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AN IMPROVED ERROR BOUND FOR REDUCED BASIS

APPROXIMATION OF LINEAR PARABOLIC PROBLEMS

KARSTEN URBAN AND ANTHONY T. PATERA

Abstract. We consider a space-time variational formulation for linear para-

bolic partial differential equations. We introduce an associated Petrov-Galerkin
truth finite element discretization with favorable discrete inf-sup constant βδ,

the inverse of which enters into error estimates: βδ is unity for the heat equa-

tion; βδ decreases only linearly in time for non-coercive (but asymptotically
stable) convection operators. The latter in turn permits effective long-time

a posteriori error bounds for reduced basis approximations, in sharp contrast

to classical (pessimistic) exponentially growing energy estimates. The paper
contains a full analysis and various extensions for the formulation introduced

briefly in [13] as well as numerical results for a model reaction-convection-

diffusion equation.

1. Introduction

The certified reduced basis method (RBM) has been successfully applied to para-
bolic equations in the case in which the spatial operator is coercive [3, 4]. However,
for problems — linear or nonlinear [7] — in which the spatial operator (or lin-
earized spatial operator) is non-coercive, the standard L2-error bounds based on
energy estimates are very pessimistic. In particular, these energy estimates suggest
exponential growth in time even for problems which are asymptotically stable and
for which the actual error grows at most linearly with time.

In a recent paper [10] space-time adaptive numerical schemes for linear parabolic
initial value problems based upon wavelets have been introduced. One key ingredi-
ent there is the transformation of the partial differential equation into an equivalent
well-conditioned discrete (but still infinite-dimensional) system w.r.t. the wavelet
coefficients. In order to show this equivalence, a new proof for the well-posedness
of the space-time variational formulation of linear parabolic initial value problems
is presented in [10]. This proof contains an explicit lower bound for the inf-sup
stability constant. In the context of RBMs, it is well-known that the inverse of the
inf-sup-constant multiplied with the (computable) dual norm of the residual form
an a-posteriori error estimate in a (Petrov-)Galerkin scheme. A closer investigation
and modification of the proof in [10, Theorem 5.1, Appendix A] shows that a space-
time inf-sup stability constant — and related appropriate norms — can avoid the
“worst–case” energy assumption at each time t (or discrete time level) and instead
reflect the coupled temporal behavior over the entire time interval of interest.
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2 KARSTEN URBAN AND ANTHONY T. PATERA

We show in [13] that indeed a space-time formulation can improve reduced basis
error bounds: we provide theoretical justification for the symmetric coercive case,
and computational evidence for the nonsymmetric noncoercive case. We elaborate
here on the brief presentation of [13]: we consider in detail the underlyling Petrov-
Galerkin discretization and associated Crank-Nicolson interpretation; we provide
the proofs of the central propositions; we extend the approach and analysis to
primal-dual formulations for the output of interest; and finally, we provide numer-
ical convergence results for the inf-sup constant which plays the crucial role in the
reduced basis error bounds.

This paper is organized as follows. In Section 2, we investigate the space-time
variational problem, in particular its well-posedness also for long time periods. We
also show the main difference of our analysis as opposed to more standard techniques
using a temporal transformation. Next, we introduce a space-time discretization
which leads to a Petrov-Galerkin scheme whose error is analyzed for the particular
case of symmetric coercive spatial operators. Section 3 contains the application of
our space-time error analysis for the Reduced Basis Method. We give a posteriori
error bounds w.r.t. the residual and discuss various issues concerning the numerical
realization. We present numerical results in Section 4, in particular for those cases
that are not yet covered by our theory, namely convection-diffusion operators as
well as asymptotically unstable equations.

2. Space-Time Truth Solution

2.1. Space-Time Formulation. Similar to [10], we consider Hilbert spaces V ↪→
H ↪→ V ′ with inner products (·, ·)V , (·, ·)H and induced norms ‖ · ‖V , ‖ · ‖H , a time
interval I := (0, T ], T > 0 and A ∈ L(V, V ′) such that 〈Aφ,ψ〉V ′×V = a(φ, ψ) with
a bilinear form a(·, ·) : V × V → R. We consider the following problem: Given
g ∈ L2(I;V ′), determine u such that

(2.1) u̇(t) +Au(t) = g(t) inV ′, u(0) = 0 inH.

Nonzero initial conditions can easily be treated by slight modifications of the vari-
ational form to be introduced next. According to [10] we assume that there exist
constants Ma <∞, α > 0 and λ ≥ 0 such that for all φ, ψ ∈ V we have

|a(ψ, φ)| ≤ Ma ‖ψ‖V ‖φ‖V , (boundedness)(2.2)

a(ψ,ψ) + λ ‖ψ‖2H ≥ α‖ψ‖2V . (G̊arding inequality)(2.3)

In addition, we consider outputs of the form

(2.4) s :=

∫
I

`(u(t)) dt for some ` ∈ V ′.

The above setting corresponds to the LTI (linear time invariant) case, but we remark
that some of our results can be extended to the LTV case as well.

In order to formulate the variational form of (2.1), we need some preparation.
We use as trial space

X := {v ∈ L2(I;V ) : v, v̇ ∈ L2(I;V ′), v(0) = 0} = L2(I;V ) ∩H1
(0)(I;V ′),

whereH1
(0)(I;V ′) := {v ∈ H1(I;V ′) : v(0) = 0} with the norm ‖w‖2X := ‖w‖2L2(I;V )+

‖ẇ‖2L2(I;V ′) +‖w(T )‖2H (note: X ↪→ C(I;H)). The test space is Y := L2(I;V ) with

norm ‖v‖Y := ‖v‖L2(I;V ).
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Remark 2.1. At a first glance, it seems to be more standard to use the graph norm
(‖w‖2L2(I;V ) + ‖ẇ‖2L2(I;V ′))

1/2 on X . Obviously, ‖ · ‖X defined above is a stronger

norm and also allows the control of the solution at the final time T .

We will use the following abbreviations: [w, v]H :=
∫
I
〈w(t), v(t)〉V ′×V dt for w ∈

L2(I;V ′), v ∈ L2(I;V ) (as well as [w, v]H :=
∫
I
(w(t), v(t))Hdt for v, w ∈ L2(I;H))

and A[w, v] :=
∫
I
a(w(t), v(t)) dt for v, w ∈ L2(I;V ). Then, defining

(2.5) b(w, v) := [ẇ, v]H +A[w, v], f(v) := [g, v]H,

results in the variational formulation

(2.6) findu ∈ X : b(u, v) = f(v) ∀v ∈ Y.

The output is again given by (2.4) and can also be formulated as

(2.7) s = J(u) where J ∈ X ′ reads J(w) :=

∫
I

`(w(t)) dt, w ∈ X .

The well-posedness of (2.6) (under the above assumptions) has been shown in [10,
Theorem 5.1, Appendix A]. A more detailed investigation of the proof in [10] shows
that the arguments used there can also yield an estimate for the inf-sup constant

β := inf
w∈X

sup
v∈Y

b(w, v)

‖w‖X ‖v‖Y
.

We define % := sup0 6=φ∈V
‖φ‖H
‖φ‖V and β∗a := infφ∈V supψ∈V

a(ψ,φ)
‖φ‖V ‖ψ‖V ; we then have

Proposition 2.2 ([13, Proposition 1]). Assume (2.2) and (2.3). Then, we obtain
the inf-sup lower bound

β ≥ βLB :=
min{1, (α− λ%2) min{1,M−2

a }}
max{1, (β∗a)−1}

√
2

.

Proof. Let 0 6= w ∈ X be given and denote by A∗ : V → V ′ the adjoint of A. Set
zw := (A∗)−1ẇ and vw := zw + w ∈ Y. Then, we have

‖vw‖2L2(I;V ) ≤ 2(‖zw‖2Y + ‖w‖2Y) ≤ 2
(
(β∗a)−2‖ẇ‖2L2(I;V ′) + ‖w‖2Y)

)
≤ 2 max{1, (β∗a)−2}‖w‖2X .(2.8)

In order to bound b(w, vw) we use the following facts ‖ẇ(t)‖V ′ = ‖A∗zw(t)‖V ′ ≤
Ma‖zw(t)‖V and thus

〈ẇ(t), zw(t)〉V ′×V = a(zw(t), zw(t)) ≥ α‖‖zw(t)‖2V − λ‖zw(t)‖2H
≥ (α− λ%2)‖zw(t)‖2V ≥ (α− λ%2)M−2

a ‖ẇ(t)‖2V ′ ,(2.9)

as well as

(2.10) a(w(t), zw(t)) = 〈w(t), ẇ(t)〉V×V ′ =
1

2

d

dt
‖w(t)‖2H
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to obtain (recalling that w(0) = 0)

b(w, vw) =

∫
I

〈ẇ(t), zw(t)〉V ′×V dt+

∫
I

〈ẇ(t), w(t)〉V ′×V dt

+

∫
I

a(w(t), zw(t)) dt+

∫
I

a(w(t), w(t)) dt

≥ (α− λ%2)M−2
a ‖ẇ‖2L2(I;V ′) +

1

2

∫ T

0

d

dt
||w(t)‖2H dt

+
1

2

∫ T

0

d

dt
||w(t)‖2H dt+ (α− λ%2)‖w(t)‖2L2(I;V )

≥ (α− λ%2) min{1,M−2
a }(‖ẇ‖2L2(I;V ′) + ‖w‖2L2(I;V )) + ‖w(T )‖2H

≥ min{(α− λ%2) min{1,M−2
a }, 1}‖w‖2X ≥ βLB‖w‖X ‖vw‖Y ,

where the last step follows from (2.8). �

Remark 2.3. Note that βLB does not depend on the final time. However, the
estimate is only meaningful if α ≥ λ%2, i.e., if the system is coercive. In the non-
coercive case, (2.1) is often transformed as described in Section 2.3 below.

Remark 2.4. If we would use the graph norm for X , the above proof yields an

inf-sup lower bound of
(α−λ%2) min{1,M−2

a }
max{1,(β∗a)−1}

√
2

.

2.2. The heat equation. The heat equation is a special case of (2.1), where

A = −∆, V = H1
0 (Ω), H = L2(Ω), ‖φ‖2V = a(φ, φ) = ‖∇φ‖2L2(Ω).

Thus, we have Ma = 1, λ = 0, α = 1 and β∗a = 1. Thus, Proposition 2.2 would
result in a lower bound of 1√

2
. A slight modification of the proof, however, allows

to improve this lower bound.

Corollary 2.5. For the heat equation, it holds β ≥ 1.

Proof. Given 0 6= w ∈ X , we choose as above vw := zw + w ∈ Y with zw := A−1ẇ.
Then,

‖vw‖2L2(I;V ) = ‖zw‖2L2(I;V ) + ‖w‖2L2(I;V ) + 2

∫
I

(zw(t), w(t))V dt.

Since ‖zw‖L2(I;V ) = ‖A−1ẇ‖L2(I;V ) = ‖ẇ‖L2(I;V ′) and recalling that a(zw(t), v(t)) =
〈ẇ(t), v(t)〉V ′×V for all v(t) ∈ V , we obtain

(zw(t), w(t))V = a(zw(t), w(t)) = 〈ẇ(t), w(t)〉V ′×V =
1

2

d

dt
‖w(t)‖2H ,

so that

‖vw‖2L2(I;V ) = ‖A−1ẇ + w‖2L2(I;V )

= ‖ẇ‖2L2(I;V ′) + ‖w‖2L2(I;V ) + ‖w(T )‖2H = ‖w‖2X .(2.11)

The rest of the proof remains the same so that we arrive at b(w, vw) ≥ ‖w‖2X =
‖w‖X ‖vw‖Y . �

We can go even a step further.

Proposition 2.6. For the heat equation, it holds β = γ = 1, where γ is the

continuity constant defined as γ := supw∈X supv∈Y
b(w,v)

‖w‖X ‖v‖Y .
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Proof. For w ∈ X and v ∈ Y we have b(w, v) =
∫
I
a(A−1ẇ(t)+w(t), v(t)) dt. Given

v ∈ Y, we have Av ∈ L2(I;V ′) = Y ′ and Corollary 2.5 ensures that there exists a
unique z ∈ X such that ż +Az = Av, i.e, v = A−1ż + z. Then, we have

sup
v∈Y

b(w, v)

‖v‖Y
= sup

z∈X

b(w,A−1ż + z)

‖A−1ż + z‖Y

= sup
z∈X

∫
I
a(A−1ẇ(t) + w(t), A−1ż(t) + z(t)) dt

‖A−1ż + z‖Y
= ‖A−1ẇ + w‖Y = ‖w‖X ,

where the last step is shown in (2.11). The claim is thus proven. �

2.3. Using temporal transformation. Another possibility to derive a lower inf-
sup-bound is the transformation of the initial value problem (2.1) in the following
(standard and well-known) way. In view of the G̊arding inequality (2.3), setting
û(t) := e−λtu(t), v̂(t) := eλtv(t) and ĝ(t) := e−λtg(t) solves the variational problem

b̂(ŵ, v̂) = f̂(v̂), ∀v̂ ∈ Y,

where

b̂(ŵ, v̂) :=

∫ T

0

〈 d
dt
ŵ(t), v̂(t)

〉
V ′×V dt+

∫ T

0

â(ŵ(t), v̂(t)) dt

as well as â(ŵ(t), v̂(t)) := a(ŵ(t), v̂(t)) + λ(ŵ(t), v̂(t))H and for the right-hand side

f̂(v̂) :=
∫
I
〈ĝ(t), v̂(t)〉V ′×V dt. Note, that the form â fulfills (2.3) with λ = 0 which

gives rise to the following lower inf-sup-bound

Corollary 2.7. Under the above assumptions, we get the following lower bound for
the inf-sup-constant

(2.12) β ≥ β̂LB :=
e−2λT

max{
√

1 + 2λ2%4,
√

2}
× min{1, αmin{1,M−2

a }}
max{1, (β∗a)−1}

√
2

.

Proof. It is readily seen that b̂(ŵ, v̂) = b(w, v) with the above transformations, so
that it remains to estimate the norms. It is known from [10, Appendix A] that

‖w‖X ≤ eλT max{
√

1 + 2λ2%4,
√

2}‖ŵ‖X , ‖v‖Y ≤ eλT ‖v̂‖Y .

This implies that

inf
w∈X

sup
v∈Y

b(w, v)

‖w‖X ‖v‖Y
= inf

w∈X
sup
v∈Y

b̂(ŵ, v̂)

‖w‖X ‖v‖Y

≥ e−2λT max{
√

1 + 2λ2ρ4,
√

2}−1 inf
w∈X

sup
v∈Y

b̂(ŵ, v̂)

‖ŵ‖X ‖v̂‖Y
.

The result then follows from Proposition 2.2. �

Remark 2.8. Obviously this approach yields an inf-sup bound that behaves as e−λT

— often extremely pessimistic and clearly unsuitable for error estimation in long-
time integration.
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2.4. Petrov-Galerkin Truth Approximation. Let Xδ ⊂ X , Yδ ⊂ Y be finite
dimensional subspaces and uδ ∈ Xδ the discrete approximation of (2.6), i.e.,

(2.13) b(uδ, vδ) = f(vδ), ∀vδ ∈ Yδ,

sδ =
∫ T

0
`(uδ(t)) dt. Henceforth, we concentrate on the case H = L2(Ω), V =

H1
0 (Ω). Let Xδ = S∆t⊗Vh, Yδ = Q∆t⊗Vh, δ = (∆t, h), where S∆t, Vh are piecewise

linear and Q∆t piecewise constant finite elements with respect to triangulations
T space
h in space and T time

∆t ≡ {tk−1 ≡ (k − 1)∆t < t ≤ k∆t ≡ tk, 1 ≤ k ≤ K} in
time for ∆t := T/K.

Let S∆t = span{σ1, . . . , σK}, where σk is the (interpolatory) hat-function with
the nodes tk−1, tk and tk+1 (resp. truncated for k = K) andQ∆t = span{τ1, . . . , τK},
where τk = χIk , the characteristic function on Ik := (tk−1, tk). Finally, let
Vh = span{φ1, . . . , φnh} e.g. be the nodal basis w.r.t. T space

h . For any given

wδ =
∑K
k=1

∑nh
i=1 w

k
i σ

k ⊗ φi ∈ Xδ and vδ =
∑K
`=1

∑nh
j=1 v

`
j τ

k ⊗ φj we obtain

b(wδ, vδ) =

∫
I

(
〈ẇδ(t), vδ(t)〉V ′×V + a(wδ(t), vδ(t))

)
dt

=

K∑
k,`=1

nh∑
i,j=1

wikv
j
`

[
(σ̇k, τ `)L2(I) (φi, φj)H + (σk, τ `)L2(I) a(φi, φj)

]
= wT

δ Bδvδ,

where

(2.14) Bδ := Ntime
∆t ⊗Mspace

h + Mtime
∆t ⊗Aspace

h

and Mspace
h := [(φi, φj)L2(Ω)]i,j=1,...,nh , Mtime

∆t := [(σk, τ `)L2(I)]k,`=1,...,K are the

spatial and temporal mass matrices as well as Ntime
∆t := [(σ̇k, τ `)L2(I)]k,`=1,...,K and

Aspace
h := [a(φi, φj)]i,j=1,...,nh . For our particular spaces we obtain (denoting by

δk,` the discrete Kronecker delta)

(σ̇k, τ `)L2(I) = δk,` − δk+1,`, (σk, τ `)L2(I) =
∆t

2
(δk,` + δk+1,`),

b(wδ, τ
` ⊗ φj) =

nh∑
i=1

[
(w`i − w`−1

i )(φi, φj)H +
∆t

2
(w`i + w`−1

i ) a(φi, φj)
]

= ∆t
[
Mspace

h

1

∆t
(w` −w`−1) + Aspace

h w`−1/2
]
,

where w` := (w`i )i=1,...,nh , w
`−1/2
i := 1

2 (w`i + w`−1
i ) and w`−1/2 accordingly. If we

use a trapezoidal approximation of the right-hand side temporal integration

f(τ ` ⊗ φj) =

∫ T

0

〈g(t), τ ` ⊗ φj〉V ′×V dt

≈ ∆t

2
〈g(t`−1) + g(t`), φj〉V ′×V =

∆t

2
(g`−1 + g`)j = ∆t g

`−1/2
j ,

where g` = (〈g(t`), φj〉V ′×V )j=1,...,nh , then we can rewrite (2.13) as

(2.15)
1

∆t
Mspace

h (w` −w`−1) + Aspace
h w`−1/2 = g`−1/2, w0 := 0,

which is nothing else then the well-known Crank–Nicolson (CN) scheme; hence, we
can derive error bounds for the CN scheme via our space-time formulation.
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For the analysis we introduce a different norm on X : For w ∈ X set w̄k :=

(∆t)−1
∫
Ik
w(t) dt ∈ V and w̄ :=

∑K
k=1 χIk ⊗ w̄i ∈ L2(I;V ); then, set

|||w|||2X ,δ := ‖ẇ‖2L2(I;V ′) + ‖w̄‖2L2(I;V ) + ‖w(T )‖2H

and the inf-sup parameter as well as the stability parameter

βδ := inf
wδ∈Xδ

sup
vδ∈Yδ

b(wδ, vδ)

|||wδ|||X ,δ ‖vδ‖Y
, γδ := sup

wδ∈Xδ
sup
vδ∈Yδ

b(wδ, vδ)

|||wδ|||X ,δ ‖vδ‖Y
.

Proposition 2.9 ([13, Proposition 3]). Let a(·, ·) be symmetric, bounded and co-
ercive and set ‖φ‖2V := a(φ, φ), φ ∈ V ; then we have βδ = γδ = 1.

Proof. Since vδ ∈ Yδ is piecewise constant in time, we have
∫
I
a(w(t), vδ(t)) dt =∫

I
a(w̄(t), vδ(t)) dt for all w ∈ X . Hence, b(wδ, vδ) =

∫
I
a(A−1

h ẇδ(t)+w̄δ(t), vδ(t)) dt,

where zδ(t) := A−1
h ẇδ(t) is defined by a(zδ(t), φh) = 〈ẇδ(t), φh〉V ′×V for all φh ∈

Vh. Note that for ṽ ∈ V ′ we have ‖A−1
h ṽ‖2V = a(A−1

h ṽ, A−1
h ṽ) = 〈ṽ, A−1

h ṽ〉V ′×V =
‖ṽ‖2V ′ . We will prove later that for all vδ ∈ Yδ there exists a unique zδ ∈ Xδ such
that

(2.16)

∫
I

a(A−1
h żδ(t) + z̄δ(t), qδ(t)) dt =

∫
I

a(vδ(t), qδ(t)) dt ∀qδ ∈ Yδ.

Note that vδ := A−1
h żδ + z̄δ ∈ Yδ for zδ ∈ Xδ. Hence,

sup
vδ∈Yδ

b(wδ, vδ)

‖vδ‖Y
= sup

zδ∈Xδ

b(wδ, A
−1
h żδ + z̄δ)

‖A−1
h żδ + z̄δ‖Y

= sup
zδ∈Xδ

∫
I
a(A−1

h ẇδ + w̄δ, A
−1
h żδ + z̄δ) dt

‖A−1
h żδ + z̄δ‖Y

= ‖A−1
h ẇδ + w̄δ‖Y

by the Cauchy-Schwarz inequality and choosing zδ = wδ. Next,

‖A−1
h ẇδ + w̄δ‖2Y = ‖A−1

h ẇδ‖Y + ‖w̄δ‖Y + 2

∫
I

〈ẇδ(t), w̄δ(t)〉V ′×V dt

= ‖ẇδ‖2L2(I;V ′) + ‖w̄δ‖2L2(I;V ) + ‖wδ(T )‖2H = |||wδ|||2X ,δ,

so that supvδ∈Yδ
b(wδ,vδ)
‖vδ‖Y = |||wδ|||X ,δ which implies βδ = γδ = 1.

It remains to prove (2.16). Let λj > 0, ej ∈ Rnh , j = 1, . . . , nh, be the eigenvalues
and normalized eigenvectors of Ah, i.e.,

a(ej , φh) = λj (ej , φh)H ∀φh ∈ Vh, ‖ej‖H = 1, 1 ≤ j ≤ nh.

Given Yδ 3 vδ =
∑K
k=1 v

k τk, vk =
∑nh
j=1 v

k
j ej ∈ Vh, determine ζkj , k = 1, . . . ,K,

j = 1, . . . , nh as the unique solution of the iteration

(2.17) ζ0
j = 0,

1

∆t
(ζkj − ζk−1

j ) +
λj
2

(ζkj + ζk−1
j ) = λj v

k
j , k = 1, . . . ,K.

Then, define zδ :=
∑K
k=1

∑nh
j=1 ζ

k
j ej ζ

k ∈ Xδ, so that

z̄δ =

K∑
k=1

z̄kδ χIk =

K∑
k=1

∆t

2
(zk + zk−1)τk, zk := zδ(t

k),
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since zδ is piecewise linear in time. Then we obtain for any qδ ∈ Yδ, qδ =
∑K
k=1 q

kτk,
qk = qδ(t

k)∫
I

a(vδ(t), qδ(t)) dt =

K∑
k,`=1

a(vk, q`)

∫
I

τk(t) τ `(t) dt =

K∑
k=1

∆t a(vk, qk)

=

K∑
k=1

nh∑
j=1

∆t vkj λj (ej , q
k)H =

K∑
k=1

nh∑
j=1

∆t vkj λj (ej , q
k)H

=

K∑
k=1

nh∑
j=1

∆t (ej , q
k)H

[ 1

∆t
(σkj − σk−1

j ) + λj σ
k−1/2
j

]

=

K∑
k=1

( nh∑
j=1

(σkj − σk−1
j )ej , q

k
)
H

+ ∆t

K∑
k=1

nh∑
j=1

a(σ
k−1/2
j ej , q

k)

=

∫
I

〈żδ(t), qδ(t)〉V ′×V dt+

∫
I

a(zδ(t), qδ(t)) dt.

This proves the existence in (2.16). The uniqueness is seen as follows. Let zδ, wδ ∈
Xδ be two solutions of (2.16), then∫

I

a(A−1
h (żδ(t)− ẇδ(t)) + z̄δ(t)− w̄δ(t), qδ(t)) dt = 0 ∀qδ ∈ Yδ.

By using the first argument as test function we arrive at ‖żδ − ẇδ‖L2(I;V ′) + ‖z̄δ −
w̄δ‖2L2(I;V ) = 0, which shows the uniqueness in X . �

Remark 2.10. We may rephrase Proposition 2.9 also in the following way:

(2.18) sup
vδ∈Yδ

b(wδ, vδ)

‖vδ‖Y
= |||wδ|||X ,δ, wδ ∈ Xδ.

Moreover, the proof also shows that

(2.19) ∀ 0 6= wδ ∈ Xδ ∃vδ ∈ Yδ :
b(wδ, vδ)

‖vδ‖Y
= |||wδ|||X ,δ 6= 0.

Remark 2.11. Proposition 2.9 also shows the well-posedness of the discrete prob-
lem with continuity and inf-sup constant being unity.

For later purpose, we consider also the dual inf-sup parameter defined as

β∗δ := inf
vδ∈Yδ

sup
wδ∈Xδ

b(wδ, vδ)

|||wδ|||X ,δ ‖vδ‖Y
.

Proposition 2.12. Under the hypotheses of Proposition 2.9, we have β∗δ = βδ = 1.

Proof. We use Nečas’ theorem [6, Theorem 3.3] that shows that (2.18) and (2.19)
are equivalent to β∗δ = βδ = 1. �

3. The Reduced Basis Method (RBM)

3.1. Parameter-dependence. Now, let µ ∈ D ⊆ RP be a parameter vector and
A = A(µ) a parameter-dependent linear partial differential operator. It is fairly
standard to assume that A(µ) is induced by a bilinear form a(·, ·;µ) that is affine
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w.r.t. the parameter, i.e., there exist functions θaq and bilinear forms aq(·, ·) such
that

(3.1) a(ψ, φ;µ) =

Qa∑
q=1

θaq (µ) aq(ψ, φ), µ ∈ D, ψ, φ ∈ V.

We obtain the parameter-dependent space-time bilinear form

b(w, v;µ) = [ẇ, v;µ]H +A[w, v;µ], where A[w, v;µ] =

∫
I

a(w(t), v(t);µ) dt,

and [·, ·;µ]H is a parameter-dependent version of [·, ·]H with a similar expansion as
in (3.1), so that we derive an affine decomposition according to

b(w, v;µ) =

Q∑
q=1

θq(µ) bq(w, v).

Also the right-hand side may depend on the parameter and is also assumed to be
affine in functions of the parameter, i.e.,

(3.2) f(v;µ) =

Q∑
q=1

θfq (µ) fq(v), µ ∈ D, v ∈ Y.

If (3.1,3.2) are not satisfied, it is fairly standard to construct an approximation via
the Empirical Interpolation Method (EIM), [1, 12].

The parameter-dependent version of (2.6) then reads

(3.3) u(µ) ∈ X : b(u(µ), v;µ) = f(v;µ) ∀v ∈ Y.
The output reads s(µ) :=

∫
I
`(u(t;µ)) dt. The truth approximations are then fairly

standard, i.e.,

(3.4) uδ(µ) ∈ Xδ : b(uδ(µ), vδ;µ) = f(vδ;µ) ∀vδ ∈ Yδ,
and the output reads sδ(µ) :=

∫
I
`(uδ(t;µ)) dt = J(uδ(µ)). Defining

(3.5)

γδ(µ) := sup
wδ∈Xδ

sup
vδ∈Yδ

b(wδ, vδ;µ)

|||wδ|||X ,δ ‖vδ‖Y
, βδ(µ) := inf

wδ∈Xδ
sup
vδ∈Yδ

b(wδ, vδ;µ)

|||wδ|||X ,δ ‖vδ‖Y
it is well-known (see also [10]) from the Babuška-Aziz theorem that (3.3) is well-
posed for all µ ∈ D provided that the following three properties hold

(i) γδ(µ) ≤ γUB
δ <∞, (ii)βδ(µ) ≥ βLB

δ > 0, (iii) b(·, ·; ·) is surjective.

3.2. RB error bounds. We introduce a standard Reduced Basis (RB) approxima-
tion [3, 8, 9] for the Crank–Nicolson interpretation (2.15) of our discrete problem.
Let VN := span{ξ1, . . . , ξN} ⊂ Vh be an RB space provided for example by the
POD-Greedy procedure of [4]. Then, set X∆t,N := S∆t ⊗ VN , Y∆t,N := Q∆t ⊗ VN
and let uN (µ) ∈ X∆t,N denote the unique solution of

(3.6) b(uN (µ), vN ;µ) = f(vN ;µ) ∀vN ∈ Y∆t,N .

The RB output is then given by

sN (µ) := J(uN (µ)) =

∫
I

`(uN (t;µ))dt(=

∫
I

`(ūN (t;µ))dt).

(It is possible, alternatively, to consider a space–time RB approximation as well
[11].)
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We define the common RB-quantities, namely the error eN (µ) := uδ(µ)−uN (µ),
the residual

rN (v;µ) := f(v;µ)− b(uN (µ), v;µ) = b(eN (µ), v;µ), v ∈ Y,

the Riesz representation r̂N (µ) ∈ Y (not in X !) as

(r̂N (µ), v)Y = rN (v;µ), v ∈ Y

and ‖r̂N (µ)||Y = ‖rN (µ)‖Y′ . The ‘truth dual norm’ on X ′ is defined as

|||J̃ |||X ′,δ := sup
w∈X

J̃(w)

|||w|||X ,δ
, J̃ ∈ X ′.

It is then simple [9] to demonstrate

Proposition 3.1. The following estimates hold

(a) |||uδ(µ)− uN (µ)|||X ,δ ≤
‖rN (µ)‖Y′

βLB
δ

;

(b) |sδ(µ)− sN (µ)|≤
√
T

βLB
δ

‖`‖V ′ ‖rN (µ)‖Y′ ;
(c) |sδ(µ)− sN (µ)| ≤ 1

βLB
δ

|||J |||X ′,δ ‖rN (µ)‖Y′ .

Proof. The proof follows standard arguments

βLB
δ |||uδ(µ)− uN (µ)|||X ,δ ≤ sup

vδ∈Yδ

b(eN (µ), vδ(µ))

‖vδ‖Y
= sup
vδ∈Yδ

rN (vδ;µ)

‖vδ‖Y
= ‖rN (µ)‖Y′

as well as

|sδ(µ)− sN (µ)| ≤
∫
I

|`(uδ(t;µ))− `(uN (t;µ))| dt

≤
∫
I

‖`‖V ′ ‖uδ(t;µ)− uN (t;µ)‖V dt

≤ ‖`‖V ′
√
T‖eN (µ)‖Y ≤

√
T‖`‖V ′ |||eN (µ)|||X ,δ

which –combined with (a)– proves (b). Finally, (c) follows standard lines since
sδ(µ)− sN (µ) = J(eN (µ)) and using (a). �

Remark 3.2. The estimates in Proposition 3.1 (b) and (c) differ in the fact that
(b) explicitly involves the time on the right-hand side so that the error estimate
grows with increasing time T . Even though the right-hand side of (c) is formally
independent of T , one would expect that the dual norm of J grows with increasing
T since J is the integral over a time period of length T . However, the estimate in
(c) still should be sharper since it avoids the application of one additional Cauchy-
Schwarz inequality.

The utility of these a posteriori error bounds is critically dependent on the depen-
dence of βδ as a function of the parameter µ and final time T , βδ(µ;T ). We will
investigate this dependence in our numerical experiments described in Section 4
below.
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Primal-dual formulation. The estimate (b) in Proposition 3.1 is not completely
satisfying since the error estimator grows with respect to time. In order to overcome
this issue, we consider a dual problem. The original, truth and RB dual problem,
respectively, read

find z(µ) ∈ Y : b(w, z(µ);µ) = −J(w) ∀w ∈ X ,(3.7)

find zδ(µ) ∈ Yδ : b(wδ, zδ(µ);µ) = −J(wδ) ∀wδ ∈ Xδ,(3.8)

find zÑ (µ) ∈ Ỹ∆t,Ñ : b(wÑ , zÑ (µ);µ) = −J(wÑ ) ∀wÑ ∈ X̃∆t,Ñ ,(3.9)

where X∆t,Ñ := S∆t ⊗ VÑ , Y∆t,Ñ := Q∆t ⊗ VÑ and VÑ ⊂ Vh is a spatial RB-space

also possibly different from VN . The dual RB residual is defined as r̃Ñ (w;µ) :=
−J(w) − b(w, zÑ (µ);µ) for w ∈ X , i.e., r̃Ñ (µ) := r̃Ñ (·;µ) ∈ X ′ and the dual error
as ẽÑ (µ) := zδ(µ) − zÑ (µ). Finally, we define the RB output in this primal-dual
setting as

sN (µ) := J(uN (µ))− rN (zÑ (µ)).

Then, standard RB-arguments yield:

Proposition 3.3. The following estimates hold

(a) ‖zδ(µ)− zÑ (µ)‖Y ≤ 1
βLB
|||r̃Ñ (µ)|||X ′,δ;

(b) |sδ(µ)− sN (µ)|≤ 1
βLB
‖rN (µ)‖Y′ |||r̃Ñ (µ)|||X ′,δ.

Proof. Since β∗LB = βLB, we obtain

βLB ‖ẽÑ (µ)‖Y ≤ sup
wδ∈X

b(wδ, ẽÑ (µ);µ)

|||wδ|||X ,δ
= sup
wδ∈X

r̃Ñ (wδ;µ)|
|||wδ|||X ,δ

= |||r̃Ñ (µ)|||X ′,δ,

which proves (a). In order to show (b), we first note that

sδ(µ)− sN (µ) = J(eN (µ)) + rN (zÑ (µ)) = J(eN (µ)) + b(eN (µ), zÑ (µ);µ)

= −r̃Ñ (eN (µ);µ)

so that |sδ(µ)−sN (µ)| ≤ |||r̃Ñ (µ)|||X ′,δ ‖eN (µ)‖X so that (b) follows by Proposition
3.1, (a). �

Remark 3.4. Note that both estimates in Proposition 3.3 do not depend on the
time T . Again, however, one expects that the space-time norms of the residuals
will show T -dependence, which is due to the nature of the evolution problem, not
because of the discretization.

Let us comment on the numerical realization of (3.8). We are looking for zδ(µ) =∑K
`=1

∑nh
j=1 z

`
j τ

` ⊗ φj ∈ Yδ, z`δ := (z`j)j=1,...,nh . Then, for 1 ≤ i ≤ nh, we obtain

b(σK ⊗ φi) =

K∑
`=1

nh∑
j=1

z`j [(σ̇K , τ `)L2(I) (φi, φj)H + (σK , τ `)L2(I) a(φi, φj)]

=

nh∑
j=1

(
zKj (φi, φj)H +

∆t

2
zKj a(φi, φj)

)
= [(Mspace

h +
∆t

2
Aspace
h )zK ]i

and J(σK ⊗ φi) = ∆t
2 `(φi), so that zKδ (µ) can be computed via the solution of

(3.10) (Mspace
h +

∆t

2
Aspace
h )zKδ (µ) = −∆t

2
l,



12 KARSTEN URBAN AND ANTHONY T. PATERA

where l := (`(φi))i=1,...,nh . Correspondingly, we obtain for k = K − 1, . . . , 1

b(σk ⊗ φi) =

K∑
`=1

nh∑
j=1

z`j [(σ̇k, τ `)L2(I) (φi, φj)H + (σk, τ `)L2(I) a(φi, φj)]

=

nh∑
j=1

[(zkk − zk+1
j )(φi, φj)H +

∆t

2
(zkj + zk+1

j ) a(φi, φj)]

= [Mspace
h (zkδ (µ)− zk+1

δ (µ)) +
∆t

2
Aspace
h (zkδ (µ) + zk+1

δ (µ))]i

as well as J(σk ⊗ φi) = ∆t `(φi), so that for k = K − 1, . . . , 1

(3.11) (Mspace
h +

∆t

2
Aspace
h )zkδ (µ) = −∆t l + (Mspace

h − ∆t

2
Aspace
h )zk+1

δ (µ).

This means that (3.10) and (3.11) is an iterative procedure for computing the dual
truth solution very similar to a backward Crank-Nicholson scheme. We do not need
to solve a coupled space-time problem.

3.3. Numerical realization. We are now going to consider the quantities that we
have to determine while numerically approximating terms like the inf-sup-constants.

Norms. Let wδ =
∑r
i=1

∑nh
k=1 w

i
k σ

i ⊗ φk ∈ Xδ, wδ := (wik)i,k. Then,

‖wδ‖2L2(I;V ) =

∫
I

‖wδ(t)‖2V dt =

K∑
k,`=1

nh∑
i,j=1

wikw
j
`

∫
I

σk(t)σ`(t) (φi, φj)V dt

= wT
δ (Mtime

∆t ⊗Vspace
h )wδ,

where Mtime
∆t is the temporal mass matrix and Vspace

h = [(φk, φl)V ]k,l the spa-
tial matrix w.r.t. the V -inner product. For the discrete norm ||| · |||X ,δ, we need
|||w̄δ|||L2(I;V ). We obtain

‖w̄δ‖2L2(I;V ) =

K∑
k=1

∫
Ik

(w̄k(t), w̄k(t))V dt =
1

∆t

K∑
k=1

(∫
Ik
w(t) dt,

∫
Ik
w(s) ds

)
V

= ∆t

K∑
k=1

nh∑
i,j=1

wki w
k
j (φi, φj)V = ∆twT

δ (Itime
∆t ⊗Vspace

h )wδ.

The second part of the X -norm, ‖ẇδ‖L2(I;V ′), is a little bit more involved due to

the appearance of the V ′-norm. Given ṽh =
∑nh
k=1 ṽk φk ∈ Vh, ṽh = (ṽk)k, we need

the Riesz representation Rhṽh =
∑nh
k′=1 rk′ φk′ , rh = (rk′)k′ (since we know from

the Riesz representation theorem that ‖Rhṽh‖V = ‖ṽh‖V ′), which is determined by
the condition

(Rhṽh, φ`)V =

nh∑
k′=1

rk′(φk′ , φ`)V =

nh∑
k=1

ṽk(φk, φ`)H = (ṽh, φ`)H ∀` = 1, . . . , nh,

or in condensed form Vspace
h rh = Mspace

h ṽh, i.e., rh = (Vspace
h )−1Mspace

h ṽh for the
coefficients. Then,

‖ṽh‖2V ′ = ‖Rhṽh‖2V = rThV
space
h rh

= ((Vspace
h )−1Mspace

h ṽh)T Vspace
h (Vspace

h )−1Mspace
h ṽh

= ṽTh Mspace
h (Vspace

h )−1Mspace
h ṽh.
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Using this, we get∥∥ẇδ∥∥2

L2(I;V ′)
=

K∑
k,`=1

nh∑
i,j=1

wki w
`
j

∫
I

σ̇k(t) σ̇`(t)(Mspace
h (Vspace

h )−1Mspace
h )i,j dt

= wT
δ

(
Vtime

∆t ⊗ (Mspace
h (Vspace

h )−1Mspace
h )

)
wδ,

where Vtime
∆t = [(σ̇k, σ̇`)L2(I)]k,` is the temporal matrix of the derivatives. As for

the last part, we obtain by σk(T ) = δk,K

‖wδ(T )‖2H =

nh∑
i,j=1

wKi wKj (φi, φj)H = (wK
δ )TVspace

h wK
δ .

Consequently, we obtain for the norm ‖wδ‖2X = wT
δ Xδwδ + (wK

δ )TVspace
h wK

δ with

(3.12) Xδ := Mtime
∆t ⊗Vspace

h + Vtime
∆t ⊗ (Mspace

h (Vspace
h )−1Mspace

h ).

For the discrete norm, we just need to modify Xδ to X
|||·|||
δ := Itime

∆t ⊗ Vspace
h +

Vtime
∆t ⊗ (Mspace

h (Vspace
h )−1Mspace

h ).

For vδ =
∑K
k=1

∑nh
i=1 v

k
i τ

k ⊗φi ∈ Yh we can use very similar arguments and get
‖vδ‖2Y = vTδ Yδvδ with

(3.13) Yδ := Gtime
∆t ⊗Vspace

h

and Gtime
∆t = [(τk, τ `)L2(I)]k,` being the mass matrix of the Q∆t-basis functions. In

our case of piecewise constants, this coincides with ∆t Itime
∆t .

Bilinear form. We have already seen that b(wδ, vδ) = wT
δ Bδvδ with Bδ given by

(2.14).

Supremizing operator. Finally, we determine the supremizing operator for the bi-

linear form b, i.e., Tδwδ = arg supvδ∈Yδ
b(wδ,vδ)
‖vδ‖Y for given wδ ∈ Xδ. It is well-known

that Tδwδ ∈ Yδ is the solution of (Tδwδ, vδ)Y = b(wδ, vδ) for all vδ ∈ Yδ. The
coefficients tδ of Tδwδ are then given by tδ = Y−1

δ BT
δ wδ. Finally, it is also well

known that

βδ = inf
wδ∈Xδ

‖Twδ‖Y
‖wδ‖X

and we get

‖Tδwδ‖2Y
‖wδ‖2X

=
tTδ Yδtδ
wT
δ Xδwδ

=
wT
δ BδY

−1
δ BT

δ wδ

wT
δ Xδwδ

with the involved matrices defined in (3.12), (3.13) and (2.14). Thus, we need to
determine the square root of the smallest eigenvalue of the generalized eigenvalue
problem BδY

−1
δ BT

δ v = λXδv.

Error estimators. Since the computation of lower bounds for the inf-sup parameters
has already been described, it remains to detail numerical schemes for the dual
norms of the residuals, i.e., ‖rN (µ)‖Y′ and |||r̃|||X ′,δ. We have already seen that
‖rN (µ)||Y′ = ‖êN (µ)‖Y with the Riesz representation êN (µ ∈ Yδ which is given by
(êN (µ), vδ)Y = f(vδ;µ)− b(uN (µ), vδ;µ) for all vδ ∈ Yδ. In matrix-vector form for
the coefficients this reads

YδêN (µ) = fδ(µ)−BT
δ uN (µ),
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where as above Yδ = Gtime
∆t ⊗ Vspace

h , fδ(µ) = (f(σk ⊗ φi;µ))k=1,...,K; i=1,...,nh ,
Bδ = Ntime

∆t ⊗Mspace
h + Mtime

∆t ⊗Aspace
h and uN (µ) being the vector of expansion

coefficients of the RB-solution. Finally, for the right-hand side using the affine
assumption (3.2) and defining qG ∈ Y ′ by [gq, v]H = fq(v), v ∈ Y, we get

f(σk ⊗ φi;µ) =

Q∑
q=1

θfq (µ) fq(σ
k ⊗ φi) =

Q∑
q=1

θfq (µ) [gq, σ
k ⊗ φi]H

=

K∑
k=1

Q∑
q=1

θfq (µ)〈gq(tk), φi〉V ′×V ,

where we used the fact that σk are piecewise linear and are thus integrated exactly
by a trapezoidal rule. This shows that expanding gq(t

k) in any appropriate basis
gives rise to a tensor-product representation of fδ(µ). Hence, the Riesz representa-
tion calculation is reduced to a sequence of K uncoupled spatial problems in V —
just as in the non-space-time case.

The situation is different for |||r̃Ñ (µ)|||X ′,δ = |||ˆ̃eÑ (µ)|||X ,δ, where the Riesz

representation ˆ̃eÑ ∈ Xδ is defined by (ˆ̃e(µ), wδ)X ,δ = −J(wδ)− b(wδ, zÑ (µ);µ) and
the truth inner product is defined as

(vδ, wδ)X ,δ := (v̇δ, ẇδ)V ′ + (v̄δ, w̄δ)V + (vδ(T ), wδ(T ))H , vδ, wδ ∈ Xδ.
In general, this sum can not be written as one tensor product. Thus, in practice this
represents a space-time coupled problem and hence is rather expensive; however, at
least in the primal-only formulation these calculations are restricted to the offline
stage.

4. Numerical Results

Now, let µ = (µ1, µ2) ∈ D := R2 be a parameter vector and A = A(µ) := −∆u+
µ1 β(x) · ∇u + µ2 u, i.e., a diffusion-convection-reaction operator with convection
field β. We report numerical results for the Crank–Nicolson scheme for various
choices of the parameters µ1, µ2 as well as for different time steps ∆t and uniform
mesh sizes h. For simplicity, we consider the univariate case (in space) Ω = (0, 1)
and choose β(x) = x − 1

2 . Let us denote by βδ(µ;T ), γδ(µ;T ) the numerical
values for the truth inf-sup and continuity constants, respectively, corresponding to
parameter µ and final time T .

We start by confirming Proposition 2.9. Thus, we choose µ1 = µ2 = 0; for
several values of T , h, and ∆t we invariantly obtain 1.000 for both βδ(µ;T ) and
γδ(µ;T ), as must be the case.

The next issue is that we want to confirm the independence of βδ(µ;T ) with
respect to the discretization parameters δ = (∆t, h). In Table 1 we consider the
case µ = (50, 10) with the final time T = 0.2. We clearly see the rapid convergence
for ∆t → 0 as well as for h → 0. This behavior has been observed for various
choices of the parameters and final time.

Next, we investigate the case of convection, µ2 = 0, in which case a is coercive
only for µ1 < 2π2. We are particularly interested in the long-time behavior. The
results are displayed in Table 2 for the choice Ns = 19 and Nt = 10 per time
interval of length 0.2. The displayed numbers, however, are relatively invariant
for sufficiently small h and ∆t. We observe numerically an overall behavior of
βδ((µ1, 0);T ) ∼ (µ1T )−1 and γδ((µ1, 0);T ) ∼ µ1 (the latter is readily proven, but
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Nt; Ns 9 14 19 24 29
10 5.7242e-02 5.8419e-02 5.8863e-02 5.9073e-02 5.9188e-02
15 5.7459e-02 5.8631e-02 5.9072e-02 5.9281e-02 5.9395e-02
20 5.7535e-02 5.8704e-02 5.9145e-02 5.9353e-02 5.9467e-02
25 5.7570e-02 5.8739e-02 5.9179e-02 5.9387e-02 5.9501e-02
30 5.7589e-02 5.8757e-02 5.9197e-02 5.9405e-02 5.9519e-02
35 5.7600e-02 5.8768e-02 5.9208e-02 5.9416e-02 5.9530e-02
40 5.7608e-02 5.8775e-02 5.9216e-02 5.9423e-02 5.9537e-02

Table 1. Inf-sup parameter βδ((50, 10); 0.2) for various choices of
δ = ( 1

Ns
, 0.2
Nt

).

βδ
Nt T µ1 = 50 µ1 = 100 µ1 = 150
10 0.200000 2.081838e-01 9.189784e-02 5.605419e-02
20 0.400000 1.164954e-01 4.767668e-02 2.858245e-02
30 0.600000 8.062734e-02 3.200346e-02 1.911024e-02
40 0.800000 6.187347e-02 2.405788e-02 1.434315e-02
50 1.000000 5.040255e-02 1.926570e-02 1.147687e-02
60 1.200000 4.267737e-02 1.606301e-02 9.564429e-03
70 1.400000 3.712638e-02 1.377228e-02 8.197915e-03
80 1.600000 3.294756e-02 1.205285e-02 7.172878e-03
90 1.800000 2.968954e-02 1.071484e-02 6.375585e-03

100 2.000000 2.707910e-02 9.644058e-03 5.737750e-03

Table 2. Long time-behavior in the convection case µ = (µ1, 0).

not the former). Note T = O(1) is effectively a “long time” in convective units,
1/µ1. We emphasize that although the problem is non-coercive, the problem is
asymptotically stable in the sense that all eigenvalues σ of −a(ψ, φ) = σ〈ψ, φ〉V ′×V
lie in the left-hand plane; this stability is reflected in the inf-sup behavior. In con-
trast, a standard energy approach [5] gives effective inf-sup constants on the order
of e−µ1T (here about 10−8). Hence, the traditional method fails to provide useful
results, whereas our new approach, which reflects the true time-coupled properties
of the system, yields relatively sharp error bounds.

Finally, we consider the case µ1 = 0 which gives rise to an asymptotically unsta-
ble (and non-coercive) system for µ2 < −π2. This means that any error estimate
must grow exponentially with the final time T . We observe this for our estimator
as well, as Table 3 shows, the values are in the order of eµ2T .
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