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Greedy Sampling using Nonlinear Optimization

Karsten Urban and Stefan Volkwein and Oliver Zeeb

Abstract We consider the reduced basis generation in the offline sfegyan alter-
native for standard Greedy-training methods based upastepori error estimates
on atraining subset of the parameter set, we consider angamloptimization com-
bined with a Greedy method. We define an optimization proliterselecting a new
parameter value on a given reduced space. This new parainé¢ten used —in a
Greedy fashion—to determine the corresponding snapstdbarpdate the reduced
basis. We show the well-posedness of this nonlinear opgitioiz problem and de-
rive first- and second-order optimality conditions. Nuroaticomparisons with the
standard Greedy-training method are shown.

Key words: Reduced basis method, Greedy algorithm, nonlinear opitioiz, a-
posteriori error

1 Introduction

Reduced Basis Methods (RBM) are nowadays a well-known mwalotve para-
metric partial differential equations (PPDES) in casesemlithe PPDE has to be
solved for various values of the parameters (the so-caflelti-querycontext, e.g.
in optimization) or when the solution for different paraeretalues has to be com-
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puted extremely efficient (thealtimecontext), see e.g. [12]. A key ingredientis an
offline-online-decompositioin the offline stage, detailed and thus expensive simu-
lations (sometimes callgduth) are computed for a moderate number of the param-
eters i, ..., Un. The arising solutiona(y;), i = 1,...,N, of the PPDE (sometimes
called snapshotsare stored and are used to form a low-dimensional lineazespa
spanned by the reduced basis. In the online stage, an apmtanhuy(u) for a
new parametep # i is determined as the Galerkin projection onto the reduced
spaceVy = spafu(y) : i =1,...,N}. A whole variety of results for all sorts of
problems has been published in the last years so that an alyehalfway complete
review including a reference list is far beyond the scopéisfpaper.

The topic of this paper is the generation of the reduced liasie offline stage,
namely the selection gfy, ..., un above. It is nowadays basically standard to use
a Greedy method, see e.g. [9]. The starting point is an aefosterror estimator
An(p) for the quantity of interest on a current reduced sp4ageSuch an estimator
can often be constructed in such a way that the evaluaticmdiren parameteu is
highly efficient (in particular independent of the size o thuth system). A training
set Zyain is defined and the error estimatdg (u) is maximized over=y,in. The
arising maximizey1 is used to compute the next snapsh@ty.1) in order to
form the reduced spask 1 of the next higher dimension. We refer to this approach
asGreedy-training

Even though this approach obviously has the advantage o§ledficiently re-
alizable, it may also suffer from the following fact: Theitriag set=4i, needs to
be defined. This may be a delicate task sidggy, should be small for efficiency
reasons and at the same time sufficiently large in order teesept the whole pa-
rameter range as good as possible. The performance of thedrRidally depends
on the choice oEain.

This is the starting point of the present paper. Instead ofimizing the error
estimatorAn(U) over Zyain, We develop a nonlinear optimization problem wyut.
onVy based upon the residual of the primal (and possibly the guwablem. We
show the well-posedness of this optimization problem arri/edirst-order opti-
mality conditions. The optimization problem is solved nuivaly by a gradient-
type method. This method suffers from the fact that we cay determine local
but not global solutions. To overcome this problem we coraliive optimization
strategy with a Greedy training on a coarse training=sat,.

Let us refer to the recent work [2, 3, 4, 8], where adaptivatsties are suggested
for the Greedy-training to overcome the problem with higimehsional parameter
spaces. In the context of the method of proper orthogonairdposition (POD)
nonlinear optimization is utilized in [7] to determine ap#&l snapshot locations
in order to control the number of snapshots and minimize ther én the POD
reduced-order model.

The remainder of the paper is organized as follows. In Seciowe review
the basic ingredients of the RBM and develop the nonlineéinopation problem
(which, in fact, is a minimization problem). We also prove #xistence of a solu-
tion (Theorem 2.1). Section 3 is devoted to the derivatiofiref order optimality
conditions (Theorem 3.1) while second-order conditioestiscussed in Section 4.
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Finally, in Section 5 we report on numerical experiments fricli we compare the
optimization method with the known Greedy-training apptoa

2 Problem formulation
In this section we introduce our minimization problem anstdss the existence of
optimal solutions.

2.1 Theexact variational problem

Let 2 C RP be a given nonempty, closed, bounded and convex parameteino
andV a separable Hilbert space. For givére V' (V' denotes the space of all
bounded and linear functionals defined\@mwith norm || - ||\ and scalar product
(+,-)vr), the goal is to find the scalar output

S([J) = <£7U(I-‘>>V/,v7 He @7 (1a)
whereu(u) €V satisfies the variational problen € V' given)
a(u(p),¢; 1) = (f.¢),,y forallp eV. (1b)

In (1a), we denote by, -)y v the dual pairing of the spac¥$ andV. Furthermore,
in (1b) the parameter-dependent, bilinear fam -; 1) : V xV — R is assumed to
have the affine form

Q
a(¢. i)=Y 9%(u)a(¢,y) forp,yeVandue
g=1

with (twice) continuously differentiable coefficient fuians 39 : 2 — R and with
parameter-independent bounded bilinear foathsV xV — R, 1 < g < Q. More-
over, that the parameter-dependent bilinear fari: uniformly bounded and coer-
cive, i.e., there exist constarag > 0 andy > 0 such that

a(g, ;1)

= — = >0y>0 forallu e 2, 2a
o0} [P g )

la(d, o )| <yl elly forallg,peVanduecz. (2b)

Since the bilinear forma® are bounded we assume that

|a%(¢,0)| <vli¢lllelly forall¢ eV andfori<q<Q. ©)

Notice that (2a) implies
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a(¢,¢;u) > aol|¢||5 forall ¢ €V and forally € 2. (4)

Let us mention that we suppose that bétand/ do not depend op in the affine
form only for simplifying the presentation. From (2a) it imls by standard argu-
ments that (1b) has a unique solutiafu) € V foranyu € 2.

Due to (1a) we require the following dual problem: for giver® 2 find p(u) €
V solving

a(¢,z(u);H) = —((,¢)yy forallpeV. (5)

Since the bilinear forna(-, -; i) is bounded and uniformly coercive, the dual prob-
lem (5) possesses a unique solutida) €V foranyu € 2.

2.2 Thetruth approximation

Next we introduce a so-called truth approximation for (19r Ehat purpose let
VvV =span{¢,...,¢_+} C V be a finite dimensional subspace with linearly in-
dependent functiong;. The subspac¥-"" is endowed with the topology &f. We
think of .4 > 1 being ‘large’. Then, for any € 2 we consider the ‘truth’ output

S‘/V(N) = (¢, U'/V(I-‘»v/,Va (6a)
whereu” (i) € V" satisfies the variational equation
a(u’ (), ¢ k) = (F,di)yry forl<i<.s. (6b)

We define the discrete coercivity constant

N -
a’ (u):= inf M, pe.
o eV \{0} H¢/V||V
UnsingV~" c V and (2a) we find
a’ (u)> inf a9.9:1) >ap forallpe 2.

Teevifor 93 T

Thus, (6b) has a unique solutior (i) € V" for everyu € 2.

2.3 Thereduced-order modelling

Let us introduce a reduced-order scheme for (6). For chasearly independent
elements{ i} in V¥ we defineVyer := span{y, ..., Yner }. Analogously, for
linearly independen{(g}{\fi in V" we setVya := span{ @, ..., G }. We have
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that maxNP",N9Y) < _#". In the context of reduced-order modeling, rfe®, N9Y)
is much smaller thant”.
For anyu € 2 we consider the scalar output

(£, un (IJ)>V’,V7 (7a)
whereun (1) € Ver satisfies the variational equation
a(un(p), Wi 1) = (F,di)yry  for 1<i <NP. (7b)

For notational convenience, we just writg instead ofuner (also for other quan-
tities) since there should be no misunderstanding. We ctoleme more or less
known facts for later reference.

Lemma 2.1.Suppose that the bilinear forn(-a-; u) satisfies(2). Further, f €V’
holds. Then, there exists a unique solutia{u) € Vner to (7b) for everyu € &
with 1l

lun (k) lly < a—o" forall p € 2. (8)

Proof. By assumption, the bilinear forat-, -; i) is bounded for every € 2. Since
Vner C V, the forma(-, -; 1) is also uniformly coercive o¥iner. Thus, it follows from
the Lax-Milgram theorem that (7b) possesses a unique ealugj € Vyer for every
U € 2. Utilizing (4) and (7b) and the uniform coercivity, we obtai

. f, , )
HUN(IJ)H\Z/ < a(UN(N);;;N(N)aN) _ ( UN‘(]I:»v v < H‘;|(|)v

l[un (k) [y,
which gives (8).

Remark 2.11) Due to Lemma 2.1 we can define the primal (non-linear) smut
operator7" : 2 — Ver, whereuy (1) = .74 (11) denotes the unique solution to
(7b).

2) Let us consider a specific case. Suppose that the bilirrar fs given by
a(-,-;u) =3 (pwal(-,-) (i.e., Q = 1) and9*(u) # 0 holds for ally € 2.
Let u} = un(py) be a solution to (7b) for givepy € 2. Then, the function
ud = 9%()ud /9 (12) € VN solves (7b) foup € 2. In fact, we have

a(ug, i ko) = 9 (p)al (ud, w) = 9 (un)a (uk, ¢r) = a(uy, di; 1)
= <f,L[_li>V/’V for1<i <N.

Consequently, solutions to different parameter value$imearly dependent.{

For givenu € 2 the associated dual varial#g(u) solves the dual problem [1],
namely

a(@,zn ()i 1) = =L@y, 1<i<NMY (9)
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Remark 2.21) If the bilinear form satisfies (2) ande V/ holds, it follows by sim-
ilar arguments as in the proof of Lemma 2.1 that (9) admits iquensolution
Zn (M) € Vyau Satisfying

Ly
fa(lly < 0 foraii e 2. (10)

2) We define the (non-linear) solution operatgfdV : 2 — Vya, wherezy =
#34(u) is the unique solution to (9). O

Next we define the residual§(-; ), rdv(-; u) € (V) by
(@7 k) = (F,07 vy —alun(p), ¢ ;) forp eV andu € 7,
(o 1) = (0,0 )y +a(d zn(u);u)  ford eV andu € 2.

It has turned out that the primal-dual output defined as

r

SN (M) 1= (6 Un()yry — TN (2n(R); 1),

gives rise to favorable output error estimates which taleftim (see [12], for
instance)

IR ery Iy
() —se(w)] < A3 (1) = = WV G
Ug

Remark 2.31) From

NPr Ndu

=JZlUN,j(u)wj and zN(u)=J;zN,j(u)<oj

we infer that

NPF
rN (¢ 1) = (1) V!V ZUNJ a(y;, ¢i; 1)
Npr Q
(f.0i)vry ZUNJ ) Y 9% a(y;, 1),
¢=1
fﬂ”(‘ﬁiiﬂ):<€,¢i>vgv+a(¢i, (H); 1)
Ndu Q
:<£a¢i>v’,v+ZlZN7J( 2119 (H)a(¢i, @)
= =

for 1 <i < .#. These representations of the residuals are utilized izeean
efficient offline-online decomposition for the reduced-@rdpproach, see e.g.
[9, 12].
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2) Suppose that the bilinear form is givenayy, -; u) = 91(p)al(-,-) (i.e.,Q=1)
andd*(u) # 0 holds for allu € 2. Then, solutions to different parameter values
are linearly dependent; see Remark 2.1-2).ef, € 2 be chosen arbitrarily.

By uiN, i = 1,2, we denote the solutions to (7b) for parameates ;. From
U = 9% (py)ud /91 (12) we infer that
9 ()

V'S a(d, ;p) — f = a(uy, s Hz) — f=a(uy, - pr) — f.

I (H2)
Hence, the norm|a(un(p), ;1) — f|y.ry is constant for ally € 2, where
un(p) denotes the solution to (7b) for the paramegterAnalogously, we can
prove that the nornfja(-,zn(1); H) + £ .y is constant for ally € 7, where
zn () denotes the solution to (9) for the parameter %

2.4 The minimization problem

Let N := (NP",NY), Yy := Vgpr x Vigau, Xn = Yo x RP andX@? = Yy x 2. We endow
Xn with the natural product topology. In the Greedy algorithmesv reduced-basis
solutionuy () associated with a certain parameter vgluis added to the already
computed set of ansatz functions provided an a-posterii eneasureg (i) in
(11) is maximal. The idea here is to avoid the Greedy methadtamletermineu
as the solution of a minimization problem. Thus, we intraatlee cost functional
J: XN — Rfor xy = (Un,2n, 1) € Xy by

1
Jow) = =5 (I - a(un, 5 k)l + [10+al 20 )1y -

If I(xn(U)) > —eap holds true forxy () := (un(p),zn(u), 1), we infer by using
Young’s inequality that

e )13y + P89 )5y
7 () — s < I G5 ) gy T IMR'C vy 300a(k)) e
200 Qo
Now we consider the following optimization problem:
min J(xy) subjectto (s.t.) xn = (YN, 1), YN = IN(H), P

XN eX,{’}

where we have se¥yy = (A", 73") : 2 — Yy, i.e.,yn = S (1) means thagy =
(un(H),zn(p)). Introducing the reduced cost functional

(M) = I(IN(M), 1) forpe,

we can expresd?) equivalently in the reduced form
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Héi{g\](u). (P)

If (P) has a local solutiop € Z, thenxy := (Yn, i) is a local solution toR), where
we setyy = (Un, pn) := -N(H). We now give a general existence result.

Theorem 2.1.Suppose that the bilinear forn{-a-; u) satisfieg2). Further, f and
¢ belong to V. Then, there exists at least one optimal soluti@n= (yn, 1), YN =
(UN, Zn) € W, to (P).

Proof. SinceZ is assumed to be nonempty at|, : 2 — Yy is well-defined, the
set of admissible solutions

F(P) = {xn = (yn, 1) € X3 yn = A (1)}

is nonempty. Let{x{ }nery € F(P), Xy = (W, 1) andyy’ = (', 2"), be a
minimizing sequence far:

inf J(xy) = lim J).

XNEF(P) N—e

Since Z is bounded and the a-priori bounds (8), (10) hold,jpf@)J(xn) is
bounded from below. Moreover, from™ € 2 c RP for everyn we infer that there
exists a subsequenég (™} in 2 and an element € Z so that

lim p™ =g inRP,
k—o0

It follows from the a-priori estimates (8) and (10) that tbqsence{(u,@ , z,(\:‘))}neN

is bounded inYy. Consequently, there exist a subseque{y,‘@‘)}keN and a pair
yn = (Un, Pn) € Yy such that

U™ — Oy fork — o inViger - and 2% — 2y for k — o0 in Vyyau. (12)
Next we prove thayny = (1) holds. For 1< i < NP"we have
(f, @)y —alun, gisp )*a(UN s ™)) — a(ln, g i) =
7a(uN aw I"lnk) (uN aw I"l)+a( 7LTNawi;lj>

Z( )~ 9() (U, ) ) +au G, us; ).

Let us define the functionalg € V' C \{ by (R, )y :=a(¢, ;1) for ¢ eV
and 1< i < NP'. From (12) we infer that

a(u™ — Gy, g i) = R(UM™ —Gy) —» 0 fork — oo and 1< i < NP,

Moreover,Hu,(\?") lv is uniformly bounded and th&%'s are continuous. Thus,
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Q
99y _ ga W 0 fork—wand1<i<O.
qzl(( (™) — 9%(m)) at(uy l.U)) —0 fork—eand1<i<Q

Consequentlyuy = " (i) holds. Analogously, we find thag, = .%(x) holds
true. Thusxy = (Yn, M) € F(P) is satisfied. Next, we show thag is a minimizer
for J. Note that with the above arguments

la(u™, - ) —a(uy, - 1) yor

gz!sq(mfa )| []a8(ug, )l oy 5 0.
=1

This and (12) imply
; (ng) .
l!m” f— a(uNk ,,'u(nk))” Vﬂ’ r =

= lim [| £ —a(u™ 510 oy Jim U3 ) — alug, 1 ™)y
= ||f —a(un, ;1) H(vﬂ’)f
Analogously, link |\€+a(-,z,($k); u(”k))H(\,w), = |[¢+a(-,zv; 1) || (v and there-

fore 0
f =i =
oy JO0) = lim J(y') = I(),
i.e., Xy is a solution to P). %

Before we continue, let us collect some notation that wilhbeded in the sequel.
Letxn = (YN, M), YN = (Un, Zn), be an optimal solution td?) according to Theorem
2.1. Then, define corresponding (optimal) primal and dusitikeals as

(o) = (f,07" )iy —alin, ¢ s 1) for g eV,
@) = (0" iy +a(e” 2 ) for " v

We define the corresponding Riesz representaﬁhﬁﬂ” eV’ ie.,

(PR W =TR(") = (f," )y —alln, ¢ ;1) forall ¢’ eV,
(PR% O W =T ) = (L, ¢ >V/V+a(¢ ) forall g eV,

This in particular implies that
(@) wvry = (@A) yoryyr forallge (V7"Y,

which will be used later. It is noticable to mention that weda generap_,ﬂr & Vnpr
andp ¢ Vyau-
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3 First-order necessary optimality conditions

First we write the equality constraints iR)(in a compact from. For that purpose we
introduce the nonlinear mappirg= (e1,€2) : Xn — Yy, by

(e0n), A v = (@100): AR by i + (€200 M85 3,

for xy = (u,\l,zN,u) € X,ﬁd andAy = (A&,)\,ﬁ) € Yn. Here, we identify the duaiy,
with Vipr x Vg, @and we put
<e1(XN))/\|\ll>V'<lpr,VNpr = <f’A&>V’<‘pr,VNpr - a(UN,Al\ll;IJ)v

(€200), A0 . 7y, = (LAY v, +aAG 20 1)
Ndu’ N

Ndu’ TNAU

Using (2b) we infer that

len)lly, = sup (e(xn), AN)yy v,
IAnllyy, =1
1 2
= sup (e(XN);AN)v o ver T SUP - (8200), AR v
AR, =1 NP M3l =1 NN

< Ce (1+lunlly + liznlly)

with Ce = max({| f[lv/ + [|€[[v, y)-

To derive first-order optimality conditions foP) we have to ensure that the
mappingeis continuously (Fréchet) differentiable and satisfiemadard constraint
qualification; see, e.g., [5, 13].

Proposition 3.1.Suppose that the bilinear form(-a-;u) satisfies(2). Further,
f,¢ € V' holds and the function89 are continuously differentiable fdr < q < Q.
Then, the mapping e is continuously €ehet) differentiable and its (Echet)
derivative at x;, = (yn, U) € X,ﬁd, yn = (Un,2Zn), IS given by

(€ 000X Ay = (LN AN e + (SO, 7

for any direction = (ud, 2, u%) € Xy and forAy = (Ad, A7) € Yn, where

Q
<e(l(XN)XEIa)\|\l|>\~/,<‘pr,\7Npr = 7a(u2|7/\l3|-;“) - z aq(UNvf\lﬁ)ng(H)Tﬂé,
&

(00X A

,\ldu"VNdu

Q
=a(Ak, k) + Y aAK,z)09%(w) "l
G=1

with 099() = (9} (k). 9% (1))™ € R” and 9} = 9. Furthermore, the

(Fréchet) derivative’éxy) : Xy — Yy is a surjective operator for everyxe X2d.
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Proof. It follows by standard arguments thatis (Fréchet) differentiable for ev-
ery xy € X39. Therefore, we only prove that the linear operadxy ) is onto. Let
Fv = (R, F3) € Y, be chosen arbitrarily. Theg/,(xy) is surjective if there exists an
elementd = (ud, 2z, u%) € Xy satisfying

g =Fy inYy. (13)
Equation (13) is equivalent with
)R =FyinVier in &)X = RS in V. (14)

Choosingu® = 0 we obtain from (14) that

a(uR, A H)

a(Ag, 2R 1) = (Fﬁ,/\,@%deNdu for all A € Vyu.

,<F,\,1,A§>V'/“pr,var for all Al € Vipr,
(15)

Since the bilinear forma(-,-; ) is bounded and coercive, there exists a unique
pairy? = (ud,23) € Yy solving (15). Summarizingg = (y4,0) solves (13) which
implies thate/(xy ) is surjective.

Next let us introduce the Lagrange functiond : Xy x Yy — R for xy =
(X5, X%, 1) € Xy andAy = (AR, A3) € W as

2 (%N, AN) = J0n) + (0n), ANy vy,

1
= =5 (If = a(un, 1) [y + a2 ) + )

+ <(f5£)7/\N>Y’<‘,YN - a(qu/\lilh;IJ) +a()\ﬁva:IJ)

We infer from Proposition 3.1 that first-order necessarynoglity conditions are
given as follows [5, 13]: Leky = (Yn, 1) € X329, yn = (Un,Zu) € Ya, be a local
solution to P). Then, there exists a Lagrange multipligr = (A&, AZ) € Yy solving

the following system

Lo, (XN, ANJUS =0 for all ud) € Vipr, (16a)
L (R, AN)Z, =0 for all 23 € Vyau, (16b)
L (%, ) (O — 1) > 0 for all u® € 2, (16¢)

where, for instance,, denote the (Fréchet) derivative of the Lagrangian with
respect to the argumeng. First we study (16a). Fcuﬁ € Vnper we find

Lo (o0, AU = (£ = (T3 1), (05 1)) .y — (R A ).

Using the Riesz representatipff € V¥ of i} € (V-"')/, we get
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Ly (o, AU = (TR a1 1) oy — a(UR, AR D)

5 - -, an
=a(u, PR’ H) —a quAN 1) =a(uR, o — A i)
From (16a) and (17) we infer the first adjoint equation:
a(ud, Ad 1) = a(ud, pis ) for all ud € V. (18)

Remark 3.4Since in general)’ ¢ Viprholds, we obtain in generaf:  pf. Rather,
A is thea-orthogonal projection by € V ontoAg € Vier. O

Further, we have
Lo AR = —(C+al- 2 ). a0, R ) yory +aAR R ) (19)

for any directionzy € Vya. Using the Riesz representatigi" € V¥ of riV €
(V-")’, combining (16b) and (19) we get

Lo (0 AN)Z = a(AG — PR 2 ) =0 for all 2 € Vi
which gives the second adjoint equation
a(A2. 2 i) =a(piv. 2 i) forall 2, € Vyau. (20)
Remark 3.5Analogous to Remark 3.4 we infer thg}ﬁ is thea-orthogonal decom-
position ofpd" ontoVyu. O

Next we consider (16c¢). Using the Riesz representatiﬁﬁ{ﬁ,‘\’,” e V" of
LT e (V) respectively, it follows that

< (XNa)\N H = Z D,SCI Tu6(rﬁlraaq(uN7 ))(Vﬂ/)’
+ z 099 kP (=7 %z + (A ) — @A) (2D)
Q - - f—
-2 (a%(dn, B~ M) + A% — PRt ) ) 09 %) T

for any directionu® € RP. We define the Jacobi matrix
09 ()"
DS (i) = : € ROP
099"

with 099(u) = (9 (1), Iip (1)) " € R” and I = ‘;iq Further, we sef =
&%, AN) = (&1,..., &) " € R with
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&q = ad(in, o — Af) + %A% — plizy) for1<q<Q.
Then, we derive from (16c¢) and (21)
(D) &) (o —pm)>0 forallu’e 2. (22)
Summarizing we have proved the following result.

Theorem 3.1.Suppose that the bilinear forn{-a-; i) satisfieq2). Further, f,¢ €
V'’ holds and the functiong9 are continuously differentiable fat < g < Q. Let
xN = (YN, M) € X,‘E}d, yn = (Un,Zn) € Y, be a local solution tqP). Then, there
exists a unique associated Lagrange multiplier pair= (A3,A3) € Yy satisfying
together withxy the first-order necessary optimality conditiofdi8), (20) and (22).

The gradienflJ of the reduced cost functiondlat a pointu € Z is given by the
formula [5, 13] A
0J(u) =D8 (u)" & € RP, (23)

where the components of the vecfoe R? are
&g =a%(un, o —A) +a%(AG — PRt zn) forl<q<Q,
(un,2n) = 7 (1) holds andAy = (A}, A3) € Y solves the dual system
a(ud, Ag; ) = a(u, pR’; 1) for all ud € Vipr,
a(Af,z; 1) = a(pf" Z0; 1) for all 2, € Vyau.

Here,py', pi" € V" are the Riesz representants of the residgls; (1), ri'(-; 1) €
(V"Y, respectively.

Remark 3.6Suppose that the bilinear form is given by ,-;u) = 8*(p)al(-,-)
(i.e.,Q=1) andd!(u) # 0 holds for allu € 2. Then, solutions to different param-
eter values are linearly dependent; see Remark 2.1-2) am@&iRe2.3-2). Then, it
follows from 91(u) # 0, (18) and (20) that

at(ud, Ag) = at(ud, P for all ug € Vir,

al(A%,4) =al(pt".Z) for all 2 € Viyau.
In particular, a (tn, oy — M%) = al(A2 — p%.7y) = 0 holds true, which gives
&1 =0. Therefore[1J(u) = 0 is satisfied. This coincides with the observation in
Remark 2.3-2 that the mappings

e faCrg (1), 1) = fllyory and g flal, A8 )+l er y

are constant. O
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4 Second-order derivatives

To solve P) in our numerical experiments we apply a globalized sedaleqiadratic
programming (SQP) method which is makes use of second-dedaatives of the
Lagrange functional; see [10], for example. For that reag®address second-order
optimality conditions in this section. We restrict ours\o simple bounds, i.e., we
assume that the bounded and convex parameter segiven by

7 = [Ma1,Hpa] X ... % [Hap, Hop] C R”

P-times

with lower and upper boundgaj < ppj, 1 <i < P. Let xy = (Yn, 1) € X9,
yn = (Un,Zn) € Yn, be a solution to the first-order necessary optimatity cioras
for (P); see Theorem 3.1. Moreover, the paif = (A§,A3) € Yn denotes for the
associated unique Lagrange multiplier. We suppose thdutiwions3d9 are twice
continuously differentiable. Fard, (% € Viyer we deduce

gUNUN ()?l\hA_N)(Uﬂ,Gg) = —(a(l]ﬂ, ';mva(ugla ';m)(vﬂ)" (24)

Analogously, we find foed, 2 € Vyau

Ly 0 AN) (R, R) = —(@- 2R3 D), a2 1)) vy (25)
Further, it follows that
Ly (M) (U, ) = Loy (R, An) (R D) (26)

for ud € Ver andzd, € Vyau. Usingry = f —a(l,-; 1) € V' and the Riesz repre-
sentanpf €V of it we observe that

guuN (YN,XN)(UQ,H(S) = ZUNH()?NMTN)(U&“(S)
Q — _
= Z Dﬁq(mTué (aq(uﬂaﬁl?lr - Alalh) - (aq(uN7 ')a a(uﬂ, g u))(VA’)’) :
&
for ud € Vier andp® € RP. Let 70" e V', 1< q < Q, denote the Riesz represen-
tants ofad(Uy,-) € (V")', i.e.
(8% 9", =a%(n,0") forallg” eV
Then, we derive that
guNu()?NaA_N)(UEIaIJ(S)
Q - @27)

=Y 099(m) " p® (%, B — A) — a(ud, 2% )
g=1
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for ud € Vaer andp® € RP. As above we apply$"= ¢ +a(-,z; ) € (V*) and
the Riesz representap§” € V" of ri" we observe that

Lny (. ) (2, ) = Loy o AN) (2R, 1)
Q _

= Zl[lsq(lj)—rué(aq(/\ﬁ 7pl‘\jluazl(§|) - (aq(' 7Z_N)7a(' 7Zﬁ;lj))(V'/V)/)
o=

for 23 € Vya andp® € RP. Let )" € V', 1< q < Q, denote the Riesz represen-

tants ofad(-,zy) € (V"), i.e.
(@99 ), =a%(e" ) forall gt v,
Then, we conclude that

L (R AN) Zﬁ p°)

(28)
= Z 099" ® (a9(AR — o R) — a(@*. A4 )
for 2 € Ve andp® € RP. Finally, we find foru?®, ji° € RP
Lt (R0 A (1, BO)
Q
- ﬂé’T(( S (a(an, A —a%pﬂ“,z‘m))ﬂzﬁ‘*(m)u‘s (29)
g=1

Q . — 2
=y 09%(m) k2091 (IR + 116y )
g=1

with 17 = (f1%)7.

The convergence of the SQP method relies on second-ordieiestf optimality
conditions for P). For an arbitraryr > 0 let us define the set aftrongly active
constraintsfor the parameten by

={ie{l...,P}| (O3 )|z}
={ie{L,...,P}|(ODS ()" &)i| > 1},

where(0J(11)); denotes theth component of the vectatd (1) € RP. Second-order
sufficient optimality conditionfor (P) are as follows [13]: Leky = (Yn, {) € X2,
yn = (Un,Zn) € Y, be a solution to the first-order necessary optimatity cooms
for (P); see Theorem 3.1. Moreover, the pair = (A§,A3) € Yn are the associated
Lagrange multiplier. If there existska> 0 such that

— T 2 2 2
Lo 20, 20) R R) = k¢ (IRl + 18 + 112 e (30)
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for all x§ = (Y3, u%) € Xn, Y3 = (ud,Z), satisfyingy?, € keré (xy) and

=0 if i€ ot ()
(u%)i >0 if [ = paj andi & a1 (f),
<0 if g = pp; andi & o7 (p).

thenxy is a strictly local solutlon toR).
Suppose thatd = (Y3, u®) € keré (xn) with y& = (ud, ) € Yn. Then we have

a(ud, y; ) = z 099m) " a%(uy, @) for all ¢ € Vier, (31a)

2= z 099m) " ula%(p,zv) for all @ € Vyau. (31b)

Utilizing (2a), (3) and (31a) we find

Q
5112 5 5. — — 5 5
ao [|unlly < a(uy, uns 1) < vllounlly S 1099 l[gellurlly |4 [lge
=1

which implies
Illy <CrllK8llpe forallxd = (R, %) € kere (). (32a)

with C; = y/||in]lv qu:lHDSq(ﬁ)HRp. Analogously, we derive from (2a), (3) and
(31a) _
Iy < Ca I8l forallxg = (i, u°) € keré/ (). (32b)

with C, = y||zn|lv qu:1 |089(u)||gp. From (2b), (32) and (32b) we infer that

a5 DIy = 18, )l = =2 (IRIG + IR )
> —y? (C3+C3) |||z

We setCs = yz(C?%JrC?%). Then, we derive from (24)-(29) and (33) that

(33)
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b ¥ S 0
ZXNXN (XNv/\N)(uNa uN) =

_ Q ~ _ o
> Ca| U0l +2 3 D99 ® (a%(ud, B — Ad) — a(ud 8% i)
g=1
e T,,0 32 d —dug
+25 099%) "l (%A — PR —aley ", 2 1)
g=1

+ ot (( % (2%, F) — (B ) ) Dzwm) ue
g=1

Q —
— 2 2 2
= 3 (9% kP (128 + )
g=1
for all x3 € ker€/ (xy). Since
=2 S AT 812 (1 7Pray2 g mdua)
~CallKlge — 3 D99 K P(IGRIG + I ) <0
g=1

holds and the matrix

Q
(3 (a7 - (B 20) ) P29%(H)
=1

need not be positive definite, the second-order sufficietitnatity condition (30)
is not obvious in our case.

Remark 4.71f u is strongly active in alP components, it follows that/ (1) =
{1,...,P}. Thus,u® = 0 is satisfied. From (32) and (32b) we conclude yﬁ,at: 0
holds. This imply the second-order necessary optimalihditins atxy. %

5 Numerical experiments

In this section we present some numerial results for therdesttheory. We use
two versions of the well-known Thermal-Block-Model (seg.412]) as a model
example. Model 1 consists of two blocks (iBa.= 2,B, = 1) while Model 2 consists

of four blocks (i.eB; = 2,B, = 2), see Figure 1. The parameter domain is chosen
asZ = [0.2,2]P, whereP again denotes the number of parameters, Pe=, 2 for
Model 1 andP = 4 for Model 2, see Figure 1. We choosg,p = 1le—5 as stopping
criteria for the Greedy-algorithm. Sinée= 2 for Model 1, we can easily visualize
the reduced cost functiond{y) in that case, see Figure 2.
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M3 Ha

H1 H2

Ha K2

Fig. 1 Left: Model 1 B1 = 2,B, = 1), right: Model 2 B = 2,B, = 2).

As we can deduce from the shape of the cost functional, theopppte choice
for an initial value for the optimization schetis crucial in order to avoid deter-
mining a local minimum only. Let us clarify this in Figure 2)(IChoosing an initial
parameteruiﬂit in the left half of the plane will lead to a local minimum whase
an initial value located in the right half of the plane wileyd the global optimum
(0.2,2). In order to avoid the output of a local minimum, we have usedd differ-
ent strategies:

1. eucl i di an_mu: pN, is chosen by maximizing the Euclidian distance to the
barycenter of the previously determined parameter valgeb<i <N — 1.

2. randommu with “safety zone”:ul, is chosen randomly ir%, but ensuring
a minimal distance (measured in the Euclidian norm) tquglll <i <N -—1.
This “safety zone” is chosen adaptively, i.e., the radiushef circular zone is
decreased with increasirg. If we would not do that, we would get ad™a
where no additional feasible points could be found.

3. coar se_gri d_mu: An equidistant coarse parameter-mesh consisting ef3”
(M =9 for Model 1 andvl = 81 for Model 2) points is used. We choose that
parameter as initial valug], whose cost functional is minimal on that grid.

Best results were obtained usingar se_gri d_nu and all figures correspond
to this strategy. We used an SQP algorithm as optimizatibaree and compare the
results to a classical training set strategy, using edaidigraining sets consisting
of 32 = 81 respectively 19= 100 parameter values. Figure 3 (left) shows decay of
the error estimator during the Greedy-process (i.e., witlhdasing\). We choose

1 We used MATLAB’s functionf mi ncon for this. We setopti ons. Tol Con=1e- 6;
options. Tol Fun=1e-6; andoptions. Al gorithm= sqgp’, i.e.,, we used a MATLAB
internal SQP algorithm.
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¢ = (1,1) as initial snapshot-parameter. As expected (see [11]) tleedy stops

after two steps withus = (Umin, Hmax) anduz = (Umax, Umin)- IN this example there
is no difference between using an optimization algorithrd asing a training set
strategy since the optimal parameter valpgsnd i are contained in the training
set. Hence, our optimization procedure is consistent vagrknown theory.

@N=1 | O)N=2 ©ON=3

Fig. 2 Reduced cost functiondl(11) for Model 1. Note that the range for thyeaxis forN = 3 is
1078

In Figure 3 (right) the decay of the error estimator is shoanModel 2. The
training sets consisted ¢B8% 5% 74,10%} equidistant parameter values and the de-
sired tolerance of 1le-5 is reached at a basis sizd ef 20 for all strategies. We
observe the expected exponential decay and our optimizatiategy performs as
good as the classical training set strategies. This is Hegthéa since in our model
cases the distribution of the optimal parameters is knowa &o-called ‘magic
points’). From the point of view of the optimization methdahlis is the worst case
which is a strong indication that the optimization approatdo works when no
a-priori knowledge for the choice of the training set is &alale.

In Table 1 we show the overall number of evaluationd(@f) - i.e., the number of
reduced simulations - during the Greedy process in the efflirase for Model 1 and
Model 2. Especially for Model 2 the Greedy algorithm comliméth the optimiza-
tion scheme needs much less function calls than the Gregdyithim combined
with a training set strategy. This can be an advantage irr ¢od®/ercome the curse
of dimension which prohibits to choose the training settaabily large especially
in high dimensions.
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Fig. 3 Error estimatoA] (1) for the optimal valugt in Model 1 (left) and Model 2 (right).
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