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Greedy Sampling using Nonlinear Optimization

Karsten Urban and Stefan Volkwein and Oliver Zeeb

Abstract We consider the reduced basis generation in the offline stage. As an alter-
native for standard Greedy-training methods based upon a-posteriori error estimates
on a training subset of the parameter set, we consider a nonlinear optimization com-
bined with a Greedy method. We define an optimization problemfor selecting a new
parameter value on a given reduced space. This new parameteris then used –in a
Greedy fashion– to determine the corresponding snapshot and to update the reduced
basis. We show the well-posedness of this nonlinear optimization problem and de-
rive first- and second-order optimality conditions. Numerical comparisons with the
standard Greedy-training method are shown.

Key words: Reduced basis method, Greedy algorithm, nonlinear optimization, a-
posteriori error

1 Introduction

Reduced Basis Methods (RBM) are nowadays a well-known tool to solve para-
metric partial differential equations (PPDEs) in cases, where the PPDE has to be
solved for various values of the parameters (the so-calledmulti-querycontext, e.g.
in optimization) or when the solution for different parameter values has to be com-

Karsten Urban
Universität Ulm, Institute for Numerical Mathematics, Helmholtzstraße 20, D-89069 Ulm, Ger-
many, e-mail: Karsten.Urban@uni-ulm.de

Stefan Volkwein
University of Constance, Department of Mathematics and Statistics, Universitätsstraße 10, D-
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puted extremely efficient (therealtimecontext), see e.g. [12]. A key ingredient is an
offline-online-decomposition. In the offline stage, detailed and thus expensive simu-
lations (sometimes calledtruth) are computed for a moderate number of the param-
eters,µ1, . . . ,µN. The arising solutionsu(µi), i = 1, . . . ,N, of the PPDE (sometimes
calledsnapshots) are stored and are used to form a low-dimensional linear space
spanned by the reduced basis. In the online stage, an approximationuN(µ) for a
new parameterµ 6= µi is determined as the Galerkin projection onto the reduced
spaceVN = span{u(µi) : i = 1, . . . ,N}. A whole variety of results for all sorts of
problems has been published in the last years so that an even only halfway complete
review including a reference list is far beyond the scope of this paper.

The topic of this paper is the generation of the reduced basisin the offline stage,
namely the selection ofµ1, . . . ,µN above. It is nowadays basically standard to use
a Greedy method, see e.g. [9]. The starting point is an a-posteriori error estimator
∆N(µ) for the quantity of interest on a current reduced spaceVN. Such an estimator
can often be constructed in such a way that the evaluation fora given parameterµ is
highly efficient (in particular independent of the size of the truth system). A training
set Ξtrain is defined and the error estimator∆N(µ) is maximized overΞtrain. The
arising maximizerµN+1 is used to compute the next snapshotu(µN+1) in order to
form the reduced spaceVN+1 of the next higher dimension. We refer to this approach
asGreedy-training.

Even though this approach obviously has the advantage of being efficiently re-
alizable, it may also suffer from the following fact: The training setΞtrain needs to
be defined. This may be a delicate task sinceΞtrain should be small for efficiency
reasons and at the same time sufficiently large in order to represent the whole pa-
rameter range as good as possible. The performance of the RBMcrucially depends
on the choice ofΞtrain.

This is the starting point of the present paper. Instead of maximizing the error
estimator∆N(µ) overΞtrain, we develop a nonlinear optimization problem w.r.t.µ
on VN based upon the residual of the primal (and possibly the dual)problem. We
show the well-posedness of this optimization problem and derive first-order opti-
mality conditions. The optimization problem is solved numerically by a gradient-
type method. This method suffers from the fact that we can only determine local
but not global solutions. To overcome this problem we combine the optimization
strategy with a Greedy training on a coarse training setΞtrain.

Let us refer to the recent work [2, 3, 4, 8], where adaptive strategies are suggested
for the Greedy-training to overcome the problem with high-dimensional parameter
spaces. In the context of the method of proper orthogonal decomposition (POD)
nonlinear optimization is utilized in [7] to determine optimal snapshot locations
in order to control the number of snapshots and minimize the error in the POD
reduced-order model.

The remainder of the paper is organized as follows. In Section 2, we review
the basic ingredients of the RBM and develop the nonlinear optimization problem
(which, in fact, is a minimization problem). We also prove the existence of a solu-
tion (Theorem 2.1). Section 3 is devoted to the derivation offirst order optimality
conditions (Theorem 3.1) while second-order conditions are discussed in Section 4.
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Finally, in Section 5 we report on numerical experiments in which we compare the
optimization method with the known Greedy-training approach.

2 Problem formulation

In this section we introduce our minimization problem and discuss the existence of
optimal solutions.

2.1 The exact variational problem

Let D ⊂ R
P be a given nonempty, closed, bounded and convex parameter domain

andV a separable Hilbert space. For givenℓ ∈ V ′ (V ′ denotes the space of all
bounded and linear functionals defined onV with norm ‖ · ‖V′ and scalar product
(· , ·)V ′ ), the goal is to find the scalar output

s(µ) := 〈ℓ,u(µ)〉V ′,V , µ ∈ D , (1a)

whereu(µ) ∈V satisfies the variational problem (f ∈V ′ given)

a(u(µ),ϕ ;µ) = 〈 f ,ϕ〉V′,V for all ϕ ∈V. (1b)

In (1a), we denote by〈· , ·〉V ′,V the dual pairing of the spacesV ′ andV. Furthermore,
in (1b) the parameter-dependent, bilinear forma(· , · ;µ) : V ×V →R is assumed to
have the affine form

a(ϕ ,ψ ;µ) =
Q

∑
q=1

ϑ q(µ)aq(ϕ ,ψ) for ϕ ,ψ ∈V andµ ∈ D

with (twice) continuously differentiable coefficient functionsϑ q : D →R and with
parameter-independent bounded bilinear formsaq : V ×V → R, 1≤ q≤ Q. More-
over, that the parameter-dependent bilinear forma is uniformly bounded and coer-
cive, i.e., there exist constantsα0 > 0 andγ > 0 such that

α(µ) := inf
ϕ∈V\{0}

a(ϕ ,ϕ ;µ)
‖ϕ‖2

V

≥ α0 > 0 for all µ ∈ D , (2a)

∣
∣a(ϕ ,φ ;µ)

∣
∣≤ γ ‖ϕ‖V‖φ‖V for all ϕ ,φ ∈V andµ ∈ D . (2b)

Since the bilinear formsaq are bounded we assume that
∣
∣aq(ϕ ,φ)

∣
∣ ≤ γ ‖ϕ‖V‖φ‖V for all ϕ ,φ ∈V and for 1≤ q≤ Q. (3)

Notice that (2a) implies
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a(ϕ ,ϕ ;µ)≥ α0‖ϕ‖2
V for all ϕ ∈V and for allµ ∈ D . (4)

Let us mention that we suppose that bothf andℓ do not depend onµ in the affine
form only for simplifying the presentation. From (2a) it follows by standard argu-
ments that (1b) has a unique solutionu(µ) ∈V for anyµ ∈ D .

Due to (1a) we require the following dual problem: for givenµ ∈ D find p(µ) ∈
V solving

a(ϕ ,z(µ);µ) =−〈ℓ,ϕ〉V′,V for all ϕ ∈V. (5)

Since the bilinear forma(· , · ;µ) is bounded and uniformly coercive, the dual prob-
lem (5) possesses a unique solutionz(µ) ∈V for anyµ ∈ D .

2.2 The truth approximation

Next we introduce a so-called truth approximation for (1). For that purpose let
VN = span{ϕ1, . . . ,ϕN } ⊂ V be a finite dimensional subspace with linearly in-
dependent functionsϕi . The subspaceVN is endowed with the topology ofV. We
think of N ≫ 1 being ‘large’. Then, for anyµ ∈ D we consider the ‘truth’ output

sN (µ) := 〈ℓ,uN (µ)〉V′,V , (6a)

whereuN (µ) ∈VN satisfies the variational equation

a(uN (µ),ϕi ;µ) = 〈 f ,ϕi〉V′,V for 1≤ i ≤ N . (6b)

We define the discrete coercivity constant

αN (µ) := inf
ϕN ∈VN \{0}

a(ϕN ,ϕN ;µ)
‖ϕN ‖

2
V

, µ ∈ D .

UnsingVN ⊂V and (2a) we find

αN (µ)≥ inf
ϕ∈V\{0}

a(ϕ ,ϕ ;µ)
‖ϕ‖2

V

≥ α0 for all µ ∈ D .

Thus, (6b) has a unique solutionuN (µ) ∈VN for everyµ ∈ D .

2.3 The reduced-order modelling

Let us introduce a reduced-order scheme for (6). For chosen linearly independent
elements{ψi}

Npr

i=1 in VN we defineVNpr := span{ψ1, . . . ,ψNpr}. Analogously, for

linearly independent{φi}
Ndu

i=1 in VN we setṼNdu := span{φ1, . . . ,φNdu}. We have
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that max(Npr,Ndu)≤ N . In the context of reduced-order modeling, max(Npr,Ndu)
is much smaller thanN .

For anyµ ∈ D we consider the scalar output

〈ℓ,uN(µ)〉V′,V , (7a)

whereuN(µ) ∈VNpr satisfies the variational equation

a(uN(µ),ψi ;µ) = 〈 f ,ψi〉V′,V for 1≤ i ≤ Npr. (7b)

For notational convenience, we just writeuN instead ofuNpr (also for other quan-
tities) since there should be no misunderstanding. We collect some more or less
known facts for later reference.

Lemma 2.1.Suppose that the bilinear form a(· , · ;µ) satisfies(2). Further, f ∈ V ′

holds. Then, there exists a unique solution uN(µ) ∈ VNpr to (7b) for everyµ ∈ D

with

‖uN(µ)‖V ≤
‖ f‖V′

α0
for all µ ∈ D . (8)

Proof. By assumption, the bilinear forma(· , · ;µ) is bounded for everyµ ∈D . Since
VNpr ⊂V, the forma(· , · ;µ) is also uniformly coercive onVNpr. Thus, it follows from
the Lax-Milgram theorem that (7b) possesses a unique solutionuN ∈VNpr for every
µ ∈ D . Utilizing (4) and (7b) and the uniform coercivity, we obtain

‖uN(µ)‖2
V ≤

a(uN(µ),uN(µ);µ)
α0

=
〈 f ,uN(µ)〉V′,V

α0
≤

‖ f‖V ′

α0
‖uN(µ)‖V ,

which gives (8).

Remark 2.1.1) Due to Lemma 2.1 we can define the primal (non-linear) solution
operatorS pr

N : D →VNpr, whereuN(µ) =S
pr
N (µ) denotes the unique solution to

(7b).
2) Let us consider a specific case. Suppose that the bilinear form is given by

a(· , · ;µ) = ϑ 1(µ)a1(· , ·) (i.e., Q = 1) and ϑ 1(µ) 6= 0 holds for all µ ∈ D .
Let u1

N = uN(µ1) be a solution to (7b) for givenµ1 ∈ D . Then, the function
u2

N = ϑ 1(µ1)u1
N/ϑ 1(µ2) ∈VN solves (7b) forµ2 ∈ D . In fact, we have

a(u2
N,ψi ;µ2) = ϑ 1(µ2)a

1(u2
N,ψi) = ϑ 1(µ1)a

1(u1
N,ψi) = a(u1

N,ϕi ;µ1)

= 〈 f ,ψi〉V′,V for 1≤ i ≤ N.

Consequently, solutions to different parameter values arelinearly dependent.♦

For givenµ ∈ D the associated dual variablezN(µ) solves the dual problem [1],
namely

a(φi ,zN(µ);µ) =−〈ℓ,φi〉V′,V , 1≤ i ≤ Ndu. (9)
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Remark 2.2.1) If the bilinear form satisfies (2) andℓ ∈V ′ holds, it follows by sim-
ilar arguments as in the proof of Lemma 2.1 that (9) admits a unique solution
zN(µ) ∈ ṼNdu satisfying

‖zN(µ)‖V ≤
‖ℓ‖V′

α0
for all µ ∈ D . (10)

2) We define the (non-linear) solution operatorS du
N : D → ṼNdu, where zN =

S du
N (µ) is the unique solution to (9). ♦

Next we define the residualsrpr
N (· ;µ), rdu

N (· ;µ) ∈ (VN )′ by

rpr
N (ϕN ;µ) := 〈 f ,ϕN 〉V′,V −a(uN(µ),ϕN ;µ) for ϕ ∈VN andµ ∈ D ,

rdu
N (ϕN ;µ) := 〈ℓ,ϕN 〉V′,V +a(ϕN ,zN(µ);µ) for ϕ ∈VN andµ ∈ D .

It has turned out that the primal-dual output defined as

sN(µ) := 〈ℓ,uN(µ)〉V′,V − rpr
N (zN(µ);µ),

gives rise to favorable output error estimates which take the form (see [12], for
instance)

∣
∣sN (µ)− sN(µ)

∣
∣≤ ∆s

N(µ) =
‖rpr

N (· ;µ)‖(VN )′

α1/2
0

‖rdu
N (· ;µ)‖(VN )′

α1/2
0

. (11)

Remark 2.3.1) From

uN(µ) =
Npr

∑
j=1

uN, j(µ)ψ j and zN(µ) =
Ndu

∑
j=1

zN, j(µ)φ j

we infer that

rpr
N (ϕi ;µ) = 〈 f ,ϕi〉V′,V −

Npr

∑
j=1

uN, j(µ)a(ψ j ,ϕi ;µ)

= 〈 f ,ϕi〉V′,V −
Npr

∑
j=1

uN, j(µ)
Q

∑
q=1

ϑ q(µ)aq(ψ j ,ϕi),

rdu
N (ϕi ;µ) = 〈ℓ,ϕi〉V′,V +a(ϕi,zN(µ);µ)

= 〈ℓ,ϕi〉V′,V +
Ndu

∑
j=1

zN, j (µ)
Q

∑
q=1

ϑ q(µ)aq(ϕi ,φ j)

for 1 ≤ i ≤ N . These representations of the residuals are utilized to realize an
efficient offline-online decomposition for the reduced-order approach, see e.g.
[9, 12].
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2) Suppose that the bilinear form is given bya(· , · ;µ) = ϑ 1(µ)a1(· , ·) (i.e.,Q= 1)
andϑ 1(µ) 6= 0 holds for allµ ∈D . Then, solutions to different parameter values
are linearly dependent; see Remark 2.1-2). Letµ1,µ2 ∈ D be chosen arbitrarily.
By ui

N, i = 1,2, we denote the solutions to (7b) for parameterµ = µi . From
u2

N = ϑ 1(µ1)u1
N/ϑ 1(µ2) we infer that

V ′ ∋ a(u2
N, · ;µ2)− f =

ϑ 1(µ1)

ϑ 1(µ2)
a(u1

N, · ;µ2)− f = a(u1
N, · ;µ1)− f .

Hence, the norm‖a(uN(µ), · ;µ)− f‖(VN )′ is constant for allµ ∈ D , where
uN(µ) denotes the solution to (7b) for the parameterµ . Analogously, we can
prove that the norm‖a(· ,zN(µ);µ)+ ℓ‖(VN )′ is constant for allµ ∈ D , where
zN(µ) denotes the solution to (9) for the parameterµ . ♦

2.4 The minimization problem

Let N := (Npr,Ndu), YN :=VNpr ×ṼNdu, XN =YN×R
P andXad

N =YN×D . We endow
XN with the natural product topology. In the Greedy algorithm anew reduced-basis
solutionuN(µ̄) associated with a certain parameter valueµ̄ is added to the already
computed set of ansatz functions provided an a-posteriori error measure∆s

N(µ̄) in
(11) is maximal. The idea here is to avoid the Greedy method and to determinēµ
as the solution of a minimization problem. Thus, we introduce the cost functional
J : XN →R for xN = (uN,zN,µ) ∈ XN by

J(xN) =−
1
2

(
‖ f −a(uN, · ;µ)‖2

(VN )′ + ‖ℓ+a(· ,zN;µ)‖2
(VN )′

)
.

If J(xN(µ)) ≥ −εα0 holds true forxN(µ) := (uN(µ),zN(µ),µ), we infer by using
Young’s inequality that

∣
∣sN (µ)− sN(µ)

∣
∣2 ≤

‖rpr
N (· ;µ)‖2

(VN )′ + ‖rdu
N (· ;µ)‖2

(VN )′

2α0
=−

J(xN(µ))
α0

≤ ε.

Now we consider the following optimization problem:

min
xN∈Xad

N

J(xN) subject to (s.t.) xN = (yN,µ), yN = SN(µ), (P)

where we have setSN = (S
pr
N ,S du

N ) : D →YN, i.e.,yN = SN(µ) means thatyN =
(uN(µ),zN(µ)). Introducing the reduced cost functional

Ĵ(µ) := J(SN(µ),µ) for µ ∈ D ,

we can express (P) equivalently in the reduced form
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min
µ∈D

Ĵ(µ). (P̂)

If ( P̂) has a local solution̄µ ∈D , thenx̄N := (ȳN, µ̄) is a local solution to (P), where
we set ¯yN = (ūN, p̄N) := SN(µ̄). We now give a general existence result.

Theorem 2.1.Suppose that the bilinear form a(· , · ;µ) satisfies(2). Further, f and
ℓ belong to V′. Then, there exists at least one optimal solutionx̄N = (ȳN, µ̄), ȳN =
(ūN, z̄N) ∈YN, to (P).

Proof. SinceD is assumed to be nonempty andSN : D →YN is well-defined, the
set of admissible solutions

F(P) =
{

xN = (yN,µ) ∈ Xad
N

∣
∣yN = SN(µ)

}

is nonempty. Let{x(n)N }n∈N ⊂ F(P), x(n)N = (y(n)N ,µ (n)) andy(n)N = (u(n)N ,z(n)N ), be a
minimizing sequence forJ:

inf
xN∈F(P)

J(xN) = lim
n→∞

J(x(n)N ).

Since D is bounded and the a-priori bounds (8), (10) hold, infxN∈F(P) J(xN) is
bounded from below. Moreover, fromµ (n) ∈ D ⊂R

P for everyn we infer that there
exists a subsequence{µ (nk)}k∈N in D and an element̄µ ∈ D so that

lim
k→∞

µ (nk) = µ̄ in R
P.

It follows from the a-priori estimates (8) and (10) that the sequence{(u(n)N ,z(n)N )}n∈N

is bounded inYN. Consequently, there exist a subsequence{y(nk)
N }k∈N and a pair

ȳN = (ūN, p̄N) ∈YN such that

u(nk)
N ⇀ ūN for k→ ∞ in VNpr and z(nk)

N ⇀ z̄N for k→ ∞ in ṼNdu. (12)

Next we prove that ¯yN = SN(µ̄) holds. For 1≤ i ≤ Npr we have

〈 f ,ψi〉V′,V −a(ūN,ψi ; µ̄) = a(u(nk)
N ,ψi ;µ (nk))−a(ūN,ψi ; µ̄) =

= a(u(nk)
N ,ψi ;µ (nk))−a(u(nk)

N ,ψi ; µ̄)+a(u(nk)
N − ūN,ψi ; µ̄)

=
Q

∑
q=1

((
ϑ q(µ (nk))−ϑ q(µ̄)

)
aq(u(nk)

N ,ψi)
)

+a(u(nk)
N − ūN,ψi ; µ̄).

Let us define the functionalsFi ∈ V ′ ⊂ V ′
N by 〈Fi ,ϕ〉V′,V := a(ϕ ,ψi ; µ̄) for ϕ ∈ V

and 1≤ i ≤ Npr. From (12) we infer that

a(u(nk)
N − ūN,ψi ; µ̄) = Fi(u

(nk)
N − ūN)→ 0 for k→ ∞ and 1≤ i ≤ Npr.

Moreover,‖u(nk)
N ‖V is uniformly bounded and theϑ q’s are continuous. Thus,
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Q

∑
q=1

((
ϑ q(µ (nk))−ϑ q(µ̄)

)
aq(u(nk)

N ,ψi)
)

→ 0 for k→ ∞ and 1≤ i ≤ Q.

Consequently, ¯uN = S
pr
N (µ̄) holds. Analogously, we find that ¯zN = S du(µ̄) holds

true. Thus, ¯xN = (ȳN, µ̄) ∈ F(P) is satisfied. Next, we show that ¯xN is a minimizer
for J. Note that with the above arguments

‖a(u(nk)
N , ·; µ̄)−a(u(nk)

N , ·;µ (nk))‖(VN )′

≤
Q

∑
q=1

∣
∣ϑ q(µ̄)−ϑ q(µ (nk))

∣
∣‖aq(u(nk)

N , ·)‖(VN )′
k→∞
−→ 0.

This and (12) imply

lim
k→∞

‖ f −a(u(nk)
N , · ;µ (nk))‖(VN )′ =

= lim
k→∞

‖ f −a(u(nk)
N , · ; µ̄)‖(VN )′ + lim

k→∞
‖a(u(nk)

N , · ; µ̄)−a(u(nk)
N , · ;µ (nk))‖(VN )′

= ‖ f −a(ūN, · ; µ̄)‖(VN )′ .

Analogously, limk→∞ ‖ℓ+a(· ,z(nk)
N ;µ (nk))‖(VN )′ = ‖ℓ+a(· , z̄N; µ̄)‖(VN )′ and there-

fore
inf

xN∈F(P)
J(xN) = lim

k→∞
J(x(nk)

N ) = J(x̄N),

i.e., x̄N is a solution to (P). ♦

Before we continue, let us collect some notation that will beneeded in the sequel.
Let x̄N = (ȳN, µ̄), ȳN = (ūN, z̄N), be an optimal solution to (P) according to Theorem
2.1. Then, define corresponding (optimal) primal and dual residuals as

r̄pr
N (ϕN ) := 〈 f ,ϕN 〉V′,V −a(ūN,ϕN ; µ̄) for ϕN ∈VN ,

r̄du
N (ϕN ) := 〈ℓ,ϕN 〉V ′,V +a(ϕN , z̄N; µ̄) for ϕN ∈VN .

We define the corresponding Riesz representationsρ̄pr
N , ρ̄du

N ∈VN , i.e.,

(ρ̄pr
N ,ϕN )V = r̄pr

N (ϕN ) = 〈 f ,ϕN 〉V ′,V −a(ūN,ϕN ; µ̄) for all ϕN ∈VN ,

(ρ̄du
N ,ϕN )V = r̄du

N (ϕN ) = 〈ℓ,ϕN 〉V ′,V +a(ϕN , z̄N; µ̄) for all ϕN ∈VN .

This in particular implies that

(g, r̄pr
N )(VN )′ = 〈g, ρ̄pr

N 〉(VN )′,VN for all g∈ (VN )′,

which will be used later. It is noticable to mention that we have in general̄ρpr
N 6∈VNpr

andρ̄du
N 6∈ ṼNdu.
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3 First-order necessary optimality conditions

First we write the equality constraints in (P) in a compact from. For that purpose we
introduce the nonlinear mappinge= (e1,e2) : XN →Y′

N by

〈e(xN),λN〉Y′
N,YN

= 〈e1(xN),λ 1
N〉V′

Npr,VNpr + 〈e2(xN),λ 2
N〉Ṽ′

Ndu,ṼNdu

for xN = (uN,zN,µ) ∈ Xad
N andλN = (λ 1

N,λ 2
N) ∈YN. Here, we identify the dualY′

N
with V ′

Npr × Ṽ′
Ndu and we put

〈e1(xN),λ 1
N〉V′

Npr,VNpr = 〈 f ,λ 1
N〉V′

Npr,VNpr −a(uN,λ 1
N;µ),

〈e2(xN),λ 2
N〉Ṽ′

Ndu,ṼNdu
= 〈ℓ,λ 2

N〉Ṽ′
Ndu,ṼNdu

+a(λ 2
N,zN;µ).

Using (2b) we infer that

‖e(xN)‖Y′
N
= sup

‖λN‖YN
=1

〈e(xN),λN〉Y′
N,YN

= sup
‖λ 1

N‖V=1

〈e1(xN),λ 1
N〉V′

Npr,VNpr + sup
‖λ 2

N‖V=1

〈e2(xN),λ 2
N〉Ṽ′

Ndu,ṼNdu

≤Ce
(
1+ ‖uN‖V + ‖zN‖V

)

with Ce = max(‖ f‖V ′ + ‖ℓ‖V′ ,γ).
To derive first-order optimality conditions for (P) we have to ensure that the

mappinge is continuously (Fréchet) differentiable and satisfies a standard constraint
qualification; see, e.g., [5, 13].

Proposition 3.1.Suppose that the bilinear form a(· , · ;µ) satisfies(2). Further,
f , ℓ ∈V ′ holds and the functionsϑ q are continuously differentiable for1≤ q≤ Q.
Then, the mapping e is continuously (Fréchet) differentiable and its (Fréchet)
derivative at xN = (yN,µ) ∈ Xad

N , yN = (uN,zN), is given by

〈e′(xN)x
δ
N,λN〉Y′

N,YN
= 〈e′1(xN)x

δ
N,λ

1
N〉V′

Npr ,VNpr + 〈e′2(xN)x
δ
N,λ

2
N〉Ṽ′

Ndu,ṼNdu

for any direction xδN = (uδ
N,z

δ
N,µδ ) ∈ XN and forλN = (λ 1

N,λ 2
N) ∈YN, where

〈e′1(xN)x
δ
N,λ

1
N〉Ṽ′

Npr ,ṼNpr =−a(uδ
N,λ

1
N;µ)−

Q

∑
q=1

aq(uN,λ 1
N)∇ϑ q(µ)⊤µδ ,

〈e′2(xN)x
δ
N,λ

2
N〉V′

Ndu,VNdu
= a(λ 2

N,z
δ
N;µ)+

Q

∑
q=1

aq(λ 2
N,zN)∇ϑ q(µ)⊤µδ

with ∇ϑ q(µ) = (ϑ q
µ1(µ), . . . ,ϑ

q
µP(µ))

⊤ ∈ R
P and ϑ q

µi =
∂ϑq

∂ µi
. Furthermore, the

(Fréchet) derivative e′(xN) : XN →Y′
N is a surjective operator for every xN ∈ Xad

N .
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Proof. It follows by standard arguments thate is (Fréchet) differentiable for ev-
ery xN ∈ Xad

N . Therefore, we only prove that the linear operatore′(xN) is onto. Let
FN = (F1

N,F
2
N) ∈Y′

N be chosen arbitrarily. Then,e′(xN) is surjective if there exists an
elementxδ

N = (uδ
N,z

δ
N,µδ ) ∈ XN satisfying

e′(xN)x
δ
N = FN in Y′

N. (13)

Equation (13) is equivalent with

e′1(xN)x
δ
N = F1

N in V ′
Npr in e′2(xN)x

δ
N = F2

N in Ṽ ′
Ndu. (14)

Choosingµδ = 0 we obtain from (14) that

a(uδ
N,λ

1
N;µ) =−〈F1

N,λ
1
N〉V′

Npr,VNpr for all λ 1
N ∈VNpr,

a(λ 2
N,z

δ
N;µ) = 〈F2

N,λ
2
N〉Ṽ′

Ndu,ṼNdu
for all λ 2

N ∈ ṼNdu.
(15)

Since the bilinear forma(· , · ;µ) is bounded and coercive, there exists a unique
pairyδ

N = (uδ
N,z

δ
N) ∈YN solving (15). Summarizing,xδ

N = (yδ
N,0) solves (13) which

implies thate′(xN) is surjective.

Next let us introduce the Lagrange functionalL : XN ×YN → R for xN =
(x1

N,x
2
N,µ) ∈ XN andλN = (λ 1

N,λ 2
N) ∈YN as

L (xN,λN) = J(xN)+ 〈e(xN),λN〉Y′
N,YN

=−
1
2

(
‖ f −a(uN, · ;µ)‖2

(VN )′ + ‖a(· ,zN;µ)+ ℓ‖2
(VN )′

)

+ 〈( f , ℓ),λN〉Y′
N,YN

−a(uN,λ 1
N;µ)+a(λ 2

N,zN;µ).

We infer from Proposition 3.1 that first-order necessary optimality conditions are
given as follows [5, 13]: Let ¯xN = (ȳN, µ̄) ∈ Xad

N , ȳN = (ūN, z̄N) ∈ YN, be a local
solution to (P). Then, there exists a Lagrange multiplierλ̄N = (λ̄ 1

N,λ 2
N)∈YN solving

the following system

LuN(x̄N, λ̄N)u
δ
N = 0 for all uδ

N ∈VNpr, (16a)

LzN(x̄N, λ̄N)z
δ
N = 0 for all zδ

N ∈ ṼNdu, (16b)

Lµ(x̄N, λ̄N)(µδ − µ̄)≥ 0 for all µδ ∈ D , (16c)

where, for instance,LuN denote the (Fréchet) derivative of the Lagrangian with
respect to the argumentuN. First we study (16a). Foruδ

N ∈VNpr we find

LuN(x̄N, λ̄N)u
δ
N = ( f −a(ūN, · ; µ̄),a(uδ

N, · ; µ̄))(VN )′ −a(uδ
N, λ̄

1
N; µ̄).

Using the Riesz representation̄ρpr
N ∈VN of r̄pr

N ∈ (VN )′, we get
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LuN(x̄N, λ̄N)u
δ
N = (r̄pr

N ,a(uδ
N, · ; µ̄))(VN )′ −a(uδ

N, λ̄
1
N; µ̄)

= a(uδ
N, ρ̄

pr
N ; µ̄)−a(uδ

N, λ̄ 1
N; µ̄) = a(uδ

N, ρ̄
pr
N − λ̄ 1

N; µ̄).
(17)

From (16a) and (17) we infer the first adjoint equation:

a(uδ
N, λ̄

1
N; µ̄) = a(uδ

N, ρ̄
pr
N ; µ̄) for all uδ

N ∈VNpr. (18)

Remark 3.4.Since in general̄ρpr
N 6∈VNprholds, we obtain in general̄λ 1

N 6= ρ̄pr
N . Rather,

λ̄ 1
N is thea-orthogonal projection of̄ρpr

N ∈V ontoλ̄ 1
N ∈VNpr. ♦

Further, we have

LzN(x̄N, λ̄N)z
δ
N =−(ℓ+a(· , z̄N; µ̄),a(· ,zδ

N; µ̄))(VN )′ +a(λ̄ 2
N,z

δ
N; µ̄) (19)

for any directionzδ
N ∈ ṼNdu. Using the Riesz representation̄ρdu

N ∈ VN of r̄du
N ∈

(VN )′, combining (16b) and (19) we get

LzN(x̄N, λ̄N)z
δ
N = a(λ̄ 2

N − ρ̄du
N ,zδ

N; µ̄) = 0 for all zδ
N ∈VNdu

which gives the second adjoint equation

a(λ̄ 2
N,z

δ
N; µ̄) = a(ρ̄du

N ,zδ
N; µ̄) for all zδ

N ∈VNdu. (20)

Remark 3.5.Analogous to Remark 3.4 we infer thatλ̄ 2
N is thea-orthogonal decom-

position ofρ̄du
N ontoṼNdu. ♦

Next we consider (16c). Using the Riesz representationsρ̄pr
N , ρ̄du

N ∈ VN of
r̄pr
N , r̄du

N ∈ (VN )′, respectively, it follows that

Lµ(x̄N, λ̄N)µδ =
Q

∑
q=1

∇ϑ q(µ̄)⊤µδ (r̄pr
N ,aq(ūN, ·))(VN )′

+
Q

∑
q=1

∇ϑ q(µ̄)⊤µδ
(

(−r̄du
N ,aq(· , z̄N))V ′ +aq(λ̄ 2

N, z̄N)−aq(ūN, λ̄ 1
N)
)

=
Q

∑
q=1

(

aq(ūN, ρ̄pr
N − λ̄ 1

N)+aq(λ̄ 2
N − ρ̄du

N , z̄N)
)

∇ϑ q(µ̄)⊤µδ

(21)

for any directionµδ ∈ R
P. We define the Jacobi matrix

Dϑ(µ̄) =






∇ϑ 1(µ̄)⊤
...

∇ϑ Q(µ̄)⊤




 ∈ R

Q×P

with ∇ϑ q(µ) = (ϑ q
µ1(µ), . . . ,ϑ

q
µP(µ))

⊤ ∈ R
P andϑ q

µi =
∂ϑq

∂ µi
. Further, we set̄ξ =

ξ̄ (x̄N, λ̄N) = (ξ̄1, . . . , ξ̄Q)
⊤ ∈R

Q with
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ξ̄q = aq(ūN, ρ̄pr
N − λ̄ 1

N)+aq(λ̄ 2
N − ρ̄du

N , z̄N) for 1≤ q≤ Q.

Then, we derive from (16c) and (21)

(
Dϑ(µ̄)⊤ ξ̄

)⊤
(µδ − µ̄)≥ 0 for all µδ ∈ D . (22)

Summarizing we have proved the following result.

Theorem 3.1.Suppose that the bilinear form a(· , · ;µ) satisfies(2). Further, f, ℓ ∈
V ′ holds and the functionsϑ q are continuously differentiable for1 ≤ q ≤ Q. Let
x̄N = (ȳN, µ̄) ∈ Xad

N , ȳN = (ūN, z̄N) ∈ YN, be a local solution to(P). Then, there
exists a unique associated Lagrange multiplier pairλ̄N = (λ̄ 1

N,λ 2
N) ∈ YN satisfying

together withx̄N the first-order necessary optimality conditions(18), (20)and (22).

The gradient∇Ĵ of the reduced cost functionalĴ at a pointµ ∈ D is given by the
formula [5, 13]

∇Ĵ(µ) = Dϑ(µ)⊤ ξ ∈ R
P, (23)

where the components of the vectorξ ∈ R
Q are

ξq = aq(uN, ρ̄pr
N −λ 1

N)+aq(λ 2
N − ρ̄du

N ,zN) for 1≤ q≤ Q,

(uN,zN) = S (µ) holds andλN = (λ 1
N,λ 2

N) ∈YN solves the dual system

a(uδ
N,λ 1

N;µ) = a(uδ
N,ρ

pr
N ;µ) for all uδ

N ∈VNpr,

a(λ 2
N,z

δ
N;µ) = a(ρdu

N ,zδ
N;µ) for all zδ

N ∈ ṼNdu.

Here,ρpr
N ,ρdu

N ∈VN are the Riesz representants of the residualsrpr
N (· ;µ), rdu

N (· ;µ)∈
(VN )′, respectively.

Remark 3.6.Suppose that the bilinear form is given bya(· , · ;µ) = ϑ 1(µ)a1(· , ·)
(i.e.,Q= 1) andϑ 1(µ) 6= 0 holds for allµ ∈ D . Then, solutions to different param-
eter values are linearly dependent; see Remark 2.1-2) and Remark 2.3-2). Then, it
follows fromϑ 1(µ) 6= 0, (18) and (20) that

a1(uδ
N, λ̄

1
N) = a1(uδ

N, ρ̄
pr
N ) for all uδ

N ∈VNpr,

a1(λ̄ 2
N,z

δ
N) = a1(ρ̄du

N ,zδ
N) for all zδ

N ∈ ṼNdu.

In particular, a1(ūN, ρ̄pr
N − λ̄ 1

N) = a1(λ̄ 2
N − ρ̄du

N , z̄N) = 0 holds true, which gives
ξ1 = 0. Therefore,∇Ĵ(µ) = 0 is satisfied. This coincides with the observation in
Remark 2.3-2 that the mappings

µ 7→ ‖a(S pr
N (µ), · ;µ)− f‖(VN )′ and µ 7→ ‖a(· ,S du

N (µ);µ)+ ℓ‖(VN )′

are constant. ♦
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4 Second-order derivatives

To solve (P) in our numerical experiments we apply a globalized sequential quadratic
programming (SQP) method which is makes use of second-orderderivatives of the
Lagrange functional; see [10], for example. For that reasonwe address second-order
optimality conditions in this section. We restrict ourselves to simple bounds, i.e., we
assume that the bounded and convex parameter setD is given by

D =
[
µa,1,µb,1

]
× . . .×

[
µa,P,µb,P

]

︸ ︷︷ ︸

P-times

⊂ R
P

with lower and upper boundsµa,i ≤ µb,i , 1 ≤ i ≤ P. Let x̄N = (ȳN, µ̄) ∈ Xad
N ,

ȳN = (ūN, z̄N) ∈ YN, be a solution to the first-order necessary optimatity conditions
for (P); see Theorem 3.1. Moreover, the pairλ̄N = (λ̄ 1

N, λ̄ 2
N) ∈ YN denotes for the

associated unique Lagrange multiplier. We suppose that thefunctionsϑ q are twice
continuously differentiable. Foruδ

N, ũ
δ
N ∈VNpr we deduce

LuNuN(x̄N, λ̄N)(u
δ
N, ũ

δ
N) =−(a(ũδ

N, · ; µ̄),a(uδ
N, · ; µ̄))(VN )′ . (24)

Analogously, we find forzδ
N, z̃

δ
N ∈ ṼNdu

LzNzN(x̄N, λ̄N)(z
δ
N, z̃

δ
N) =−(a(· , z̃δ

N; µ̄),a(· ,zδ
N; µ̄))(VN )′ . (25)

Further, it follows that

LuNzN(x̄N, λ̄N)(u
δ
N,z

δ
N) = LzNuN(x̄N, λ̄N)(z

δ
N,u

δ
N). (26)

for uδ
N ∈ VNpr andzδ

N ∈ ṼNdu. Using ¯rpr
N = f −a(ūN, · ; µ̄) ∈ V ′ and the Riesz repre-

sentantρ̄pr
N ∈V of r̄pr

N we observe that

LµuN(x̄N, λ̄N)(u
δ
N,µ

δ ) = LuNµ(x̄N, λ̄N)(u
δ
N,µ

δ )

=
Q

∑
q=1

∇ϑ q(µ̄)⊤µδ
(

aq(uδ
N, ρ̄

pr
N − λ̄ 1

N)− (aq(ūN, ·),a(u
δ
N, · ; µ̄))(VN )′

)

.

for uδ
N ∈VNpr andµδ ∈ R

P. Let ζ̄ pr,q
N ∈VN , 1≤ q≤ Q, denote the Riesz represen-

tants ofaq(ūN, ·) ∈ (VN )′, i.e.

〈ζ pr,q
N ,ϕN 〉V = aq(ūN,ϕN ) for all ϕN ∈VN .

Then, we derive that

LuNµ(x̄N, λ̄N)(u
δ
N,µ

δ )

=
Q

∑
q=1

∇ϑ q(µ̄)⊤µδ (aq(uδ
N, ρ̄

pr
N − λ̄ 1

N)−a(uδ
N, ζ̄

pr,q
N ; µ̄)

) (27)



Greedy Sampling using Nonlinear Optimization 15

for uδ
N ∈ VNpr andµδ ∈ R

P. As above we apply ¯rdu
N = ℓ+a(· , z̄N; µ̄) ∈ (VN )′ and

the Riesz representant̄ρdu
N ∈VN of r̄du

N we observe that

LµzN(x̄N, λ̄N)(µδ ,zδ
N) = LzNµ(x̄N, λ̄N)(z

δ
N,µ

δ )

=
Q

∑
q=1

∇ϑ q(µ̄)⊤µδ
(

aq(λ̄ 2
N −ρdu

N ,zδ
N)− (aq(· , z̄N),a(· ,z

δ
N; µ̄))(VN )′

)

for zδ
N ∈ ṼNdu andµδ ∈R

P. Let ω̄du,q
N ∈VN , 1≤ q≤ Q, denote the Riesz represen-

tants ofaq(· , z̄N) ∈ (VN )′, i.e.

〈ω̄du,q
N ,ϕN 〉V = aq(ϕN , z̄N) for all ϕN ∈VN .

Then, we conclude that

LzNµ(x̄N, λ̄N)(z
δ
N,µ

δ )

=
Q

∑
q=1

∇ϑ q(µ̄)⊤µδ (aq(λ̄ 2
N −ρdu

N ,zδ
N)−a(ω̄du,q

N ,zδ
N; µ̄)

) (28)

for zδ
N ∈ ṼNdu andµδ ∈ R

P. Finally, we find forµδ , µ̃δ ∈ R
P

Lµµ(x̄N, λ̄N)(µδ , µ̃δ )

= µ̃δ ,⊤
(( Q

∑
q=1

(
aq(ūN, ρ̄pr

N )−aq(ρ̄du
N , z̄N)

))

∇2ϑ q(µ̄)
)

µδ

−
Q

∑
q=1

∇ϑ q(µ̄)⊤µδ ∇ϑ q(µ̄)⊤µ̃δ
(

‖ζ̄ pr,q
N ‖

2
V + ‖ω̄du,q

N ‖
2

V

)

(29)

with µ̃δ ,⊤ = (µ̃δ )⊤.
The convergence of the SQP method relies on second-order sufficient optimality

conditions for (P). For an arbitraryτ ≥ 0 let us define the set ofstrongly active
constraintsfor the parameter̄µ by

Aτ(µ̄) =
{

i ∈ {1, . . . ,P}
∣
∣ |(∇Ĵ(µ̄))i | ≥ τ

}

=
{

i ∈ {1, . . . ,P}
∣
∣ |(∇Dϑ(µ̄)⊤ξ̄ )i | ≥ τ

}
,

where(∇Ĵ(µ̄))i denotes thei-th component of the vector∇Ĵ(µ̄)∈R
P. Second-order

sufficient optimality conditionsfor (P) are as follows [13]: Let ¯xN = (ȳN, µ̄) ∈ Xad
N ,

ȳN = (ūN, z̄N) ∈ YN, be a solution to the first-order necessary optimatity conditions
for (P); see Theorem 3.1. Moreover, the pairλ̄N = (λ̄ 1

N, λ̄ 2
N) ∈YN are the associated

Lagrange multiplier. If there exists aκ > 0 such that

LxNxN(x̄N, λ̄N)(x
δ
N,x

δ
N)≥ κ

(

‖uδ
N‖

2
V + ‖zδ

N‖
2
V + ‖µδ‖

2
RP

)

(30)
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for all xδ
N = (yδ

N,µδ ) ∈ XN, yδ
N = (uδ

N,z
δ
N), satisfyingyδ

N ∈ kere′(x̄N) and

(µδ )i







= 0 if i ∈ Aτ(µ̄),
≥ 0 if µ̄i = µa,i andi 6∈ Aτ(µ̄),
≤ 0 if µ̄i = µb,i andi 6∈ Aτ(µ̄).

thenx̄N is a strictly local solution to (P).
Suppose thatxδ

N = (yδ
N,µδ ) ∈ kere′(x̄N) with yδ

N = (uδ
N,z

δ
N) ∈YN. Then we have

a(uδ
N,ψ ; µ̄) =−

Q

∑
q=1

∇ϑ q(µ̄)⊤µδ aq(ūN,ψ) for all ψ ∈VNpr, (31a)

a(φ ,zδ
N; µ̄) =−

Q

∑
q=1

∇ϑ q(µ̄)⊤µδ aq(φ , z̄N) for all φ ∈ ṼNdu. (31b)

Utilizing (2a), (3) and (31a) we find

α0‖uδ
N‖

2
V ≤ a(uδ

N,u
δ
N; µ̄)≤ γ ‖ūN‖V

Q

∑
q=1

‖∇ϑ q(µ̄)‖
RP‖uδ

N‖V‖µδ‖
RP

which implies

‖uδ
N‖V ≤ C̄1‖µδ‖

RP for all xδ
N = (yδ

N,µδ ) ∈ kere′(x̄N). (32a)

with C̄1 = γ ‖ūN‖V ∑Q
q=1‖∇ϑ q(µ̄)‖

RP. Analogously, we derive from (2a), (3) and
(31a)

‖zδ
N‖V ≤ C̄2‖µδ‖

RP for all xδ
N = (yδ

N,µ
δ ) ∈ kere′(x̄N). (32b)

with C̄2 = γ ‖z̄N‖V ∑Q
q=1‖∇ϑ q(µ̄)‖

RP. From (2b), (32) and (32b) we infer that

−‖a(uδ
N, · ; µ̄)‖

2
(VN )′ −‖a(· ,zδ

N; µ̄)‖
2
(VN )′ ≥−γ2

(

‖uδ
N‖

2
V + ‖zδ

N‖
2
V

)

≥−γ2(C̄2
1 +C̄2

2

)
‖µ‖2

RP.
(33)

We setC̄3 = γ2(C̄2
1 +C̄2

2). Then, we derive from (24)-(29) and (33) that
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LxNxN(x̄N, λ̄N)(u
δ
N,u

δ
N) =

≥−C̄3‖µδ‖
2
RP +2

Q

∑
q=1

∇ϑ q(µ̄)⊤µδ (aq(uδ
N, ρ̄

pr
N − λ̄ 1

N)−a(uδ
N, ζ̄

pr,q
N ; µ̄)

)

+2
Q

∑
q=1

∇ϑ q(µ̄)⊤µδ (aq(λ̄ 2
N −ρdu

N ,zδ
N)−a(ω̄du,q

N ,zδ
N; µ̄)

)

+ µδ ,⊤
(( Q

∑
q=1

(
aq(ūN, ρ̄pr

N )−aq(ρ̄du
N , z̄N)

))

∇2ϑ q(µ̄)
)

µδ

−
Q

∑
q=1

∣
∣∇ϑ q(µ̄)⊤µδ ∣∣2

(

‖ζ̄ pr,q
N ‖

2
V + ‖ω̄du,q

N ‖
2

V

)

for all xδ
N ∈ kere′(x̄N). Since

−C̄3‖µδ‖
2
RP −

Q

∑
q=1

∣
∣∇ϑ q(µ̄)⊤µδ ∣∣2

(

‖ζ̄ pr,q
N ‖

2
V + ‖ω̄du,q

N ‖
2

V

)

≤ 0

holds and the matrix

( Q

∑
q=1

(
aq(ūN, ρ̄pr

N )−aq(ρ̄du
N , z̄N)

))

∇2ϑ q(µ̄)

need not be positive definite, the second-order sufficient optimality condition (30)
is not obvious in our case.

Remark 4.7.If µ̄ is strongly active in allP components, it follows thatAτ(µ̄) =
{1, . . . ,P}. Thus,µδ = 0 is satisfied. From (32) and (32b) we conclude thatyδ

N = 0
holds. This imply the second-order necessary optimality conditions at ¯xN. ♦

5 Numerical experiments

In this section we present some numerial results for the described theory. We use
two versions of the well-known Thermal-Block-Model (see e.g. [12]) as a model
example. Model 1 consists of two blocks (i.e.B1 = 2,B2 =1) while Model 2 consists
of four blocks (i.e.B1 = 2,B2 = 2), see Figure 1. The parameter domain is chosen
asD = [0.2,2]P, whereP again denotes the number of parameters, i.e.,P = 2 for
Model 1 andP= 4 for Model 2, see Figure 1. We chooseεstop= 1e−5 as stopping
criteria for the Greedy-algorithm. SinceP= 2 for Model 1, we can easily visualize
the reduced cost functionalĴ(µ) in that case, see Figure 2.
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µ1 µ2

µ1 µ2

µ3 µ4

Fig. 1 Left: Model 1 (B1 = 2,B2 = 1), right: Model 2 (B1 = 2,B2 = 2).

As we can deduce from the shape of the cost functional, the appropriate choice
for an initial value for the optimization scheme1 is crucial in order to avoid deter-
mining a local minimum only. Let us clarify this in Figure 2 (b): Choosing an initial
parameterµN

init in the left half of the plane will lead to a local minimum whereas
an initial value located in the right half of the plane will yield the global optimum
(0.2,2). In order to avoid the output of a local minimum, we have used three differ-
ent strategies:

1. euclidian mu: µN
init is chosen by maximizing the Euclidian distance to the

barycenter of the previously determined parameter valuesµi , 1≤ i ≤ N−1.
2. random mu with “safety zone”:µN

init is chosen randomly inD , but ensuring
a minimal distance (measured in the Euclidian norm) to allµi , 1≤ i ≤ N− 1.
This “safety zone” is chosen adaptively, i.e., the radius ofthe circular zone is
decreased with increasingN. If we would not do that, we would get anNmax,
where no additional feasible points could be found.

3. coarse grid mu: An equidistant coarse parameter-mesh consisting ofM = 3P

(M = 9 for Model 1 andM = 81 for Model 2) points is used. We choose that
parameter as initial valueµN

init whose cost functional is minimal on that grid.

Best results were obtained usingcoarse grid mu and all figures correspond
to this strategy. We used an SQP algorithm as optimization scheme and compare the
results to a classical training set strategy, using equidistant training sets consisting
of 32 = 81 respectively 102 = 100 parameter values. Figure 3 (left) shows decay of
the error estimator during the Greedy-process (i.e., with increasingN). We choose

1 We used MATLAB’s function fmincon for this. We setoptions.TolCon=1e-6;
options.TolFun=1e-6; andoptions.Algorithm=’sqp’, i.e., we used a MATLAB
internal SQP algorithm.
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µ = (1,1) as initial snapshot-parameter. As expected (see [11]) the Greedy stops
after two steps withµ1 = (µmin,µmax) andµ2 = (µmax,µmin). In this example there
is no difference between using an optimization algorithm and using a training set
strategy since the optimal parameter valuesµ1 andµ2 are contained in the training
set. Hence, our optimization procedure is consistent with the known theory.
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Fig. 2 Reduced cost functional̂J(µ) for Model 1. Note that the range for they-axis forN = 3 is
10−6.

In Figure 3 (right) the decay of the error estimator is shown for Model 2. The
training sets consisted of{34,54,74,104} equidistant parameter values and the de-
sired tolerance of 1e-5 is reached at a basis size ofN = 20 for all strategies. We
observe the expected exponential decay and our optimization strategy performs as
good as the classical training set strategies. This is remarkable since in our model
cases the distribution of the optimal parameters is known (the so-called ‘magic
points’). From the point of view of the optimization method,this is the worst case
which is a strong indication that the optimization approachalso works when no
a-priori knowledge for the choice of the training set is available.

In Table 1 we show the overall number of evaluations ofĴ(µ) - i.e., the number of
reduced simulations - during the Greedy process in the offline phase for Model 1 and
Model 2. Especially for Model 2 the Greedy algorithm combined with the optimiza-
tion scheme needs much less function calls than the Greedy algorithm combined
with a training set strategy. This can be an advantage in order to overcome the curse
of dimension which prohibits to choose the training set arbitrarily large especially
in high dimensions.

References

1. R. Becker and R. Rannacher An optimal control approach to aposteriori error estimation in
finite element methods. Acta Numerica 2001, 1-102.

2. M. Drohmann, B. Haasdonk, and M. Ohlberger. Adaptive reduced basis methods for nonlinear
convection-diffusion equations. Finite Volumes for Complex Applications VI – Problems &
Perspectives, J. Fort et al. (eds.), Springer Proceedings in Mathematics 4, Volume 1, page
369-377, 2011



20 Karsten Urban and Stefan Volkwein and Oliver Zeeb

1 2 3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

N

∆
s N
(µ̄

)

 

 

SQP

|Ξ train | = 9

|Ξ train | = 100

0 2 4 6 8 10 12 14 16 18 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

N

∆
s N
(µ̄

)

 

 

SQP

|Ξ train | = 81

|Ξ train | = 625

|Ξ train | = 2401

|Ξ train | = 10000

Fig. 3 Error estimator∆s
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Table 1 Number of reduced simulations during the offline phase for Model 1 (left) and Model 2
(right).
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