũ(k), it may occur that no higher levels or translation indices on the coarsest level are
added in the course of the algorithm and we end up with Λ(k) = Λ(k+1). Therefore,
in addition to the algorithm described in [2, 32], we decrease the threshold tolerance
tol iter by the factor 1

2 if the difference of the residuals of two iterations is too close

to zero (see line 11). In particular, when r(k−1) = r(k), the threshold tolerance
is decreased and we obtain in the next iteration ũ(k) = ũ(k+1) but supp u(k+1) ⊇
supp u(k). Thus, also finer information on high levels or further translations on the
coarsest level remain in the set of active indices. Moreover, to prevent cycles of
type Λk = Λk+m for some m ≥ 2, we add an inner loop with a maximal number
M of iterations which also ensures that the tolerance tol iter decreases. As it was
pointed out in [2, p.2118], tol iter should, in order to attain an approximation of
order O(ε‖f‖ℓ2), be much smaller than ε which is incorporated in line 7.

The adaptive truncation of a computational domain, i.e., supp (u(m,k))TΨt,j0 ,

is done implicitly. Every time C[Λ(k,m), c] is called, additional scaling function

indices on the coarsest level are added to the security zone Λ̂(k,m). If these indices
are significant, their corresponding value in r(k,m) is relatively large and they will be
added to the new candidate set Λcand.

k+1,m after the call of THRESH[r(k,m), tol iter].
So, in each iteration, the computational domain can be extended, but also truncated
as we have another call of THRESH after solving the Galerkin system.

4.1.5. Choice of a minimal level and an initial index set. As for ADWAV, the
choice of a minimal level is crucial. Here, we proceed as in Section 3.3.2. Moreover,
we define Λcand.

1,1 as the scaling function index with the same level and translation
index as the largest (estimated) wavelet coefficient.

4.1.6. Convergence and complexity. As already mentioned, there is no proof for
the convergence of S-ADWAV. In view of Remark 4.4, this algorithm is in general
asymptotically not of linear complexity. Nevertheless, we observed in our numerical
experiments that for moderate target tolerances ε, S-ADWAV is still an efficient
numerical algorithm. This is due to the facts that J(tol iter) (cf. Remark 4.4) does
not grow fast and that we use solutions from former iterations as initial guesses in
LINSOLVE to keep the number of iterations of the linear solver small.

22 SEBASTIAN KESTLER AND KARSTEN URBAN

Algorithm 10 [u(ε),Λ(ε)] = S-ADWAV[ε]

Let M a fixed number of inner loops, c > 0 and h > 0, ρ > 0 a tuning parameters,
0 < tol iter < 1 an initial tolerance and Λcand.

1,1 an initial index set.

1: for k = 1, 2, 3, . . . do tol iter = 1
2 tol iter

2: for m = 1, 2, . . . ,M do
3: ũ(k,m) = LINSOLVE[Λcand.

k,m ,u(k,m−1), ρ · tol iter]

4: u(k,m) = THRESH[ũ(k,m), tol iter]

5: Λ(k,m) = supp u(k,m); Λ̂k,m = C[Λ(k,m), c]

6: r(k,m) = RESIDUAL[Λ̂k,m,u
(k,m), tol iter]

7: if ‖r(k,m)‖ℓ2 ≤ ε‖f̃bΛk,m
‖ℓ2 and tol iter ≤ ρ · ε then

8: return u(ε) := u(k,m), Λ(ε) := Λ(k,m);
9: endif

10: r̄(k,m) = THRESH[r(k,m), tol iter];
11: if ‖r(k,m) − r(k,m−1)‖ℓ2 < h× tol iter × ‖r(k,m−1)‖ℓ2
12: Λcand.

k+1,1 = Λ(k,m) ∪ supp r̄(k,m); u(k+1,0) := u(k,m); r(k+1,0) := r(k,m);
13: break;
14: else
15: Λcand.

k,m+1 = supp u(k,m) ∪ supp r̄(k,m)

16: end if
17: end for
18: end for

4.2. Numerical experiments. In this section, we present numerical results ob-
tained with S-ADWAV. We focus on the reaction-diffusion problems from Section
3.3 and compare the results with those obtained by ADWAV.

4.2.1. Convergence rates. Within S-ADWAV, we used the parameters c = 0.125,

h = 0.0001, M = 2, ρ = 0.1, tol iter = 0.01, d = d̃ = 2, d = d̃ = 3 and the
wavelet basis from [9]. We observe in Figure 4.5 that both the output ‖r(k,m)‖ℓ2 of
RESIDUAL as well as the corresponding approximation error measured in H1(R)
converge asymptotically with the same rate as ADWAV (cf. Section 3.3.3).

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 10000

N

s=1

s=2

RESIDUAL (d=2,d
~

=2)
H1 error (d=2,d

~
=2)

RESIDUAL (d=3,d
~

=3)
H1 error (d=3,d

~
=3)

(a) (P1) with j0 = −2.

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 10000

N

s=1

s=2

RESIDUAL (d=2,d
~

=2)
H1 error (d=2,d

~
=2)

RESIDUAL (d=3,d
~

=3)
H1 error (d=3,d

~
=3)

(b) (P2) with j0 = −4.

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 10000

N

s=1

s=2

RESIDUAL (d=2,d
~

=2)
H1 error (d=2,d

~
=2)

RESIDUAL (d=3,d
~

=3)
H1 error (d=3,d

~
=3)

(c) (P3) with j0 = −1.

Figure 4.5. H1(R)-error and ‖r(k,m)‖ℓ2 vs. degrees of freedom N .

4.2.2. Thresholding and cg iterations. Within THRESH, we could replace the ab-
solute threshold by a relative threshold, i.e., replace δ by δ‖v‖ℓ2 in Algorithm 9.
In this case, the output v̄ =THRESH[v, δ‖v‖ℓ2] satisfies ‖v − v̄‖ℓ2 ≤ δ‖v‖ℓ2 . A
relative threshold (as it was used in [2]) seems convenient as we are using, as far

ADAPTIVE WAVELET METHODS ON UNBOUNDED DOMAINS 23

as possible, only relative tolerances in S-ADWAV. Nevertheless, our experiments
show that this approach may have an important drawback. We observe in Table

4.2 for (P3) that for relative thresholding, the quotient C := #supp u(k,m)

#supp eu(k,m) is much

smaller than the corresponding one for absolute thresholding. Since we have to
solve a linear system with #supp ũ(k,m) degrees of freedom, a large value of C
is favorable to get an efficient algorithm even though S-ADWAV with relative
threshold might produce better approximations at early stages. We also observe
that few cg-iterations in LINSOLVE are sufficient.

Iteration 5 10 15 20 25 30 35

rel. thresh

N 25 59 98 131 163 233 349
cg-its 8 7 5 7 7 7 8
Err. 3.8e-0 1.9.0e-1 4.1e-2 1.3e-2 6.2e-3 2.7e-3 7.0e-4
C 86% 40% 46% 46% 39% 43% 44%

abs. thresh

N 29 74 115 150 219 329 456
cg-its 7 3 3 4 3 4 4
Err. 3.7e-0 8.3e-2 9.0e-2 5.4e-2 1.4e-3 4.8e-4 1.8e-4
C 93% 96% 99% 99% 97% 95% 98%

Table 4.2. Aabsolute and relative threshold for (P3) and d = 3
where N := #supp u(k,m) and Err. is the H1(R)-error.

4.2.3. Comparison of ADWAV and S-ADWAV. As an example, we consider
(P2) to compare the two adaptive schemes (cf. Figure 4.6). We observe that
ADWAV needs less degrees of freedom compared to S-ADWAV. This is due to
the fact that within GROW higher levels for the resolution of a singularity can be
added within one iteration whereas the routine C can add at most wavelets on the
next higher level compared to the levels |λ|, λ ∈ Λ(k,m) in the current approximation
Λ(k,m). Nevertheless, the computation times state that this effect is compensated
in S-ADWAV where we do not need the APPLY routine.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 10000

H
1 e

rr
or

N

s=1

s=2

ADWAV (d=2,d
~

=2)
S-ADWAV(d=2,d

~
=2)

ADWAV (d=3,d
~

=3)
S-ADWAV(d=3,d

~
=3)

(a) N vs. error reduction (P2).

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0.01 0.1 1 10

H
1 e

rr
or

CPU time (sec.)

ADWAV (d=2,d
~

=2)
S-ADWAV(d=2,d

~
=2)

ADWAV (d=3,d
~

=3)
S-ADWAV(d=3,d

~
=3)

(b) CPU time vs. error reduction
(P2).

Figure 4.6. Comparison between ADWAV and S-ADWAV.

In Figure 4.7, we show examples of the structure of the index sets produced
by ADWAV and S-ADWAV. We see that for a comparable size of index sets,
ADWAV uses the information provided by RHS to add higher levels already
at early stages of the algorithm. As already said above, this is not the case for
S-ADWAV. Nevertheless, both algorithms detect the singularity.

24 SEBASTIAN KESTLER AND KARSTEN URBAN

-4

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

-80 -60 -40 -20 0 20 40 60 80

(a) ADWAV, #supp w(k) = 210.

-4

-4

-3

-2

-1

0

1

2

3

4

5

-50 0 50 100

(b) S-ADWAV, #supp u(k,m) = 250.

Figure 4.7. Coefficients w(k), u(k,m) for (P2) for d = d̃ = 2.

4.2.4. A convection-diffusion problem. For the reaction-diffusion examples one
might argue that it would also be possible to a determine a computational domain
a priori and then to use standard methods for PDEs on bounded domains. In order
to treat a problem where this is not that obvious, we consider a convection diffusion
problem in weak form: Find u ∈ H1(R) with

(4.7) (∂v, ∂u)L2(R) + β(v, ∂u)L2(R) + (v, u)L2(R) = 〈v, f〉, ∀v ∈ H1(R),

using the right-hand side from (P1) which also fulfills all required assumptions. For
increasing values of β, the solution exhibits a strong layer at x = 0, see the left part
of Figure 4.8. On the right, we see the adaptive truncation of the computational
domain. In particular, the layer is automatically detected.

-2

 0

 2

 4

 6

 8

 10

 12

-20 0 20 40 60 80 100 120

x

Numerical solution u
Right-hand side f

-3

-3

-2

-1

0

1

2

3

4

-20 0 20 40 60 80 100

x

Figure 4.8. Solution u, right-hand side f (left) and estimated

index set (right) for (4.7) with d = d̃ = 2, j0 = −2 and β = 10.

5. Extension to higher space dimensions

So far, we considered the well-posed operator equation A[u] = f in H ′ in one
space dimension. To use the same approach to solve (2.1) also in higher space
dimensions, we briefly describe how to revise the ingredients of ADWAV where
we focus on H = Ht(Rn), t ∈ N. The complete analysis of the multivariate case
goes beyond the scope of the present paper and can e.g. be found in [21].

5.1. Tensor wavelet bases. We start with the construction of a wavelet basis
Ψt,j0 for Ht(Rn), t ∈ N. To this end, let Ψ

0,j
(1)
0
, . . . ,Ψ

0,j
(n)
0

be Riesz wavelet bases

for L2(R) of order d with j
(i)
0 ∈ Z∪{−∞} for i = 1, . . . , n that are, properly scaled,

ADAPTIVE WAVELET METHODS ON UNBOUNDED DOMAINS 25

also Riesz bases for Ht(R) (cf. Section 2.2). Then, since we can identify Ht(Rn)
with Ht(Rn) := ∩nk=1 ⊗

n
m=1 H

0+t·δm,k(R), it can be proven (cf. [20]) that

Ψt,j0 :=
{
Dt
λψλ : λ := (λ1, . . . , λn) ∈ Jj0 :=

∏n
i=1 Jj(i)0

}
, j0 := (j

(1)
0 , . . . , j

(n)
0)

is a Riesz basis for Ht(Rn) where Dt
λ := ‖ψλ‖

−1
Ht(Rn), ψλ := ⊗ni=1ψλi for ψλi ∈

Ψ
0,j

(i)
0

(i = 1, . . . , n). Thus, there exist Riesz constants cΨt,j0
, CΨt,j0

> 0 such that

(5.1) cΨt,j0
‖v‖ℓ2(J) ≤ ‖vTΨt,j0‖Ht(Rn) ≤ CΨt,j0

‖v‖ℓ2(J), ∀v ∈ ℓ2(J).

We refer to ψλ as an (anisotropic) tensor wavelet as it may have different levels
|λ1|, . . . , |λn| in different coordinate directions. For |λ| := (|λ1|, . . . , |λn|), we define
sum(|λ|) :=

∑n
i=1 |λi| and max(|λ|) := maxi=1,...,n |λi|. Remind that |λi| (i =

1, . . . , n) can assume negative values and therefore, sum(|λ|), max(|λ|) can get
negative. In view of (2.7), we now define A := 〈Ψt,j0 ,A[Ψt,j0]〉 and f := 〈Ψt,j0 , f〉.

For the construction of Ψt,j0 , the choice of the univariate Riesz bases is delicate.
One can prove the following estimates for cΨt,j0

, CΨt,j0
analogously to [15, p.80]:

cΨt,j0
= mini

{
min{cΨ0, j

(i)
0
, cΨt, j(i)

0
}

∏
k 6=i cΨ0, j

(k)
0

}
,(5.2)

CΨt,j0
= maxi

{
max{CΨ0, j

(i)
0
, CΨt, j(i)

0
}

∏
k 6=i CΨ0, j

(k)
0

}
,(5.3)

where cΨν, j(i)
0
, CΨν, j(i)

0
denote the Riesz constants of the Riesz bases Ψ

ν,j
(i)
0

for

ν ∈ {0, t} and i = 1, . . . , n (cf. (2.3)). Thus, in general, the Riesz constants grow
exponentially in the dimension n. However, as a small condition number κ(A) ∼
C2

Ψt,j0
· c−2

Ψt,j0
is favorable (cf. Section 3.3), one can use univariate piecewise poly-

nomial, orthonormal multiwavelet constructions where cΨ0, j
(i)
0

= CΨ0, j
(i)
0

= 1. The

construction principle from Section 2.2 is still the same, the only difference is that
we have multiple mother wavelets ψ1, . . . , ψmψ and scaling functions ϕ1, . . . , ϕmϕ for
mψ,mϕ ∈ N (cf. (2.5) and (2.6)). As an example, an L2-orthonormal multiwavelet

basis for L2(R) with j0 = −∞ takes the form Ψ0,−∞ = {ψµj,k := 2j/2ψµ(2j · −k) :

j, k ∈ Z, µ ∈ {1, . . . ,mψ}}. The results from Sections 3.1 and 3.2 can then be
extended to multiwavelet settings if the assumptions made in Section 3.1.1 are sat-
isfied for each mother wavelet (and scaling function). In the sequel (except for
Section 5.2), we focus on constructions (e.g. [17]) that satisfy these assumptions.

5.2. Nonlinear approximation for tensor wavelet bases. Let u = uTΨt,j0

be the expansion of the solution of (2.1) in Ψt,j0 . It can be proven that if for

0 < s < d − t and τ−1 = s + 1
2 , u ∈

⋂n
k=1

⊗ n
τ i=1 B

s+t·δi,k
τ (Lτ (R)), then u ∈ As

(cf. [25, 28]). Here, ⊗τ denotes a tensor product for τ-placid quasi-Banach spaces
introduced in [25]. Note that for 0 < τ < 1, the Besov space Bsτ (Lτ (R)) is a
(τ -placid) quasi-Banach space (cf. [28, p.784]). We refer to [25, 28] for the details.

We observe that a best nonlinear approximation rate independent of the dimen-
sion n can be attained asymptotically. This is why we choose anisotropic wavelet
constructions over isotropic basis constructions. Given a sufficiently smooth, uni-
variate scaling function ϕ of order d and a corresponding wavelet ψ, an isotropic
Riesz wavelet basis for L2(R

n) is exemplarily defined by, denoting by E the non-
trivial vertices of [0, 1]n,

Ψiso
0 := {ψiso,ej,k := 2jd/2ψiso,e(2j · −k) : j ∈ Z, k ∈ Z

n, e ∈ E}, ψiso,e := ⊗ni=1ψ
ei ,

26 SEBASTIAN KESTLER AND KARSTEN URBAN

where ψ0 := ϕ, ψ1 := ψ. Normalizing ψiso,ej,k in Ht(Rn) yields an isotropic Riesz

basis Ψiso
t forHt(Rn). Here, the level j does not depend on the coordinate direction

(explaining the notion isotropic). For u = (uiso)TΨiso
t , it can be shown (e.g. [5,

Theorem 38.2]) that if for 0 < s < d−t
n and τ−1 = s+ 1

2 , u ∈ Bsn+t
τ (Lτ (R

n)), then

uiso ∈ As. Thus, even when u ∈ C∞, s depends on the dimension n.

5.3. Compressibility and computability of A. We recall that for optimality of
ADWAV, we require that A ∈ Bs∗ with s∗ > d−t (cf. Remark 2.4). In view of the
numerical examples below, we state a compression scheme from [15]. Even though
the original result is stated for bounded domains, it also applies to the unbounded
setting as it relies on tensor product arguments applied to compression results from
univariate settings where we can use the results from Section 3.1.2.

Theorem 5.1 ([15, Theorem 5.3.5]). Let A[w] := −∆w+ c ·w for c > 0 and Ψt,j0

an orthonormal tensor wavelet basis of order d ≥ 2 with j0 ∈ (Z ∪ {−∞})n. Then,

A = D [A(1) ⊗ I(2) ⊗ · · · ⊗ I(n) + · · · + I(1) ⊗ · · · ⊗ I(n−1) ⊗ A(n) + c · I]D,

where A(i) := ((∂ψλi , ∂ψλ′

i
)L2)λ,λ′

i∈J
j
(i)
0

, I(i) := (δλi,λ′

i
)λ,λ′

i∈J
j
(i)
0

, I := I(1) ⊗ · · · ⊗

I(n) and D := (‖ψλ‖
−1
H1(Rn) · δλ1,λ′

1
· · · δλn,λ′

n
)λ,λ′∈Jj0

. Defining A
(i)
j by dropping

all entries from A(i) when δ(λi, λ
′
i) > j for i = 1, . . . , n yields that ‖A − Aj‖ .

2−(d−1
2−t)j with a constant independent of n where

Aj := D [A
(1)
j ⊗ I(2) ⊗ · · · ⊗ I(n) + · · · + I(1) ⊗ · · · ⊗ I(n−1) ⊗ A

(n)
j + c · I]D.

In particular, the number of non-zeros in each row and column of Aj is of order
O(nj) and A is s∗-computable with s∗ = ∞. �

Note that A in Theorem 5.1 is close to a sparse matrix which is due to L2-ortho-
normality of the univariate multiwavelets. This simple structure of Aj allows for
a more efficient numerical implementation of APPLY than with other basis types
where, however, similar compressibility results can be shown ([27, Proposition 8.1]).

The s∗-computability of A = (aλ,λ′)λ,λ′∈Jj0
can also be proven for non-constant,

but sufficiently smooth coefficients gα,β, i.e., for α,β ∈ N
n
0 multi-indices, when

aλ,λ′ = ‖ψλ‖
−1
Ht(Rn)‖ψλ′‖−1

Ht(Rn)

∑
|α|ℓ1 ,|β|ℓ1≤t

∫
Rn
gα,β ∂

αψλ ∂
βψλ′ .

Here, we can again use [26, Theorems 4.1 & 6.2] since estimates for |aλ,λ′ | given
there base on a tensor product argument applied to estimates in univariate settings
(cf. [26, Lemma 3.1]). In Proposition 3.3, we have shown that these estimates also

hold in unbounded settings when j
(i)
0 > −∞, i = 1, . . . , n. We infer that the results

from [26] can be extended to show that A is s∗-computable with s∗ = d+ 1.

5.4. RHS. We now show how to extend the results from Section 3.2 to the multi-
variate case when the right-hand side f is separable and when it is non-separable.

For the sake of brevity, we focus on j
(i)
0 > −∞, i = 1, . . . , n and t = 1. More

detailed results will be given in [21].

ADAPTIVE WAVELET METHODS ON UNBOUNDED DOMAINS 27

5.4.1. Separable f . We first analyze the case where f is the product of n univariate
functionals and f = f (1)⊗· · ·⊗f (n) with f (i) ∈ ℓ2(Jj(i)0

) for i = 1, . . . , n. Based on the

results from Section 3.2, we assume that f (i) permits computable approximations

f
(i)
J such that for some s̃ > d − 1 and ces > 0, ‖f (i) − f

(i)
J ‖ℓ2 ≤ ces 2−esJ with

#supp f
(i)
J ∼ 2J for all J ≥ 0 and i = 1, . . . , n. Analog to [27, Proposition 8.1], we

define for J ≥ 0, ℓ1, . . . , ℓn ∈ N0 and f
(i)
−1 := 0 (i = 1, . . . , n)

fJ :=
∑

ℓ1+···+ℓn≤J

(
f
(1)
ℓ1

− f
(1)
ℓ1−1

)
⊗ · · · ⊗

(
f
(n)
ℓn

− f
(n)
ℓn−1

)
.

It holds that #supp fJ . Jn2J and one can show that for any d− 1 < s̄ < s̃

‖f − fJ‖ℓ2 = ‖
∑
ℓ1+···+ℓn>J

(
f
(1)
ℓ1

− f
(1)
ℓ1−1

)
⊗ · · · ⊗

(
f
(n)
ℓn

− f
(n)
ℓn−1

)
‖ℓ2

. cnes J
n 2−esJ ≤ Des,s̄,n c

n
es (Jn · 2J)−s̄ . Des,s̄,n c

n
es (#supp fJ)−s̄,

where the constant Des,s̄,n can be chosen such that J (1+s̄)n 2−(es−s̄)J ≤ Des,s̄,n for all
J ≥ 0. Note that Des,s̄,n → ∞ for s̃ − s̄ → 0 or n → ∞. Thus, we infer that for

η > 0, we can choose J such that ‖f − fJ‖ℓ2 ≤ η with #supp fJ . η−1/s̄. If f is a
sum of such tensors, one only has to apply this technique to each summand.

5.4.2. Non-separable f . Now, let f ∈ L2(R
n) be non-separable such that for con-

stants Cf , CR(i) > 0 and R
(i)
η = CR(i)η−1/β , i = 1, . . . , n,

(5.4) ‖f − f |�η‖L2(Rn) ≤ Cf η, �η := [−R(1)
η , R(1)

η] × · · · × [−R(n)
η , R(n)

η].

The same arguments as in the proof of Lemma 3.8 then permit to show that

‖f − f |∇η
‖ℓ2 ≤ CfC

2
Ψt,j0

c−1
Ψt,j0

η, ∇η := {λ ∈ Jj0 : |supp ψλ ∩ �η| > 0}.

Thus, to approximate f |∇η
, we only require a bound on the levels |λ| in ∇η. To

this end, note that when f ∈ ⊗ni=1W
d,∞(R), it holds (cf. [15, Eq. (5.24)])

(5.5) |〈D1
λψλ, f〉| . 2−((1

2+d)sum(|λ|)+max(|λ|)), ∀λ ∈ Jj0 .

This estimate leads to the following definition (compare [15, Eq. (5.25)]) for j ∈ N0:

∇η,j := {λ ∈ ∇η : (1
2 + d) sum(|λ|) + max(|λ|) ≤ (1

2 + d+ 1
n)j}.

With |�η| . η−
n
β , we have that #∇η,j . η−

n
β 2j (which can be proven by [15,

Proposition 3.3.4]) and ‖f |∇η
− f |∇η,j

‖ℓ2 . η−
n
2β 2−(d+ 1

n
)j . In particular, choosing

j ∼ ⌈((1+ n
2β) log2 η)/(d+ 1

n)⌉ yields ‖f |∇η
− f |∇η,j

‖ℓ2 . η and #∇η,j . η−
1
s̄ with

s̄ :=
β(d+ 1

n
)

(d+ 1
2)n+β+1

. Thus, we conclude that if β is sufficiently large, we have s̄ > d−1.

Note that to approximate 〈D1
λψλ, f〉, one can apply sparse tensor quadrature rules

as described in [15, 26] with computational cost proportional to #∇η,j .
However, if f is not sufficiently smooth, then, as in the one-dimensional case,

different estimates can be derived. Exemplarily, for f ∈ L1(supp ψλ), we find that

(5.6) |〈D1
λψλ, f〉| .

{
2

1
2 sum(|λ|)‖f‖L1(supp ψ

λ
), sum(|λ|) < 0,

2−max(|λ|)‖f‖L2(supp ψ
λ
), sum(|λ|) ≥ 0.

Thus, if f is smooth except, e.g., in one point x, we can still use (5.5) whenever
x /∈ supp ψλ and (5.6) otherwise and adopt the above proceeding for smooth f .

28 SEBASTIAN KESTLER AND KARSTEN URBAN

5.5. Numerical examples. We consider the following bivariate PDE problem:
given f ∈ H−1(R2), find u ∈ H1(R2) such that

(5.7) (∂x1v, ∂x1u)L2(R2)+(∂x2v, ∂x2u)L2(R2)+(v, u)L2(R2) = 〈v, f〉, ∀v ∈ H1(R2).

We tested both ADWAV and S-ADWAV in conjunction with the multiwavelet
basis constructed in [17] for d = 2 where we considered a separable (P4) and a
non-separable (P5) reference solution for (5.7):

(P4) u4(x1, x2) := exp(− 1
10 |x1 −

1
3 |) · exp(− 1

2 |x2 −
1
3 |),

(P5) u5(x1, x2) := exp
(
−

√
(x1 −

1
10)2 + (x2 −

1
10)2

)
.

Note that ADWAV can be used without further modifications whereas for S-
ADWAV, the construction of the security zone Λ̂ for a finite index set Λ ∈ Jj0 for
higher space dimensions is detailed in Algorithm 11.

5.5.1. Parameters. For ADWAV and S-ADWAV, we choose the parameters as
in the one-dimensional setting (cf. Sections 3.3.1 and 4.2.1). By computing the
Riesz constants cΨ1, j

(i)
0

and CΨ1, j
(i)
0

, i ∈ {1, 2} for the univariate bases as detailed

in Section 3.3.1 and using (5.2) and (5.3), we estimated κ(A) ≈ 17.0 for j0 =
(−4,−2) and κ(A) ≈ 15.3 for j0 = (−2,−2). The minimal level j0 was obtained by
estimating the largest wavelet coefficient |〈D1

λ⋆ψλ⋆ , f〉| using (5.5) and (5.6). With
λ⋆ = ((j⋆1 , k

⋆
1), (j⋆2 , k

⋆
2)), we set the minimal level to j0 := |λ⋆|. The initial index set

for S-ADWAV is then defined by Λcand.
1,1 := {((j⋆1 −1, k⋆1), (j

⋆
2 −1, k⋆2))}, i.e., Λcand.

1,1

contains only the index associated to the (2d) scaling function ϕj⋆1 ,k⋆1 ⊗ ϕj⋆2 ,k⋆2 .

Algorithm 11 C[Λ, c] → Λ̂

1: Λ̂ := ∅.
2: for λ = (λ1, . . . , λn) ∈ Λ do

3: Λ̂ := Λ̂ ∪ C(λ1, c) × λ2 × · · · × λn ∪ · · · ∪ λ1 × · · · × λn−1 × C(λn, c).
4: end for

5.5.2. Convergence rates. The convergence rates for (P4) and (P5) are shown in
Figure 5.1. We observe that the best nonlinear approximation rate from Section 5.2
is asymptotically attained. Problem (P4) has singularities parallel to the coordinate
axis. Here, ADWAV needs less degrees of freedom which is due to the additional
information stored in RHS which is not available in S-ADWAV. To solve (P5)
where the solution is singular in one point, both algorithms nearly need the same
number of degrees of freedom. In Figure 5.1 c), we show the computation times for
(P4). Observe that ADWAV performs within linear complexity and that also here,
S-ADWAV works very well which is also due to the multiwavelet discretization
and the involved near-sparseness of A (cf. Section 5.3). Nevertheless, asymptotic
optimality of S-ADWAV cannot be guaranteed (cf. Section 4.1.6). As in the one-

dimensional setting (cf. Section 3), the choice of j0 = (j
(1)
0 , j

(2)
0) is important for the

performance, e.g., both algorithms (in Figure 5.1 c) exemplarily for S-ADWAV)
performed worse for too small j0 (analog for too large j0). This is why we did not

consider max(|j0|) = −∞ where at least one of the minimal levels j
(1)
0 , j

(2)
0 is −∞.

ADAPTIVE WAVELET METHODS ON UNBOUNDED DOMAINS 29

 0.0001

 0.001

 0.01

 0.1

 1

 10

 10 100 1000 10000 100000

N

s=1

ADWAV
S-ADWAV

(a) (P4) with j0 = (−4,−2).

 0.0001

 0.001

 0.01

 0.1

 1

 10

 10 100 1000 10000 100000

N

s=1

ADWAV
S-ADWAV

(b) (P5) with j0 = (−2,−2).

 0.0001

 0.001

 0.01

 0.1

 1

 10

 1 10 100 1000

CPU time (sec.)

s=1

S-ADWAV, j0=(-4,-2)
S-ADWAV, j0=(-8,-8)

S-ADWAV, j0=(-10,-10)
ADWAV, j0=(-4,-2)

(c) (P4) with different j0

Figure 5.1. H1(R)-error for (P4) and (P5).

5.5.3. Adaptive truncation. To get an idea of the computational domains computed
by ADWAV and S-ADWAV, we show in Figure 5.2 the centers of the supports
of all ψλ with λ ∈ supp w(k) for ADWAV respectively λ ∈ supp u(k,m) for S-
ADWAV. We observe that the anisotropic decay of u4 is captured. The same
holds true for the point singularity of u5 which is also detected and resolved.

-60

-40

-20

 0

 20

 40

 60

-60 -40 -20 0 20 40 60

x 2

x1

(a) S-ADWAV, N = 9788

-10

-5

 0

 5

 10

-10 -5 0 5 10

x 2

x1

(b) ADWAV, N = 10599

Figure 5.2. Adaptive truncation for (P4) (left) and (P5) (right).

Acknowledgements. The authors like to thank the referees for useful remarks
and comments which improved this article.

Appendix A. Proofs from Section 3

Proof of Theorem 3.1. Let α ≤ t. For |λ|, |λ′| ∈ J with i(λ, λ′ = 1, (3.5), (3.7) and
|�λ| ∼ 2−|λ| yield (cf. [15, Proposition 5.3.3])

(A.1) |b
(α)
λ,λ′ | . cα 2−α|λ| 2−α|λ

′|diam(�λ,λ′)|∂αψλ| |∂
αψλ′ | . 2−

1
2 δ(λ,λ

′), ∀λ, λ′ ∈ J .

Moreover, we infer from [15, Remark 5.3.4] that even

(A.2) |b
(α)
λ,λ′ | . 2−(d− 1

2−t)δ(λ,λ
′), ∀λ, λ′ ∈ J .

holds. Using that Dt
λ . 2−α|λ| for all λ ∈ J and α = 0, . . . , t yields for all λ, λ′ ∈ J :

|aλ,λ′ | . |b
(α)
λ,λ′ | . 2−(d− 1

2−t)δ(λ,λ
′).

Next, consider the case where i(λ, λ′) = 0 and |λ′| > |λ|. Then, Ξλ,i ⊂ supp ψλ′ for
some i ∈ {1, . . . , κ} and by using the vanishing moments of ψλ′ , we find that with
p := ψλ|Ξλ,i ∈ Pd−1

(A.3) a
(α)
λ,λ′ = Dt

λDt
λ′ cα

∫
�λ′

∂αp(x) ∂αψλ′(x) dx = 0.

30 SEBASTIAN KESTLER AND KARSTEN URBAN

Thus, concerning the number of non-zeros in Aj , it suffices to consider indices in

S(λ, ℓ′) (cf. (3.9)) for ℓ′ ∈ {|λ| − j, . . . , |λ| + j}. Since |�λ| ∼ 2−|λ|, we have
#S(λ, ℓ′) . 1 uniformly for all λ ∈ J , ℓ′ ∈ Z which yields the first claim. Con-
cerning (3.10), an application of the Schur lemma in conjunction with |aλ,λ′ | .

2−(d−1
2−t)δ(λ,λ

′), following the lines of the proof of [26, Theorem 4.1], yields the
claim. The ∞-compressibility then follows from the fact that we can replace j
by 2j in the definition of Aj . Now, one has O(2j) nonzero entries in each col-
umn and row of A2j . For any s∗ > 0, we have js∗ ≤ Cs∗ + (d − 1

2 − t)2j

for all j ∈ N where Cs∗ := s∗[log(s∗

(d− 1
2−t) log 2

) 1
log 2 − 1

log 2]. This yields that

‖A − A2j‖ . 2−(d− 1
2−t)2

j

. 2Cs∗ 2−js
∗

. The assertion then follows by using [29,
Remark 2.4]. �

Proof of Theorem 3.2. Let s∗ := t+ d̃. We first estimate the number of non-zeros
in each row and column of Aj . To this end, we consider a matrix block of Aj ,

Aℓ,ℓ′ :=

{
(aλ,λ′)|λ|=ℓ,|λ′|=ℓ′ , δ(λ, λ′) · z(i(λ,λ′)) ≤ j,
0, otherwise,

where z(i) is defined in (3.13). Since aλ,λ′ = 0 when |�λ ∩ �λ′ | = 0, to estimate
the number of non-zeros in a row or column of Aℓ,ℓ′ for |λ| = ℓ, we only have to
consider indices in S(λ, ℓ′) (cf. (3.9)) and U(λ, ℓ′) (cf. (3.11)). As #S(λ, ℓ′) . 1

(cf. proof of Theorem 3.1) and #U(λ, ℓ′) . 2max{0,ℓ′−ℓ}, (cf. also [26, Eq. (4.6)]),
these two estimates are sufficient to show that the number of non-zeros in each row
or column of Aj is of order O(2j/s

∗

) (cf. [26, Lemma 4.2]). The fact that (3.12)
implies that ‖A − Aj‖ . 2−j can then be shown by the Schur Lemma as in [26,
Proof of Theorem 4.1]. �

Proof of Proposition 3.3. Remind that by the transformation of variables y := 2−ℓx
with ℓ := max{0,−min{|λ|, |λ′}} ≥ 0, we obtain estimate (3.15) which was

|b
(α)
λ,λ′ | .

{
2−(3

2+r−α)δ(λ,λ′) 2(r+1−α)ℓ ‖gα‖W r+1−α,∞(R), i(λ, λ′) = 1,

2−(1
2+ed+α)δ(λ,λ′) 2(ed+α)ℓ ‖gα‖W ed+α,∞(R)

, i(λ, λ′) = 0.

First, we note that Dt
λ . 2−α|λ| for 0 ≤ α ≤ t and for all λ ∈ J which implies

|a
(α)
λ,λ′ | .

{
2−(3

2+r−α)δ(λ,λ′) 2(r+1−α)ℓ ‖gα‖W r+1−α,∞(R), i(λ, λ′) = 1,

2−(1
2+ed+α)δ(λ,λ′) 2(ed+α)ℓ ‖gα‖W ed+α,∞(R)

, i(λ, λ′) = 0.

Since |λ|, |λ′| ≥ j0, we deduce that ℓ ≤ max{0,−j0}. Moreover, we have for ℓ ≥ 0

that 2(r+1−α)ℓ ≤ 2(ed+t)ℓ as well as 2(ed+α)ℓ ≤ 2(ed+t)ℓ for all α ≤ t. Thus, we have

|a
(α)
λ,λ′ | .

{
2−(3

2 +r−α)δ(λ,λ′) max{1, 2−(ed+t)j0} ‖gα‖W r+1−α,∞(R), i(λ, λ′) = 1,

2−(1
2 +ed+α)δ(λ,λ′) max{1, 2−(ed+t)j0} ‖gα‖W ed+α,∞(R)

, i(λ, λ′) = 0,

which yields the claim. �

ADAPTIVE WAVELET METHODS ON UNBOUNDED DOMAINS 31

Proof of Lemma 3.7. By definition of f i2 := (Dt
λ ciψλ(xi))λ∈J (i = 1, . . . ,m), we

have that f2 =
∑m

i=1 f i2. Now, (3.18) yields that

‖f i2 − f i2|∇i2,η‖
2
ℓ2 =

∑
|λ|<−J

(i,−)
2 (η)

|ciDt
λ ψλ(xi)|

2 +
∑

|λ|>J
(i,+)
2 (η)

|ciDt
λ ψλ(xi)|

2

≤ c2i d
2
t ‖ψ‖

2
L∞

M(
∑

j>J
(i,−)
2 (η)

2−j +
∑

j>J
(i,+)
2 (η)

2−(2t−1)j)

≤ c2i d
2
t ‖ψ‖

2
L∞

M(2 2−J
(i,−)
2 (η) + (1 − 2(1−2t))−1 2−(2t−1)J

(i,+)
2 (η)).

By our choice of J
(i,+)
2 (η) and J

(i,−)
2 (η), we get ‖f i2 − f i2|∇i2,η‖ℓ2 ≤ η

m . By triangle

inequality, we obtain ‖f2 − f2,η‖ℓ2 = ‖
∑m
i=1(f

i
2 − f i2|∇i2,η)‖ℓ2 ≤ η. Finally, it holds

that #∇2,η ≤
∑m
i=1 #∇i

2,η ≤ m·M ·maxi{J
(i,−)
2 (η)+J

(i,+)
2 (η)+1} . 1+| log2 η|. �

Proof of Lemma 3.8. Let (· , ·)Ht denote the inner product in Ht(R) and define
uf1 ∈ Ht(R) as the unique solution of the problem finding u ∈ Ht(R) such that
(v, u)Ht = 〈v, f1〉 for all v ∈ Ht(R). It is clear that ‖uf1‖Ht(R) ≤ ‖f1‖L2(R). Now,

let uf1 = uTf1Ψt and G := (Ψt,Ψt)Ht the Gramian matrix of Ψt in Ht(R). Then,

we obtain for any λ ∈ J that (Dt
λψλ, uf1)Ht = 〈Dt

λψλ, f1〉, i.e., f1 = 〈Ψt, f1〉 =
(Ψt,u

T
f1

Ψt)Ht = Guf1 . In a similar way, we define uf1,Rη and uf1,Rη corresponding

to f1,Rη := 〈Ψt, f1,Rη〉 instead of f . By ‖G‖ ≤ C2
Ψt

and (3.17), we get

‖f1 − f1,Rη‖ℓ2 = ‖G(uf1 − uf1,Rη)‖ℓ2 ≤ C2
Ψt‖uf1 − uf1,Rη ‖ℓ2

≤ C2
Ψtc

−1
Ψt

‖uf1 − uf1,Rη ‖Ht(R) ≤ C2
Ψtc

−1
Ψt

‖f1 − f1,Rη‖L2(R)

≤ C2
Ψtc

−1
Ψt
CfR

−β
η ≤ η,(A.4)

where Rη was defined in (3.24). Now, we proceed in two steps. First, we consider
separately positive and negative levels. As a second step, we investigate the level
bounds −J−

1 (η) and J+
1 (η). So, let f̄+

1,η := f1|∆+
1,η

and f̄−1,η := f1,Rη |∆−

1,η
with

(A.5) ∆+
1,η :={λ ∈ J: |�λ∩Iη| > 0, |λ| ≥ 0}, ∆−

1,η :={λ ∈ J: |�λ∩Iη| > 0, |λ| < 0}.

Note that ∆+
1,η, ∆−

1,η are not finite. Since J \∆+
1,η = {λ ∈ J : |�λ∩Iη | = 0}∪∆−

1,η,

‖f − f̄+
1,η − f̄−1,η‖

2
ℓ2 = ‖f1|J\∆+

1,η
− f1,Rη |∆−

1,η
‖2
ℓ2

=
∑
λ∈J ,|�λ∩Iλ|=0 |〈D

t
λψλ, f1〉|

2 +
∑
λ∈∆−

1,η
|〈Dt

λψλ, f1 − f1,Rη〉|
2

=
∑
λ∈J ,|�λ∩Iλ|=0 |〈D

t
λψλ, f1 − f1,Rη〉|

2 +
∑

λ∈∆−

1,η
|〈Dt

λψλ, f1 − f1,Rη〉|
2

≤
∑
λ∈J |〈Dt

λψλ, f1 − f1,Rη〉|
2 = ‖f1 − f1,Rη‖

2
ℓ2

≤ η2,

where we used the fact that 〈Dt
λψλ, f1,Rη〉 = 0 for |�λ ∩ Iη| = 0 and (A.4). We are

now going to consider the effect of restricting the level range, i.e., we estimate the
difference of f̄+

1,η, f+
1,η = f1|∇+

1,η
on one hand and f̄−1,η , f−1,η = f1,Rη |∇−

1,η
on the other

hand. As a preparation, we consider the following straightforward estimate

(A.6) Cj,η := #{λ ∈ J : |λ| = j, |�λ ∩ Iη| > 0} ≤ 2j+1Rη + 2M,

i.e., all indices on a fixed level where corresponding wavelets intersect Iη.

Non-negative leves: Let j ≥ 0. Then, we have for j > J+
1 (η) that Cj,η ≤ 2j+1Rη(1+

M(Rη2
j)−1) ≤ 2j+2Rη. Thus, by (3.6) in conjunction with |Dt

λ| ≤ dt2
−t|λ| for

32 SEBASTIAN KESTLER AND KARSTEN URBAN

|λ| ≥ 0 (cf. (3.18)) and the definition of J+
1 (η) in (3.25):

‖f̄+
1,η − f+

1,η‖
2
ℓ2 = ‖f1|∆+

1,η\∇
+
1,η

‖2
ℓ2=

∑
|λ|>J+

1 (η),|�λ∩Iη |>0 |〈D
t
λψλ, f1〉|

2

≤
∑

j>J+
1 (η) Cj,η C

2
ψ,f1

d2
t 2−2(1

2 +σ+t)j

≤ 4RηC
2
ψ,f1

d2
t

∑
j>J+

1 (η) 2−2(σ+t)j ≤ D2Rη 2−2(σ+t)J+
1 (η) ≤ η2.(A.7)

For the cardinality, we have #∇+
1,η ≤

∑J+
1 (η)
j=0 Cj,η . Rη2

J+
1 (η) . η−

σ+β+t+1
2

β(σ+t) .

Negative leves: Let j = |λ| < 0. Since Dt
λ ≤ 1, it holds that (compare (3.18))

(A.8) |〈Dt
λψλ, f1,Rη〉| ≤ 2|λ|/2‖ψ‖L∞

‖f1,Rη‖L1 ≤ 2|λ|/2‖ψ‖L∞
‖f1‖L1 .

For j < −J−
1 (η), (A.6) yields Cj,η ≤ 2j+1Rη + 2M ≤ 1 + 2M . Thus, by (A.8)

‖f̄−1,η − f−1,η|‖
2
ℓ2 = ‖f1,Rη |∆−

1,η\∇
−

1,η
‖2
ℓ2

=
∑

|λ|<−J−

1 (η),|�λ∩Iη |>0 |〈D
t
λψλ, f1,Rη〉|

2

≤ ‖ψ‖2
L∞

‖f1‖2
L1

∑
j>J−

1 (η) C−j,η 2−j ≤ D3 2−J
−

1 (η) ≤ η2,(A.9)

by the definition of J−
1 (η) in (3.25). Finally, since J−

1 (η) . max{2, β−1}| log2 η|

#∇−
1,η ≤

∑J−

1 (η)
j=1 C−j,η ≤

∑J−

1 (η)
j=1 (2−j+2Rη + 2M) . Rη + 2MJ−

1 (η) . η−1/β .

With (A.4), (A.7) and (A.9), we obtain the claim by ‖f1 − f1,η‖ℓ2 ≤ ‖f1 − f̄+
1,η −

f̄−1,η‖ℓ2 + ‖f̄+
1,η − f+

1,η‖ℓ2 + ‖f̄−η − f−1,η‖ℓ2 ≤ 3η, and replacing η by η/3. �

Proof of Proposition 3.10. Let g+
η := gη|∇+

1,η
, g̃+

η := g̃η|∇+
1,η

, g−
η := gη|∇−

1,η
and

g̃−
η := g̃η|∇−

1,η
First, we consider |λ| ≥ 0. We fix p > t+ d̃+d∗ and define ς := t+ d̃.

For computing g̃η,λ with |λ| = ℓ, we then take N+
ℓ ∼ ⌈2(J+(η)−ℓ) ς

p ⌉ subintervals

with J+
1 (η) defined in (3.25). This yields by (3.32) (compare (A.7))

‖g+
η − g̃+

η ‖
2
ℓ2 .

∑J+
1 (η)
ℓ=0 Rη 2ℓ 2−2ς(J+

1 (η)−ℓ) 2−2(1
2+p−d∗)ℓ

. Rη 2−2ςJ+
1 (η)

∑J+
1 (η)
ℓ=0 2−2(p−d∗−ς)ℓ . Rη 2−2(t+ed)J+

1 (η) . η2.

Since the cost for computing one entry g̃+
η,λ in g̃+

η are of order O(κpN+
|λ|) with κ

from (3.4), the overall cost for computing g̃+
η are of order O(#supp g+

η) since

∑J+
1 (η)
ℓ=0 Rη 2ℓ κpN+

ℓ ∼ Rη
∑J+

1 (η)
ℓ=0 2ℓ 2(J+

η −ℓ) ς
p = Rη2

ς
p
J+
1 (η) ∑J+

1 (η)
ℓ=0 2ℓ(1−

ς
p
)∼ Rη 2J

+
η .

For negative levels, we can proceed in a similar way. Let p ∈ N be arbitrary but

fixed and N be a constant multiple of
⌈
η−

3+2p+2β
2pβ

⌉
. Then, by (3.32), it follows that

‖g−
η − g̃−

η ‖
2
ℓ2 . #supp g−

η · (2Rη)
2(1+p)N−2p . η−

1
β η−

2(1+p)
β η

3+2p+2β
β = η2.

The bound for the number of quadrature operations, #∇−
1,η · (κpN) . p η−

1
β×

η−
3+2p+2β

2pβ = p · η−
3+4p+2β

2pβ is in this case larger than #supp g−
η . However, for

optimality, we only require that η−
3+4p+2β

2pβ . η−1/s̄ which is satisfied if we choose
p ∈ N such that 2p(β − 2s̄) ≥ s̄(3 + 2β) (remind that β > 2s̄). �

ADAPTIVE WAVELET METHODS ON UNBOUNDED DOMAINS 33

References

[1] A. Barinka, Fast computation tools for adaptive wavelet schemes, PhD thesis, RWTH
Aachen, 2005.

[2] S. Berrone and T. Kozubek, An adaptive WEM algorithm for solving elliptic boundary
value problems in fairly general domains, SIAM Journal on Scientific Computing, 28 (2006),
pp. 2114–2138.

[3] C. Canuto and A. Tabacco, Ondine Biortogonali: teoria e applicazioni, Pitagora Editrice,
1999.

[4] C. Canuto, A. Tabacco, and K. Urban, The wavelet element method (part I): construction
and analysis, Applied and Computational Harmonic Analysis, 6 (1999), pp. 1–52.

[5] A. Cohen, Wavelet methods in numerical analysis, Handbook of Numerical Analysis, VII
(2000), pp. 417–711.

[6] A. Cohen, W. Dahmen, and R. DeVore, Adaptive wavelet methods for elliptic operator
equations: convergence rates, Mathematics of Computation, 70 (2001), pp. 27–75.

[7] , Adaptive wavelet methods II - beyond the elliptic case, Foundations of Computational
Mathematics, 2 (2002), pp. 203–245.

[8] , Adaptive wavelet schemes for nonlinear variational problems, SIAM Journal on Nu-
merical Analysis, 41 (2003), pp. 1785–1823.

[9] A. Cohen, I. Daubechies, and J.-C. Feauveau, Biorthogonal bases of compactly supported
wavelets, Communications on Pure and Applied Mathematics, 45 (1992), pp. 485–560.

[10] A. Cohen and R. Masson, Wavelet adaptive method for second order elliptic problems:
boundary condition and domain decomposition, Numerische Mathematik, 86 (2000), pp. 193–
238.

[11] W. Dahmen, Wavelet and multiscale methods for operator equations, Acta Numerica, 6
(1997), pp. 55–228.

[12] W. Dahmen, H. Harbrecht, and R. Schneider, Adaptive methods for boundary integral
equations: complexity and convergence estimates, Mathematics of Computation, 76 (2007),

pp. 1243–1274.
[13] W. Dahmen, A. Kunoth, and K. Urban, Biorthogonal spline wavelets on the interval -

stability and moment conditions, Applied Computational Harmonic Analysis, 6(2) (1999),
pp. 132–196.

[14] R. DeVore, Nonlinear approximation, Acta Numerica, 7 (1998), pp. 51–150.
[15] T. Dijkema, Adaptive tensor product wavelet methods for solving PDEs, PhD thesis, Uni-

versiteit Utrecht, 2009.
[16] T. Dijkema, C. Schwab, and R. Stevenson, An adaptive wavelet method for solving high-

dimensional elliptic PDEs, Constructive Approximation, 30 (2009), pp. 423–455.
[17] G. C. Donovan, J. S. Geronimo, and D. P. Hardin, Intertwining multiresolution analy-

ses and the construction of piecewise-polynomial wavelets, SIAM Journal on Mathematical
Analysis, 27 (1996), pp. 1791–1815.

[18] T. Gantumur, H. Harbrecht, and R. Stevenson, An optimal adaptive wavelet method
without coarsening of the iterands, Mathematics of Computation, 76 (2007), pp. 615–629.

[19] T. Gantumur and R. Stevenson, Computation of differential operators in wavelet coordi-
nates, Mathematics of Computation, 75 (2006), pp. 697–709.

[20] M. Griebel and P. Oswald, Tensor product type subspace splitting and multilevel itera-
tive methods for anisotropic problems, Advances in Computational Mathematics, 4 (1995),
pp. 171–206.

[21] S. Kestler, Adaptive wavelets methods for multi-dimensional problem in numerical finance,
PhD thesis, Universität Ulm, 2012.

[22] M. Lehn, FLENS - A Flexible Library for Efficient Nnumerical Solutions,
http://flens.sourceforge.net, (2008).

[23] R. Lorentz and P. Oswald, Criteria for hierarchical basis in Sobolev spaces, Applied and
Computational Harmonic Analysis, 8 (2000), pp. 32–85.

[24] S. Mallat, Multiresolution approximations and wavelet orthonormal bases of L2(R), Trans-
actions of the American Mathematical Society, 315 (1989), pp. 69–87.

[25] P.-A. Nitsche, Best N-term approximation spaces for tensor product wavelet bases, Con-
structive Approximation, 24 (2006), pp. 49–70.

34 SEBASTIAN KESTLER AND KARSTEN URBAN

[26] C. Schwab and R. Stevenson, Adaptive wavelet algorithms for elliptic PDE’s on product
domains, Mathematics of Computation, 77 (2008), pp. 71–92.

[27] , Space-time adaptive wavelet methods for parabolic evolution problems, Mathematics
of Computation, 78 (2009), pp. 1293–1318.

[28] W. Sickel and T. Ullrich, Tensor products of Sobolev-Besov spaces and applications to ap-
proximation from the hyperbolic cross, Journal of Approximation Theory, 161 (2009), pp. 748–
786.

[29] R. Stevenson, On the compressibility of operators in wavelet coordinates, SIAM Journal on
Mathematical Analysis, 35(5) (2004), pp. 1110–1132.

[30] , Adaptive methods for solving operator equations: An overview, in Multiscale, Non-
linear and Adaptive Approximation: Dedicated to Wolfgang Dahmen on the Occasion of his
60th Birthday, R. DeVore and A. Kunoth, eds., Springer (Berlin), 2009, pp. 543–598.

[31] A. Stippler, LAWA - Library for Adaptive Wavelet Applications,
http://lawa.sourceforge.net, (2009).

[32] K. Urban, Wavelet methods for elliptic partial differential equations, Oxford University
Press, 2009.

Sebastian Kestler, University of Ulm, Institute for Numerical Mathematics, Helm-

holtzstrasse 18, D-89069 Ulm, Germany

E-mail address: sebastian.kestler@uni-ulm.de

Karsten Urban, University of Ulm, Institute for Numerical Mathematics, Helm-

holtzstrasse 18, D-89069 Ulm, Germany

E-mail address: karsten.urban@uni-ulm.de

