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SPACE-TIME REDUCED BASIS METHODS FOR

TIME-PERIODIC PARAMETRIC PARTIAL DIFFERENTIAL

EQUATIONS

KRISTINA STEIH AND KARSTEN URBAN

Abstract. We consider space-time methods for time-periodic problems and
discuss well-posedness of the variational formulation as well as the use of Re-

duced Basis Methods (RBM) in a parameterized setting. We propose a possi-

ble discretization enforcing periodic boundary conditions in time and provide
lower bounds for the space-time inf-sup constant. Rigorous RBM space-time

a-posteriori error bounds for state and output are derived and it is shown that

this approach yields results similar to those in stationary elliptic settings.
This is contrasted with the more common time-stepping approach which

requires fixed-point methods with often long transient phases to obtain period-

icity. We discuss RBM in this context and derive the corresponding a-posteriori
bounds.

A convection-diffusion-reaction example is numerically investigated with
regard to the inf-sup constant as well as the performance of both space-time

and fixed-point RBM. We show the reliable representation of the stability

by the space-time inf-sup constant and observe the advantage of space-time
approaches in the online phase of the RBM.

1. Introduction

Time-periodic partial differential equations arise e.g. when considering rotators
or propellers, often in parametric settings where some output functional (like the
efficiency of an propeller) has to be optimized over a given parameter µ ∈ D that
may represent some design or steering property. Their computational cost is even
larger than that of common initial value problems, rendering them particularly
eligible for treatment with model reduction methods.
Reduced Basis Methods (RBM) construct a low-dimensional approximation of the
solution space in an offline phase and solve only the Galerkin projection onto this
basis in the time-critical online phase.

RBM for evolution equations have been considered e.g. in [4, 5, 6, 7, 13]. The
common approach is to use time-stepping methods which have the disadvantage in
time-periodic settings that long transient phases – or equivalently many fixed point
iterations – are necessary to obtain periodic solutions. Moreover, error bounds in
this setting can only be formulated for discrete spatio-temporal norms and involve
sums of residual dual norms over all time steps, hence growing in time. Additional
difficulties are introduced by time-variant operators, as then the construction of
the reduced basis requires either the storage of additional information at each time
point or additional computational effort to separate time and space [5]. A space-
time approach for initial value problems has been treated in [13], where primal-dual
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2 KRISTINA STEIH AND KARSTEN URBAN

output bounds in a discontinuous Galerkin approach have been derived. Recently,
the advantage of space-time inf-sup constants over classical energy estimates for
long-time integration has been observed in [16].

We discuss a general space-time variational formulation for time-periodic prob-
lems and its well-posedness for linear and quadratic problems in Section 2 and also
obtain lower bounds for the inf-sup constant in the linear setting . Reliable space-
time a-posteriori error bounds for both state and output involving dual norms of
residuals as well as coercivity and inf-sup constant are derived in Section 3 for
norms in different function spaces. In Section 4, the RBM space-time approach is
outligned and contrasted with the fixed-point approach, where e.g. error bounds
can only be derived in a discrete approximation of the norm in L2(0, T ). Section 5
contains numerical results for a convection-diffusion-reaction example.

1.1. Setting and notation. We start by fixing some notation: Set I := [0, T ],
T > 0, Ω ⊂ Rd and let V ↪→ H := L2(Ω) ↪→ V ′ be some Sobolev space incorporating
boundary conditions on Ω (e.g., V = H1

0 (Ω)). We abbreviate

[f, g] :=

∫
I

〈f(t), g(t)〉 dt

and denote by 〈·, ·〉 the inner product in H, also inducing the duality pairing of
V ′ and V . Further, let a(t; ·, ·) be a semilinear form (i.e., linear w.r.t. to the last
argument), define C(t) : V → V ′ by 〈C(t)φ, ψ〉 := c(t;φ, ψ) for φ,ψ ∈ V and consider
the time-periodic problem

u̇(t) + C(t)u(t) = f(t) in V ′, t ∈ (0, T ) =: I,(1.1a)

u(0) = u(T ) in H,(1.1b)

where f ∈ L2(I;V ′) is given.
Since we are interested in time-averages of the time-periodic solution, we define

the time-average for g ∈ L1(I;H) as ḡ := 1
T

∫
I
g(t) dt ∈ H. Let J ∈ V ′ be a linear

functional, then we are interested in the quantity

(1.2) s(u) := J(ū) =
1

T

∫
I

J(u(t)) dt.

2. Space-time formulation of time-periodic problems

Defining the spaces X := L2(I;V ) ∩ H1
per(I;V ′) and Y := L2(I;V ), where

H1
per(I;V ′) := {u ∈ Y : u̇ ∈ L2(I, V ′), u(0) = u(T ) in H} and ‖u‖2X := ‖u‖2L2(I;V )+

‖u̇‖2L2(I;V ′), then integration w.r.t. time yields the variational formulation of (1.1):

(2.1) Find u ∈ X : b(u, v) = f(v) ∀ v ∈ Y,

where b(·, ·) : X × Y → R and f(·) : Y → R are defined by

b(w, v) := [ẇ, v] + C[w, v], f(v) := [f, v], w ∈ X , v ∈ Y,

where we set C[w, v] :=
∫ T

0
c(t;w(t), v(t))dt.

We have built the periodicity requirement (1.1b) into the trial space X here.
One could, however, also view this as a constraint. This leads to an alternative
form. Let X̃ := W (I) := {u ∈ L2(I;V ) : u̇ ∈ L2(I;V ′)} with the X -norm and
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Ỹ := L2(I;V )×H with the standard graph norm. Note that X is a closed subspace

of X̃ . For w ∈ X̃ , v = (v1, v2) ∈ Ỹ, we set

(2.2) b̃(w, (v1, v2)) := [ẇ, v1] + C[u, v1] + 〈u(0)− u(T ), v2〉, f̃(v) := [f, v1].

The variational form then reads

(2.3) Find ũ ∈ X̃ : b̃(ũ, ṽ) = f̃(ṽ) ∀ ṽ ∈ Ỹ.

It can easily be seen in that (2.3) and (2.1) are equivalent. Hence, one may chose
either of them both for analysis as well as for the design of a numerical scheme.

2.1. The linear case. Let us first assume that C(t) = A(t), where A(t) ∈ L(V, V ′)
is a linear operator induced by a bilinear form a which implies that b is bilinear
also. The following assumptions on the form a are standard:

|a(t;φ, ψ| ≤Ma‖ψ‖V ‖ψ‖V ∀φ, ψ ∈ V, t ∈ [0, T ] a.e., (continuity)(2.4)

a(t;φ, φ) ≥ αa‖φ‖2V ∀φ ∈ V, t ∈ [0, T ] a.e.. (coercivity)(2.5)

We want to follow some of the arguments in [14, Theorem 5.1] to investigate the
well-posedness.

Remark 2.1. Note that unlike in the initial value problems investigated in [14, 16]
the coercivity condition (2.5) cannot be relaxed to a weaker G̊arding inequality.
In fact, a standard approach for the investigation of initial value problems is a
transformation û(t) := e−λtu(t) with G̊arding constant λ. Even though this keeps
any initial value unchanged, this technique destroys periodicity and thus does not
work in the time-periodic case.

Proposition 2.2 (cf. [14], A.1). The form b is bounded, i.e.,

Mb := sup
06=w∈X ,06=v∈Y

|b(w, v)|
‖w‖X ‖v‖Y

≤MUB =:
√

2 max{1,Ma} <∞.

Proof. Follows from (2.4), the definitions of ‖·‖X , ‖·‖Y as well as Cauchy-Schwarz’s,
Hölder’s and Young’s inequalities. �

Proposition 2.3 (cf. [14], A.2). The form b satisfies an inf-sup condition, i.e.,

(2.6) β := inf
06=w∈X

sup
06=v∈Y

|b(w, v)|
‖w‖X ‖v‖Y

≥ βLB :=
αa min{1,M−2

a }√
2 max{1, β−1

a }
> 0,

with βa(t) := infφ∈V supψ∈V
a(t;ψ,φ)
‖ψ‖V ‖φ‖V and βa := inft∈I βa(t).

Proof. We follow the argumentation in [14]. Let 0 6= w ∈ X be given and define

zw(t) := (A(t)∗)
−1
ẇ(t) for the adjoint A∗(t) of A(t), i.e. the operator A∗ : V ′ →

V with 〈A∗(t)ψ, φ〉 = a(t;φ, ψ). The bound ‖(A∗(t))−1‖ ≤ β−1
a then yields for

vw(t) := zw(t) + w(t) that

‖vw‖Y ≤
√

2 max{1, β−1
a }‖w‖X <∞.

By definition of zw and (2.5), 〈ẇ(t), zw(t)〉 = a(t; zw(t), zw(t)) ≥ αa‖zw(t)‖2V ≥
αa
M2
a
‖ẇ(t)‖2V ′ . Moreover, the periodicity of w ∈ X and a(t;w(t), zw(t)) = 〈w, ẇ(t)〉
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implies [ẇ, w]+A[w, zw] = [ẇ, w]+[w, ẇ] =
∫ T

0
d
dt‖w(t)‖2Hdt = ‖w(T )‖2H−‖w(0)‖2H =

0, so that

b(w, vw) = [ẇ, zw] + [ẇ, w] +A[w, zw] +A[w,w]

≥ αa min{1,M−2
a }‖w‖2X ≥

αa min{1,M−2
a }√

2 max{1, β−1
a }
‖w‖Xx‖vw‖Y > 0.

As w ∈ X was arbitrary, the inf-sup condition is fulfilled. �

Proposition 2.4. Let the bilinear form a satisfy (2.4) and (2.5). Then, the problem
(2.1) is well-posed.

Proof. We need to verify the conditions of the Babuška-Aziz theorem. Since con-
tinuity and the inf-sup-condition have been shown already in Propositions 2.2
and 2.3, it only remains to verify the subjectivity, namely sup06=u∈X |b(u, v)| >
0 for all 0 6= v ∈ Y. Let 0 6= v ∈ Y. If we can find some z ∈ X with
〈ż(t), w〉 + a(t, z(t), w(t)) = a(t, v(t), w(t)) for all w ∈ Y, and t a.e. on (0, T ),
we obtain b(z, v) = [ż, v] + A[z, v] = A[v, v] ≥ αa‖v‖Y > 0, so that then the sur-
jectivity condition is fulfilled. We are now going to construct such a z ∈ X in four
steps.

(1) Faedo-Galerkin approximation of an initial value problem. Let {φi : i ∈ N} be

a basis for V , Vn := span{φi, i = 1, . . . , n} and zn(t) :=
∑n
i=1 z

(n)
i (t)φi. Consider

for some (arbitrary) z0 ∈ H the problem

(2.7) 〈żn(t), wn〉+ a(t, zn(t), wn) = a(t, v(t), wn), zn(0) = zn0,

for all wn ∈ Vn a.e. on I, where zn0 is the orthogonal projection of z0 onto Vn. This
is a linear system of ODEs of the form

M (n) d

dt
z(n)(t) +A(n)(t)z(n)(t) = f (n)(t), t ∈ I a.e., zn(0) = zn0,

and has a solution zn ∈ C(I;Vn) with derivatives żn ∈ L2(I;Vn).

(2) A-priori estimates. Let wn = zn(t) in (2.7). Then, using (2.4), (2.5) and Young’s
inequality with some ε < αa

Ma
, we have

1

2

d

dt
‖zn(t)‖2H + αa‖zn(t)‖2V ≤ 〈żn(t), zn(t)〉+ a(t; zn(t), zn(t))

= a(t; v(t), zn(t)) ≤ Ma‖v(t)‖V ‖zn(t)‖V

≤ Maε‖zn(t)‖2V +
Ma

4ε
‖v(t)‖2V

and hence

(2.8)
1

2

d

dt
‖zn(t)‖2H + (αa −Maε)‖zn(t)‖2V ≤

Ma

4ε
‖v(t)‖2V

As αa −Maε ≥ 0, integration over [0, s], s ∈ [0, T ], yields

‖zn(s)‖2H−‖zn(0)‖2H ≤
Ma

2ε

∫ s

0

‖v(t)‖2V dt,(2.9)

hence sups∈[0,T ]‖zn(s)‖2H ≤ c‖z0‖2H + Ma

2ε ‖v‖
2
Y < ∞ for some c > 0. Thus

{zn}n∈N is uniformly bounded in L∞(I;H). Similarly, we conclude from (2.8) with
s = T that 2(αa −Maε)‖zn‖L2(I;V ) ≤ ‖zn(0)‖2H − ‖zn(T )‖2H + Ma

2ε ‖v‖
2
Y < ∞, so

that {zn}n∈N is also uniformly bounded in L2(I;V ).
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(3) Periodicity. Abbreviating c̄ := Ma

4ε , ᾱ := 2 (αa−Maε)
c1

> 0 with ‖·‖H ≤ c1‖·‖V
and multiplying the inequality (2.8) by eᾱt yields

d

dt

(
eᾱt ‖zn(t)‖2H

)
= eᾱt

d

dt
‖zn(t)‖2H + eᾱtᾱ ‖zn(t)‖2H ≤ eᾱtc̄ ‖v(t)‖2V .

By integration over [0, T ], we obtain eᾱT ‖zn(T )‖2H−eᾱ0‖zn(0)‖2H ≤
∫ T

0
eᾱtc̄‖v(t)‖2V dt,

or rather

(2.10) ‖zn(T )‖2H ≤ e−ᾱT ‖zn(0)‖2H + c̄ e−ᾱT
∫ T

0

eᾱt‖v(t)‖2V dt.

Set M := {z ∈ Vn : ‖z‖H ≤ R :=
√

K
1−e−ᾱT } with K := c̄e−ᾱT

∫ T
0
eᾱt‖v(t)‖2V dt.

M is a convex and compact set in VN . Moreover if zn(0) ∈ M , (2.10) implies
that ‖zn(T )‖2H ≤ e−ᾱTR2 + K ≤ R, i.e. zn(T ) ∈ M . Since by Gronwall’s lemma
the mapping S : M → M , zn(0) 7→ zn(T ), is continuous, the existence of a fixed
point S(z̄n) = z̄n ∈M follows from Brouwer’s fixed point theorem. By the a-priori
estimates, the sequence {z̄n}n∈N is bounded in H, so that there exists a subsequence
(also denoted {z̄n}) converging weakly to some z̄ ∈ H.
(4) Convergence. Consider the periodic solution zn(t) from (3), i.e. the solution
of (2.7) with initial value zn0 = z̄n. From the a-priori estimates, we have that
{zn} is uniformly bounded in the separable space L2(I;V ), so that there exists a
subsequence (also denoted {zn}) converging weakly to some z in L2(I;V ).

Consider (2.7) for wn := θ(t)φj , θ(t) ∈ C1(I), and integrate over I. Integration
by parts of the first term then yields for all j = 1, . . . , n

−[zn, θ
′φj ] = 〈zn(0), θ(0)φj〉 − 〈zn(T ), θ(T )φj〉+A[v − zn, θφj ]

= 〈z̄n, θ(0)φj − θ(T )φj〉+A[v − zn, θφj ].

As zn ⇀ z in L2(I;V ) and z̄n ⇀ z̄ in H, we can pass to the limit n → ∞ and
obtain

(2.11) −[z, θ′φj ] = 〈z̄, θ(0)φj − θ(T )φj〉+A[v − z, θφj ].

This particularly holds true for all θ ∈ D(I), so that zt = A(·)(v − z) in the
distribution sense and zt ∈ L2(I;V ′) as A : L2(I;V )→ L2(I;V ′). Moreover, (2.11)
implies that for w ∈ C1(I;V ), we have −[z, ẇ]− 〈z̄, w(0)− w(T )〉 = A[v − z, w] =
[ż, w] = −[z, ẇ] + 〈z(T ), w(T )〉 − 〈z(0), w(0)〉, so that indeed z̄ = z(0) = z(T ) in H
and hence z ∈ X . With this z, the surjectivity condition is fulfilled. �

2.2. The quadratic nonlinear case. Let us now consider the case of a quadratic
nonlinear operator C(t) = A(t) + N , where A(t) ∈ L(V, V ′) as above and N :
V × V ′ → R is defined by

〈N(φ), ψ〉 := n(φ, φ, ψ), φ, ψ ∈ V,

with n : V ×V ×V → R being a trilinear form. We use the abbreviation N [w, v] :=∫ T
0
n(w(t), w(t), v(t)) dt. For simplicity of the presentation, we assume that N

is time-invariant. Most of what is said, however, can easily be extended to the
instationary case as well.
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We make the following assumptions:

n(φ, ψ, η) ≤Mn‖φ‖V ‖ψ‖V ‖η‖V , ∀φ, ψ, η ∈ V,(2.12)

n(φ, φ, φ) ≥ 0, ∀φ ∈ V,(2.13)

N [wn, wn, v]→ N [w,w, v] for all wn, v ∈ L2(I, V ) with(2.14)

wn ⇀ w in L2(I;V ), wn
∗
⇀ w in L∞(I;H) as n→∞.

N(w) ∈ L2(I, V ′) for w ∈ L2(I, V ).(2.15)

We are now ready to prove an existence result.

Proposition 2.5. Let the bilinear form a fulfill (2.4) and (2.5) and assume that
(2.12)-(2.15) hold. Then there exists a solution u ∈ X of (2.1).

Proof. The proof is in part similar to the proof of Proposition 2.4 and we refer the
reader to some details given there. We start again by a Faedo-Galerkin approxi-
mation of an initial value problem (IVP) similar to (2.7). In the quadratic case, it
reads

(2.16) 〈u̇n(t), wn〉+a(t, un(t), wn)+n(un(t), un(t), wn) = 〈f(t), wn〉, un(0) = un0,

for all wn ∈ Vn for t ∈ I a.e. Due to our assumptions, this finite-dimensional
nonlinear IVP has a solution un on some interval [0, tn] ⊆ I. In view of (2.13), we
can follow step (2) with right hand side f ∈ L2(I, V ′) in the proof of Proposition
2.4 to show that {un} is uniformly bounded in L2(I;V ) so that we can extend un
to [0, T ] = I. Again, we also obtain uniform boundedness in L∞(I,H), so that due
to (2.13) we can follow step (3) in the proof of Proposition 2.4 to show that there
exists a periodic solution un in H for all n ∈ N.

For these periodic solutions, we obtain again from the a-priori estimates the
existence of a subsequence {un} converging weakly in L2(I, V ) to some ũ in L2(I, V )
and to ū ∈ L∞(I,H) in the weak-* sense. It is not difficult to show that on
L2(I, V ) ∩ L∞(I,H) both limits coincide. Finally, we have to show that this limit
solution u solves (2.1). After integration by parts in (2.16), assumption (2.14) and
the above considerations allow for any ϕ ∈ C1(I), w ∈ V , to pass to the limit:

(2.17) −[u, ϕ̇w] +A[u, ϕw] +N [u, ϕw] = 〈ū, (ϕ(0)− ϕ(T ))w〉+ 〈f, ϕw〉

with ūn = un(0) = un(T ) for all wn ∈ Vn. Taking ϕ ∈ C∞0 (I) shows that ut +
Au + N(u) = f in the sense of distributions, so that it follows from Au, N(u),
f ∈ L2(I, V ′) that ut ∈ L2(I;V ′), which implies u ∈ X . Using v ∈ C1(I;V ) ↪→
L2(I;V ) as test function in (2.17) shows b(u, v) = f(v) for all v ∈ Y.

Additionally, u ∈ X implies u ∈ C(I,H), so that the periodicity condition in H
is correctly posed. �

We can relax assumption (2.15) to N(w) ∈ L1(I, V ′) for w ∈ L2(I, V ), which is
trivially fulfilled if (2.12) holds:

‖N(w)‖L1(I;V ′) =

∫
I

sup
φ∈V

n(w(t), w(t), φ)

‖φ‖V
dt ≤Mn‖w‖2L2(I;V ).

In that case, a solution u of (1.1) is only in C(I, V ′), so that the periodicity con-
ditions can only be enforced in V ′. This is summarized in the following existence
result.
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Corollary 2.6. Assume (2.4),(2.5) and (2.12)-(2.14). Then there exists a solution
u ∈ L2(I, V ) ∩ L∞(I,H) with u̇ ∈ L1(I, V ′) to the problem

(2.18) b̃(u, v) = f̃(v) ∀ v = (v1, v2) ∈ Ŷ := Y × V,

where b̃, f̃ as in (2.2). This solution is in C(I, V ′).

Proof. As in the proof of Proposition 2.5. With N(u) ∈ L1(I, V ) we have ut ∈
L1(I, V ′), so that u ∈ C(I, V ′) (cf. [15, p. 169]). �

Remark 2.7 (Local Uniqueness). We cannot expect to obtain globally unique so-
lutions for the nonlinear problem. However, similar to [2],[17], the Brezzi-Rappaz-
Raviart theory may allow the construction of a-posteriori estimates that ensure local
well-posedness.

3. Error analysis

It is an obvious advantage of space-time variational methods that we obtain a
variational problem that can be approximated in terms of a Petrov-Galerkin scheme
and analyzed almost as in the elliptic case. The price to be paid, however, is the
obvious increase of the dimension.

3.1. Discretization and a priori estimates. Let XN := S∆t ⊗ Vh ⊂ X , YN :=
Q∆t ⊗ Vh ⊂ Y be finite-dimensional trial and test spaces of dimension N , where
S∆t ⊂ H1

per(I), Q∆t ⊂ L2(I) and Vh ⊂ V are e.g. finite element spaces with

respect to triangulations T time
∆t := {tk := k∆t, k = 0, . . . , r}, ∆t := T

r , r ∈ N,
in time and T space

h := {Ti : i = 1, . . . , nspace} in space. We could think of S∆t

as being piecewise linear periodic finite elements, where periodicity is enforced by
a coupling of the corresponding degrees of freedom, and Q∆t as being piecewise
constant finite elements with respect to the same mesh. If Vh = span{φ1, . . . , φq},
we get dim XN = dim YN = r q.

Using this tensor product structure, we can derive the discrete system as follows.
Let uN =

∑r
k=1

∑q
i=1 u

k
i σ

k ⊗ φi =: uTNΣ∆t ⊗ Φh, where S∆t = span{σk : k =
1, . . . , r}. Set Q∆t = span{τk : k = 1, . . . , r}, then we get

b(uN , τ
l ⊗ φj) = [u̇N , τ

l ⊗ φj ] + C[uN , τ l ⊗ φj ]

=

r∑
k=1

q∑
i=1

uki (σ̇k, τ l) 〈φi, φj〉+

∫
I

c(t;uN (t), τ l(t)⊗ φj) dt

=: [(G∆t ⊗Mspace
h )uN ]l,j + [C(uN )]l,j ,

with (G∆t = [(σ̇k, τ l)]k,l, M
space
h = [〈φi, φj〉]i,j and C depends on the form c(·; ·, ·).

In the linear time-invariant case, we get

[C(uN )]l,j =

r∑
k=1

q∑
i=1

uki (σk, τ l) a(φi, φj) =: [(M̃time
∆t ⊗Ah)uN ]l,j

with M̃time
∆t := [(σk, τ l)]k,l and Ah = [a(φi, φj)]i,j . Standard a priori estimates

similar to Cea’s lemma can be derived. Here, we are more interested in a posteriori
error estimates that are applicable in the RB context, i.e., estimates in terms of
dual norms of an appropriate residual. We will describe later how to compute such
norms in the RBM.
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3.2. A posteriori error analysis. The space-time formulation does not restrict
the representation of the solution to a discrete number of time steps and thus allows
the treatment of evolution equations with arguments from the elliptic theory. Let
uN ∈ XN denote the discrete solution, i.e.,

(3.1) b(uN , vN ) = f(vN ), ∀vN ∈ YN ,

then we obtain Galerkin orthogonality, i.e., b(u−uN , vN ) = 0 for all vN ∈ YN . We
define the residual

(3.2) r(v) := f(v)− b(uN , v) = b(u− uN , v), v ∈ Y,

and obtain the following error estimates for the state variable.

Proposition 3.1. The following a posteriori error bounds hold:

‖u− uN ‖Y ≤
1

αa
‖r‖Y′ , ‖u− uN ‖X ≤

1

β
‖r‖Y′ .

Proof. For the first estimate, we observe that b(v, v) = 1
2

(
‖v(T )‖2H − ‖v(0)‖20

)
+∫ T

0
a(t, v, v)dt ≥ αa ‖v‖2Y by periodicity and (2.5). The claim then follows from

(3.2). The second estimate follows directly from the definition of β and (3.2). �

For an error functional s : X → R, s ∈ X ′, the dual problem reads

(3.3) z ∈ Y : b(w, z) = s(w), ∀w ∈ X ,

along with its discrete approximation zN ∈ YN . With the dual inf-sup constant

(3.4) β∗ := inf
06=w∈Y

sup
06=v∈X

b(v, w)

‖v‖X ‖w‖Y

and the dual residual r∗(w) := s(w) − b(w, zN ) = b(w, z − zN ), w ∈ X , we obtain
the following primal-dual output estimates.

Proposition 3.2. The output error is bounded by the a posteriori estimate

|s(u)− s(uN )| ≤ Mb

β · β∗
‖r‖Y′‖r∗‖X ′ .

Proof. Using Galerkin orthogonality we have

|s(u)− s(uN )| = |b(u− uN , z)| = |b(u− uN , z − zN )|

≤ Mb ‖u− uN ‖X ‖z − zN ‖Y ≤
Mb

β · β∗
‖r‖Y′‖r∗‖X ′

by Proposition 3.1 and the definitions of r∗ and β∗. �

Remark 3.3 (Eigenvalue problems). The constants αa, β, Ma and Mb can all be
formulated in terms of Rayleigh quotients and can hence be calculated as solutions to
generalized (space-time) eigenvalue problems, see e.g. [12]. For time-independent
operators A(t) ≡ A, αa and Ma can even be obtained by generalized eigenvalue
problems in space only.
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4. Reduced Basis Methods

Now, let µ ∈ D ⊂ RP be a parameter vector that the the form b (and possibly
also the right-hand side f) is assumed to depend on. Both in real-time and/or
multi-query contexts, reduced basis methods can reduce the computational effort
of solving (3.1) for each considered parameter by constructing the basis of a reduced
space XN ⊂ XN , N � N , that is a low-dimensional approximation of the solution
manifold {u(µ), µ ∈ D}.

Such a reduced basis {ζ1, . . . ζN} is typically determined in a training or offline
phase by

• iteratively choosing a sample set of parameters {µ1, . . . , µN} e.g. by a
(POD-)Greedy method based upon an a-posteriori error estimate,
• computing the solutions u(µ1), . . . , u(µN ) ∈ XN (also called snapshots) by

using a sufficiently fine ‘truth’ discretization XN , YN of (2.1),
• possibly orthogonalizing the snapshots.

The reduced space is then defined as XN := span{u(µ1), . . . , u(µN )} accompa-
nied by some test space YN such that the discrete problem is uniformly stable.
Reduced basis solutions uN (µ) ∈ XN for other parameters are obtained in the
online phase via the Galerkin projection of (3.1) onto XN , YN , i.e.

b(uN (µ), vN ;µ) = f(vN ;µ) ∀vN ∈ YN .

A crucial requirement for the feasibility of the approach is theN -independence of all
online quantities. A necessary assumption is the existence of affine decompositions
of all linear and bilinear forms, e.g.

(4.1) b(w, v;µ) =

Q∑
q=1

θq(µ) bq(w, v), w ∈ X , v ∈ Y,

with parameter-dependent functions θq : D → R and parameter-independent forms
bq : X × Y → R, 1 ≤ q ≤ Q. This allows the N -dependent precomputation of
all parameter-independent quantities in the offline phase and reduces e.g. the as-
sembly for online computations to matrix-vector multiplications of dimension N .
If necessary, empirical interpolation methods (EIM) can be employed to construct
affine approximations for all involved forms [1].

4.1. Space-Time approach. It is one of the nice features of the space-time ap-
proach that we can basically use the RBM techniques as developed for elliptic
problems. Hence, we can be relatively short here and refer the reader for more
details e.g. to [12].

4.1.1. A-posteriori error estimates. Allowing for the parameter-dependence of so-
lution as well as continuity and stability constants, the a-posteriori estimates of Sec-
tion 3.2 can easily be transferred. In order to obtain efficient (i.e. N -independent)
estimates, we additionally assume the existence of computable lower or upper

bounds for all involved constants, e.g. βLB(µ) ≤ β(µ) := infw∈X supv∈Y
b(w,v;µ)
‖w‖X ‖v‖Y

with βLB(µ) only N -dependent. Such bounds can either be derived by theoret-
ical results as in Proposition 2.3 or by a so-called Successive Constraint Method
(SCM) [8] that uses eigenvalue problem solutions computed offline to obtain online
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bounds through linear optimization procedures. With these minor modifications
we directly obtain

Corollary 4.1. Denote 0 < αLB(µ) < αa(µ), 0 < βLB(µ) ≤ β(µ) and MUB(µ) ≥
Mb(µ) and well as the reduced output sN (µ) := s(uN (µ)). Then the following a-
posteriori estimates hold

‖uN (µ)− uN (µ)‖Y ≤
1

αLB(µ)
‖rN (µ)‖Y′ =: ∆Y,STN (µ),

‖uN (µ)− uN (µ)‖X ≤
1

βLB(µ)
‖rN (µ)‖Y′ =: ∆X ,STN (µ),

|s(µ)− sN (µ)| ≤ MUB(µ)

βLB(µ) · β∗LB(µ)
‖rN (µ)‖Y′‖r∗N (µ)‖X ′ =: ∆s,ST

N (µ).

Remark 4.2 (Restriction to reduction error). It has to be emphasized that the er-
ror analysis in reduced basis methods is only concerned with the error the Galerkin
projection onto XN introduces with respect to the N -dimensional truth system. Gen-
erally, it is assumed that uN (µ)→ u(µ) for N →∞ and uN presents an acceptable
approximation of the exact solution so as to justify the neglect of the discretiza-
tion error in substituting X by XN . Consequently, the residual in Corollary 4.1 is
defined as

rN (v;µ) := f(v)− b(uN (µ), v;µ) = b(uN − uN , v), v ∈ YN .

The evaluation of the above error bounds involves the dual norm of rN (µ) wich
can be obtained via the Riesz representor ε̂N (µ) ∈ YN of the residual, i.e. the
solution of

(ε̂N (µ), v)Y = rN (v;µ) ∀v ∈ YN ,
as ‖rN (µ)‖Y′ = ‖ε̂N (µ)‖Y . Not only can this Riesz representor be computed in the
RB context, but moreover the affine decomposition of f and b can be exploited to
divide this computation into an offline phase – the calculation of representors of each
parameter-independent term and the precomputation of the inner products between
those representors – and the fast and N -independent online phase consisting only
of the composition of those products, the parameter function evaluations and the
current reduced basis solution uN (µ) to obtain ‖ε̂N (µ)‖Y directly, cf. [12]. Note
that each offline Riesz representor calculation – in total Qf +NQb problems with
Qf , Qb the number of affine terms of f and b – here implies the solution of a
space-time problem while the online effort is not different from the elliptic case.

4.1.2. Space-time reduced basis. As mentioned above, a space-time reduced basis is
contructed iteratively in the offline training phase by a Greedy procedure. In short
summary, in each iteration the parameter for which uN is worst approximated by
the current reduced basis is chosen out of a training set Ξtrain. Instead of the
infeasibly expensive calculation of arg maxµ∈Ξtrain

‖uN (µ) − uN (µ)‖, the error is
replaced by the corresponding efficient error estimate.

For each of those parameters, the snapshot uN (·, ·;µ) ∈ XN is determined as the
space-time solution of a N -dimensional truth problem (3.1). The orthogonalized
snapshots form the basis {ξ1, . . . , ξN} of XN and YN , respectively.

Using this space-time basis, each online solution for a new parameter µ ∈ D
requires the solution of a N -dimensional (dense) equation system, i.e. a computa-
tional effort of O(N3).
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4.2. Fixed point methods. The usual approach to time-dependent problem is
the use of time-stepping methods. Fixed-point approaches are an extension of
such methods to obtain periodic or stationary solutions. Observing that periodic
solutions are fixed points of the operator S : V → V , u(0) 7→ u(T ), a sequence
of initial value problems (IVP) is solved where in each iteration the initial value is
taken as the final time solution of the previous iteration. For the ease of exposition,
we restrict ourselves to the implicit Euler method and consider a uniform time
discretization {tk := k∆t}k=0,...,K with tK := T , denoting the discrete solution at
time tk by ukh ∈ Vh. To obtain a periodic snapshot for a given parameter, one thus
solves

〈ukh(µ), wh〉+ ∆t a(tk, u
k
h(µ), wh;µ) = 〈uk−1

h (µ), wh〉+ ∆t 〈f(tk;µ), wh〉 ∀wh ∈ Vh,

beginning with an (arbitrary) initial value u0,(0)(µ) := u
(0)
h (0;µ) and setting u0,(ν)(µ) =

uK,(ν−1)(µ) in subsequent iterations until ‖u0,(I)(µ)− u0,(I−1)(µ)‖V ≤ tol for some
prespecified tolerance. In the following, we denote by I = I(tol) the required num-
ber of fixed-point iterations before convergence.

The reduced basis space in such a setting is then constructed as a spatial ap-
proximation VN ⊂ Vh and the Galerkin projection uN (µ) := {ukN (µ), k = 1, . . . ,K}
corresponds to a solution of the online fixed point problem

〈ukN (µ), wN 〉+ ∆t a(tk, u
k
N (µ), wN ;µ)

= 〈uk−1
N (µ), wN 〉+ ∆t 〈f(tk;µ), wN 〉 ∀wN ∈ VN , k = 1, . . . ,K,

with u0
N (µ) = uKN (µ).

Remark 4.3 (Online effort). Note that the above RB space decreases only the
spatial, not the temporal discretization dimension. The latter is fixed to the original
number of time steps K that is necessary to obtain satisfactorily truth solutions.
Moreover, the computation of a periodic reduced solution uNFP

(µ) necessitates a full
fixed-point procedure, resulting in an online computational effort of O(IKN3

FP). In
contrast, a space-time RB space of dimension NST leads to an online effort of
O(N3

ST), as only one dense linear equation system has to be solved.

4.2.1. A posteriori estimates. Unlike the space-time setting, the time-stepping frame-
work allows the derivation of a-posteriori error estimates only in a time-discrete
norm that may be considered as an approximation of ‖ · ‖Y . More specifically, we
have the following error bound.

Proposition 4.4. Denote by ekN (µ) := uh(tk, µ)−ukN (µ) the error in the k-th time
step and by rkN (·;µ) : V → R the corresponding residual , i.e.

rkN (w;µ) := ∆t 〈f(tk;µ), w〉 − 〈ukN (µ)− uk−1
N (µ), w〉 −∆t a(tk, u

k
N (µ), w;µ).

The error uh(µ)− uN (µ) is then bounded in a discrete spatio-temporal norm as(
∆t

K∑
k=1

‖ekN (µ)‖2V

) 1
2

≤

(
∆t

α2
LB(µ)

K∑
k=1

‖rkN (·;µ)‖2V ′

) 1
2

=: ∆FP
N (µ).(4.2)

Proof. For k = 1, . . . ,K, the error eN fulfills the recursion

〈ekN (µ), wN 〉+ ∆t a(tk, e
k
N (µ), wN ;µ) = 〈ek−1

N (µ), wN 〉+ ∆t rkN (wN ;µ) ∀wN ∈ VN .
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Testing with wN := ekN (µ) and using coercivity (2.5) as well as Young’s inequality,
we obtain

〈ekN (µ), ekN (µ)〉+ ∆t αLB(µ)‖ekN (µ)‖2V ≤ 〈ekN (µ), ekN (µ)〉+ ∆t a(tk, e
k
N (µ), ekN (µ)

= 〈ek−1
N (µ), ekN (µ)〉+ ∆t rkN (ekN (µ);µ)

≤
√
〈ek−1
N (µ), ek−1

N (µ)〉
√
〈ekN (µ), ekN (µ)〉+ ∆t ‖rkN (·;µ)‖V ′‖ekN (µ)‖V

≤ 1

2

(
〈ek−1
N (µ), ek−1

N (µ)〉+ 〈ekN (µ), ekN (µ)〉

+ ∆t
‖rkN (·;µ)‖2V ′
αLB(µ)

+ ∆t αLB(µ)‖ekN (µ)‖2V
)
,

so that

〈ekN (µ), ekN (µ)〉 − 〈ek−1
N (µ), ek−1

N (µ)〉+ ∆t αLB(µ)‖ekN (µ)‖2V ≤ ∆t
‖rkN (·;µ)‖2V ′
αLB(µ)

.

Summing over all time steps yields with the periodicity of the error

〈eKN (µ),eKN (µ)〉 − 〈e0
N (µ), e0

N (µ)〉+ ∆t αLB(µ)

K∑
k=1

‖ekN (µ)‖2V

= ∆t αLB(µ)

K∑
k=1

‖ekN (µ)‖2V ≤
∆t

αLB(µ)

K∑
k=1

‖rkN (·;µ)‖2V ′ .

�

Remark 4.5. Due to the periodic structure of both truth and RB solution, ‖e0
N (µ)−

eKN (µ)‖ ≤ tol, so that the norm in (4.2) is a trapezoidal approximation of ‖·‖Y . Note
that the quadrature quality is restricted a-priori by the choice of time discretization.

4.2.2. Time-independent reduced basis. The construction of the spatial reduced
space VN ⊂ Vh is usually done with a so-called POD-Greedy procedure [7] that
roughly consists of the following two steps:

(1) Based on the error estimator (4.2), choose greedily the next snapshot pa-
rameter µ out of some training set and compute the corresponding snapshot,
i.e. the trajectory {ukh(µ), k = 1, . . . ,K}.

(2) Project the trajectory onto the existing reduced basis, subject the pro-
jection error to a POD with respect to time and add the first mode as
(time-independent) basis function.

As in the space-time approach, the computation of the error bound involves lower
bounds of the coercivity constant αa(µ) as well as dual norms of the residuals, here
for each time step. Offline-online decomposition can be exploited in the calculation
of these quantities in an analogous way if additionally to the assumption of affine
structure (4.1) in the parameter, time and space can also be separated, i.e. if the
involved linear and bilinear forms have the structure

a(t, w, v;µ) =

Q∑
q=1

θq(t, µ) aq(w, v), w, v ∈ V,

with θq : [0, T ] × D → R and parameter-independent forms aq : V × V → R,
1 ≤ q ≤ Q. If this assumption is not met, either spatial reduced bases V kN have to
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be constructed for each time step separately [4] or a temporal EIM [5] has to be
employed to obtain the required structure.

The calculation of αLB(µ) then involves spatial generalized eigenvalue problems,
while the computation of ‖rkN (·;µ)‖V ′ requires again Qf +NQa Riesz representors,
here in V .

Remark 4.6 (Separation of offline and online solution method). In principle, the
solution method for the truth solutions in the offline phase and that for the reduced
solutions in the online phase can be chosen independently. Space-time snapshots
can be subjected to a POD in order to form a spatial reduced basis; and similarly the
trajectories {ukh(µ), k = 1, . . . ,K} can be reinterpreted as space-time basis functions
for an appropriate time basis.

However, both methods cannot be separated completely. As the a-posteriori error
bounds involve reduced solutions, their type is implied by the choice of RB solution
method, even during training. Moreover, recall that in the offline phase we calculate
not only the basis functions but all N -dependent, parameter-independent quantities
necessary for RB solutions and error bounds, like the evaluation of the bilinear
forms at the basis functions, the Riesz representor inner products etc. Obviously,
this has to be done in accordance with the desired online method. In order to
construct space-time reduced bases, for example, space-time Riesz representors have
to be determined, even if a time-stepping method is used to compute the snapshots
themselves.

In the following, we use always the same method for both offline and online
solutions.

5. Numerical Results

We consider the following parameterized periodic convection-diffusion-reaction
problem on [0, T ]× Ω with T = 1, Ω = (0, 1):

(5.1)
ut − uxx + µ1( 1

2 − x)ux + µ2u = cos(2πt) on Ω,

u(t, 0) = u(t, 1) = 0, u(0, x) = u(T, x),

with parameter domain D = [0, 30]× [−9, 15].

For the numerical experiments, we use for the space-time approach a Matlab
implementation of the discretization described in Section 3.1, while the fixed point
calculations are based on the rbOOmit framework [11], a plugin to the finite element
library libmesh [9].

Inf-sup constant. Non-coercive initial value problems can be treated with time-
stepping methods using a specific energy bound stability factor (respectively its
lower bound) at each step tk, k = 1, . . . ,K [10]. This bound, however, decreases ex-
ponentially in T , rendering long-term integration impossible. It has been observed
for an initial value problem similar to (5.1) that the space-time inf-sup constant
β(µ), in contrast, decreases only linearly in T if there is no reaction (µ2 = 0),
while β((0, 0)) ≡ 1 and β((0, µ2)) ∼ e−µ2T [16] . In order to analyze the behaviour
of β(µ) = β(∆t, h;µ) in the periodic context, we compute the corresponding gen-
eralized eigenvalue problem for different discretizations ∆t ∈ {10, 50, 100}, h ∈
{10, 50, 70, 100} at chosen parameter values µ ∈ {(0,−10), (0,−7), (0,−3), (0, 0),
(0, 10), (10,−12), (10,−7), (10, 0), (10, 10), (20,−15), (20,−5), (20, 5)}. The results
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are presented in Figure 1, where we display in Figures 1(a) and 1(b) the behaviour
of β(µ) for the considered parameter values at ∆tmin = 0.01 for decreasing h and
at hmin = 0.01 for decreasing ∆t, respectively; both normalized by considering the
absolute error with respect to β(∆tmin, hmin;µ). It is apparent that the inf-sup
constant depends little on the discretization. The full dependence of both time and
space discretization for two parameters, depicted in Figures 1(c) and 1(d), under-
lines this observation. Note that the energy approach of [10] is not even applicable
in the periodic setting (mainly because the initial error e0 cannot be bounded here).
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Figure 1. Stability of inf-sup constant

Moreover, to investigate the quality of the analytical bound in (2.6), we plot in
Figure 2 both the inf-sup constant βµ as well as the lower bound βLB(µ) over the

extended parameter domain D̃ = [0, 30] × [−15, 15]. Note that we resort to eigen-
value problems in space in order to determine continuity and coercivity constants
of the (symmetric part) of the bilinear form a(·, ·;µ) in (2.6). This still reduces
the computational effort significantly in comparison with the space-time eigenvalue
problem for β(µ). As expected, the inf-sup constant (Fig. 2(a)) degrades with
growing convection as well as with decreasingly negative reaction parameters and
reliably indicates the parameter region of non-stability (note that the values with
β2(µ) < 0 for parameters near (0,-15) are not plotted). The bound (Fig. 2(b))
mirrors this behaviour in the region of low and no stability, but proves to provide
poor estimates for large parameter values. This is mainly due to the influence of the
continuity constant Ma that grows in both parameters and enters as M−2

a into the
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lower bound. For this example, one thus would rather resort to a SCM to obtain
efficient and good online estimates for the inf-sup constant.
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Figure 2. Inf-sup constant and bound

Reduced Basis construction. The offline training phase is controlled by the
Greedy error maxµ∈Ξtrain ∆YN (µ), which serves as approximation quality indicator
of the reduced basis. Its exponential decrease with growing number of basis func-
tions is depicted in Figure 3(a). As training set, we use for both space-time and
fixed point method a uniform set Ξtrain ⊂ D of parameters with ntrain = |Ξtrain| =
20 × 20 = 400. Space and time discretization are ∆t = 0.02, h = 1

32 for both
methods.
The Greedy error behaviour determines the size of the reduced basis that is used
in the online phase to calculate the reduced solutions uN (µ). We see in Figure
3(a) that the space-time approach yields approximately twice the number of basis
functions (denoted by NST) compared to the fixed point method (NFP basis func-
tions) for the same approximation quality. Recall that this implies an online effort
of O(N3

ST) = O(8N3
FP), which is a substantial improvement over O(I ·50 ·N3

FP), the
effort of an online fixed point solution. In our example, the number of fixed point
iterations I is not prohibitively large: I ∈ {1, . . . , 11}, depending on parameter and
RB size (I ∈ {2, . . . , 5} for most parameters). Note that the fixed point conver-
gence can sometimes be accelerated by systematic choices of initial values, yet a
certain number of iterations as well as of time steps K is necessary to maintain
online solution quality.

The difference in online computational effort is also visualized in Figure 3(b),
where we compare the runtime reduction of the reduced bases obtained for each
method. We measure this reduction by the ratio between the time needed to com-
pute an online solution uN (µ) and that to calculate the corresponding truth solution

uN (µ), i.e. time in s to obtain uN (µ)
time in s to obtain uN (µ) , in % for N = 1, . . . , NFP and N = 1, . . . , NST,

respectively. However, due to the different computational complexities of both the
truth and the reduced solutions this comparison may be somewhat misleading. To
provide some more insight, we additionally plot the runtime gain of the fixed-point
RB with respect to the (more expensive) space-time truth solution. Note that this



16 KRISTINA STEIH AND KARSTEN URBAN

0 2 4 6 8 10 12 14
10−8

10−5

10−2

101

104

N

G
re

ed
y

E
rr

or
m

ax
µ
∈

Ξ
t
r
a
i
n

∆
Y N

(µ
)

Training (Offline)

Space-Time (Y)

Fixed-Point

(a) Training

0 2 4 6 8 10 12 14
0 %

2 %

4 %

6 %

N

Online runtimes (in % of offline times)

Space-Time

Fixed-Point (Red. wrt. fixed-point truth)

Fixed-Point (Red. wrt. space-time truth)

(b) Runtime reduction

0 2 4 6 8 10 12 14
10−8

10−5

10−2

101

104

N

M
ax

.
E

rr
or

ov
er

Ξ
te

st

Error and bound over test set

Space-Time: Error

Bound

Fixed-Point: Error

Bound

(c) Test

0 2 4 6 8 10 12 14
0

1

2

3

4

5

N

A
v
.

E
ff

ec
ti

v
it

y
η a

v

Average effectivity over test set

Space-Time

Fixed-Point

(d) Effectivity of error bounds

Figure 3. Comparison of space-time and fixed-point approach for
the convection-diffusion-reaction example.

corresponds to a direct comparison of online runtimes. It is clearly visible that the
space-time reduced solution provides a greater reduction for any approximation
quality (even for the maximal basis size NST) and can be obtained faster than any
fixed-point RB solution. (Recall, however, that both methods are implemented in
different frameworks.)
It is also of interest whether the error bounds are adequate surrogates for the true
approximation error. We have proven in Sections 4.1.1 and 4.2.1 that the respec-
tive estimates are indeed upper bounds, so that the error is never underestimated.
However, large overestimation may lead to unnecessarily large reduced bases. In
Figure 3(c), the maximal true error over a test set Ξtest ⊂ D, uniformly spaced
over [0.5, 29.5] × [−8.5, 14.5] with ntest = |Ξtest| = 15 × 15 = 225, and the corre-
sponding error bounds for both methods are shown. It is obvious that both error
bounds reliably reflect the behaviour of the true errors. To further quantify this
property, we present in Figure 3(d) the average effectivities of the bounds over the

test set, i.e. ηav := 1
ntest

∑
µ∈Ξtest

∆N (µ)
‖uN (µ)−uN (µ)‖ . This value is slightly larger for

the space-time error bound but sufficiently small in both methods: for N ≥ 4 the
true error is never overestimated by a factor larger than 2. Note that for the maxi-
mum basis size both error bounds and errors are in the order of (the square root of)
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machine precision, effectivity computations are hence little reliable and not plotted.

Finally, note that all presented results for the space-time approach up to this
point are obtained with respect to the norm in Y to ensure comparability with the
fixed-point method, as the time-stepping approach does not allow for another mea-
sure. In Figure 4, we show without further comment the training and test behaviour
of the space-time method with respect to norm and error bound in X . It is obvious
that all above observations for ‖·‖Y can be transferred without modification.
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Figure 4. Space-time approach using ‖·‖X and ∆XN (µ).

6. Conclusion

We have considered space-time methods for time-periodic problems and estab-
lished conditions for well-posedness as well as lower bounds for the inf-sup constant.

In order to apply reduced basis methods in the space-time setting, we derived
error bounds for the state variable in both X - and Y-norm as well as for linear
time-averaged outputs and discussed basis construction by a Greedy method and
the computation of the involved residual dual norms and stability constants. This
was contrasted with both POD-Greedy basis construction and the discrete error
bounds obtainable in a time-stepping setting using fixed-point methods.

The numerical results for a convection-diffusion-reaction equation show that the
space-time inf-sup constant correctly reflects the stability of the problem and is
stable with respect to the underlying discretization. Unfortunately, is has also
been observed that in this example the effectivity of the analytical lower bound
degrades for large parameters as the continuity constant grows in µ. As thus the
true stability of the problem is not adequately represented, other efficient inf-sup
estimators have to be used in online calculations.

RB training for both space-time and fixed-point method revealed that the basis
constructed by the space-time approach is approximately twice as large as the fixed-
point basis for the same approximation quality. However, as the online fixed-point
problem is avoided, significantly lower online computation times can be observed
for the space-time approach. Moreover, we demonstrated that all error bounds are
sufficiently efficient to provide good surrogates for the true error.
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In future, we would like to address the problem of the computationally intensive
offline space-time truth solutions. We have seen in this paper that space-time
reduced bases may for some problems significantly reduce online computation costs
while offline costs are rather large. Other problems, especially those involving
time-variant operators, may however not be computable directly with time-stepping
methods but require additional treatment, e.g. approximations of the operators by
EIMs in time. In such cases, space-time approaches may be preferable.

Moreover, we will investigate the application of adaptive space-time solutions
methods, e.g. with wavelet algorithms, which reduce the increase in computational
cost that is due to the additional (time) dimension. First experiments in that di-
rection indicate the need for an accurate monitoring of the tolerable approximation
error, particularly in the computations of the Riesz representors.
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