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AN EFFICIENT SPACE-TIME ADAPTIVE WAVELET
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ABSTRACT. We introduce a multitree-based adaptive wavelet Galerkin algo-
rithm for space-time discretized linear parabolic partial differential equations,
focusing on time-periodic problems. It is shown that the method converges
with the best possible rate in linear complexity and can be applied for a wide
range of wavelet bases. We discuss the implementational challenges arising
from the Petrov-Galerkin nature of the variational formulation and present
numerical results for the heat and a convection-diffusion-reaction equation.

1. INTRODUCTION

In recent years, space-time variational approaches for linear parabolic partial
differential equations (PDE) of the form

ug + A()[u] = g(t) on Q C R", for ¢t €[0,T],

have been considered in various contexts. These methods treat both temporal and
spatial variables simultaneously, allowing e.g. for targeted adaptive refinement of
the numerical discretization in the full space-time domain or efficient paralleliza-
tion. On the other hand, this in general amounts to solving an (n + 1)-dimensional
problem. This differs from standard time-stepping techniques for time-dependent
PDEs, which are usually based on semi-discretization schemes: The vertical method
of lines requires the solution of a system of coupled ordinary differential equations
that arise from a discretization in space. Within the horizontal method of lines
and the discontinuous Galerkin method, the temporal variable is discretized first,
leading to a (coupled) sequence of elliptic problems in the spatial domain. Such
time-stepping schemes have some drawbacks: The sequential treatment of the time
variable often does not allow for parallelization in time. Furthermore, adaptive
schemes typically focus either on the spatial or on the temporal variable or are
based on local error estimators (e.g. [Raa07]), thus forfeiting optimality. Moreover,
a posteriori error estimators — needed e.g. for adaptive schemes or model reduction
approaches — are usually increasing functions in time, therefore losing efficiency over
long time horizons. These issues are amplified when considering time-periodic prob-
lems, i.e., when searching for solutions u with u(0) = w(T). Such problems arise
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naturally in different physical, biological or chemical models, e.g. flows around a ro-
tor or propeller, biological models or chemical engineering [JPSUQ7, SZ99, KB06].
Standard numerical methods for periodic problems require either an additional
fixed-point scheme (when using a temporal semi-discretization) or the solution of
a system of boundary value problems (in case of the method of lines), both en-
tailing non-negligible additional computational effort. In the present work, we will
therefore consider a space-time variational formulation for time-periodic problems.

Space-time variational formulations for initial value problems in particular in-
clude space-time multigrid methods [HV95], space-time sparse grids [And13, GOO07]
or space-time wavelet collocation methods [AKV06]. Other space-time formu-
lations based on special test bases or discontinuous Galerkin methods are e.g.
[MV07, UP12, UP13]. These approaches exploit the space-time approach mainly
for theoretical considerations and allow the use of a time-stepping scheme — thus
effectively circumventing the main drawback of space-time methods, i.e., the addi-
tional dimension introduced by the temporal variable. However, optimality has not
yet been investigated in such a framework.

Here, we follow the approach proposed by [SS09], where a space-time adaptive
scheme using tensorized wavelet bases is proven to be optimal for initial value prob-
lems. In this setting, the partial differential equation is reformulated as an equiv-
alent non-symmetric bi-infinite matrix-vector problem of the form Bu = f and
is numerically approximated by employing an adaptive wavelet Galerkin method
(AWGM) to the corresponding normal equations. As opposed to standard algo-
rithms for time-periodic problems, the upshot of this approach is that time-periodic
boundary conditions can be incorporated into the underlying ansatz basis.

AWGMs may be described as follows, [CDDO01, GHS07]: Consider a bi-infinite
linear system Cu = g in ¢ with a symmetric positive definite (s.p.d.) stiffness
matrix C : {5 — {5, an infinite right-hand side g € /5 and a unique solution u € ¢
which arises e.g. from the wavelet discretization of an elliptic operator problem. In
each iteration, these bi-infinite problems are approximated on a finite-dimensional
index set Ay steering the local refinement. This means that a finite vector uy,
satisfying C|a, xa,ua, = g|a, is computed. The (infinite-dimensional) residual
rp, = g—Cu,, is then approximated to serve as an error estimator and to identify
an update, i.e. an (usually refined) index set Aptq (typically Agy; corresponds to
the significant coefficients of ry, ).

Space-time variational approaches to parabolic problems lead to non-symmetric
Petrov-Galerkin formulations and hence do not directly fit into this framework. In
particular, the bi-infinite associated stiffness matrix is no longer s.p.d. which is,
however, a crucial ingredient for the convergence analysis of AWGMSs. Moreover,
the residual belonging to a test space which is not identical to the trial space does
not directly convey information for an update of the trial space. So, working with
the normal equations, i.e., with the s.p.d. operator C := BB and right-hand side
g = BTf, is a natural approach for initial value problems (e.g. [CS11, SS09]) and,
as well we will show in this article, also for time-periodic problems.

The treatment of normal equations by adaptive wavelet methods has first been
discussed in [CDDO02]. The main difficulty lies in the (approximate) evaluation of
BB and BTf. There are several approaches in the literature that address these
issues. The techniques proposed in [CDDO01] rely on so-called wavelet matriz com-
pression schemes, whereas [CS11, CS12] use special wavelet constructions leading
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to truly sparse matrices B. In the present work, we use another approach based
on multitree-structured index sets as introduced in [KS12, KS13]. This allows for
the exact application of B for wavelet discretizations of linear differential operators
with polynomial coefficients within linear complexity when the underlying wavelet
basis is of tensor product type. It basically consists of the so-called unidirectional
principle first introduced in sparse grid algorithms (e.g. [BG04, Zen91]) where co-
ordinate directions may be treated separately. The evaluation is then based on
multitree-structured index sets that permit a tree structure when all but one coor-
dinate directions are frozen.

We stress that, to the best of our knowledge, no quantitative results on the nu-
merical solution of parabolic operator problems using the multitree concept within
an AWGM are available. So far, only numerical results for elliptic operator problems
are presented in [KS12, KS13]. Even though we focus on time-periodic problems,
we expect that our results can be extended to non-periodic settings as well.

The outline of this article is as follows. In Section 2, we introduce parabolic
problems with periodic boundary conditions in time. The derivation of the equiv-
alent /5-problem by means of tensor product wavelet bases is explained in Section
3. Next, in Section 4, we define quasi-optimal algorithms showing what can be
expected in terms of convergence rates and computational work. Some details on
wavelet bases are then given in Section 5. In Section 6, we explain AWGMs for
elliptic problems and extend it to our parabolic problem. The realization and anal-
ysis of an efficient, multitree-based AWGM is then presented in Sections 7 and 8.
We underline our theoretical findings by numerical experiments in Section 9.

2. TIME-PERIODIC PARABOLIC PROBLEMS

Let Q@ :=Q; x--- x Q, C R™ be a product domain and V be a real separable
Hilbert space with dual V’ such that V < H := Ly(2) — V' is a Gelfand triple.
For A(t) € L(V,V') and g € L5(0,T;V’) we consider the time-periodic equation

(2.1)  w+ A®)[u(t)] = g(t) in V' for a.e. t € [0,T], w(0) =u(T) in H.

Denoting by (-, )y x v the duality pairing on V xV’, we assume that ¢ — (v, A(t)[u])
is measurable on [0,7] and that A(t) is uniformly coercive and bounded in time,
i.e., there exist 0 < a < a(t), oo > > () such that for a.e. ¢t € [0,

(22) (v, ADwhvev <Alwlvivlv, (v, ARV« > alolly,  Yo,we V.

Moreover, we assume that the space V is a Sobolev space of nonnegative order

- N S - LQ(Qi)v 275.7»

(23) V.= m ®Wij7 where Wij = { ‘/(l)7 i = j,
i=1 j=1

and, for a fixed m € N, V() is either H ™(£);) or a subspace incorporating essential

boundary conditions. Note that several partial differential operators allow such a

structure. As an example, think of V = H} () and V) = H}(Q;) (see [GO95)).

2.1. Space-time formulation. We derive a variational formulation where the
temporal periodicity can be integrated into the function spaces and is therefore
ultimately incorporated into the basis of a discrete approximation space. To this
end, we derive a space-time variational formulation: Defining

(2.4) H!..(0,T):={ve H(0,T):v(0) =v(T)},

per
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we consider the spaces V := Ly(0,T;V) and X := Ly(0,T; V)N H _(0,T; V'), ie.,

per
(2.5) X ={veL(0,T;V):v; € Ly(0, T;V"), v(0) =v(T) in H},
where X is equipped with the norm [[v[[3 = [[v]7, 0 1.0y + l0ellZ, 020y v €

X. Note that v(0), v(T) are well-defined due to H*(0,T) C C([0,7]) and {v €
Ly(0,T;V) s vy € Ly(0,T;V")} C C(0,T; H), e.g. [DL92]. By integration of (2.1)
over [0, 7], we obtain the problem:

(2.6) Find v € X : b(u,v) = f(v) Yve),

with forms b(-,-) : X x Y = R, f(+) : Y — R defined by, [SS09, (5.6)-(5.7)]

T T
(2.7) b(u,v) ::/0 [(v(t), u(t) + A(t)[u]) v x v dt, f(v) ::/0 (v(t), g(t))vxv-dt.

We define the space-time operator B € L(X,)’) by (v, B[u]) := b(u, v) with (-,-) :=
(-, Yyxyr, so that (2.6) is a variational formulation of the operator equation:

(2.8) Find u € & : Blu] = f, fey.

2.2. Well-posedness. The well-posedness of a space-time formulation of (non-
periodic) initial value problems has been discussed in [SS09]. In Appendix A, we
verify the Babuska-Aziz conditions:

: o b(u,
(i) Continuity: v5 := SUPg_syex SUPpLpey % < 0.

(ii) Inf-sup condition: PBp = infozuex SUPgL,ey m

(iil) Surjectivity: supg_yex [b(w,v)| >0 for all 0 # v € V.

> 0.

Proposition 2.1. Problem (2.6) is well-posed. In particular, B from (2.8) is bound-

edly invertible with ||B| = v5 = vV2max{1,~}, |B~| = 6%3 = %

3. EQUIVALENT BI-INFINITE MATRIX-VECTOR PROBLEM

We counsider the reformulation of (2.8) as an equivalent ¢3-problem, i.e., a discrete
problem posed on the sequence space ¢o. This was first introduced in [CDDO1,
CDD02] for stationary problems and extended to parabolic problems in [SS09].

3.1. Riesz bases. We recall that for a separable Hilbert space H of infinite dimen-
sion, a dense collection Y := {~; : ¢ € N} C H is called a Riesz basis for H if there
exist constants ¢, C > 0 such that for v = Y ;2 v;9;, it holds that

(3.1) cllvIZ, o < ol < ClvIZmy ¥V = (vi)ien € L2(N).

The largest ¢ and the smallest C for which (3.1) holds, are referred to as lower and
upper Riesz constant and are denoted by cy(H) and Cy(H), respectively.!

ISometimes a different definition of Riesz constants is used, namely cy () and Cy (%) being
the largest and the smallest constant such that cy (H)|[vle, @) < vl < Cr(H) Ve, v
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3.2. Wavelet discretization of the parabolic operator problem. Let us now
consider two different Riesz bases

(3.2) @X::{zﬁf:Aej}cX, \ily::{ﬁgfz>\€j}Cy,

labeled w.r.t. two (possibly) different countable index sets J and J . More precisely,
we consider a trial basis WY for the ansatz space X and a test basis U for the test
space ) with associated Riesz constants cy (W), CX(\IIX) and ¢y (BY), Cy (TY).
It is important to note that ®¥, WY arise from normalizing different Riesz bases
O, W, for Ly((0,T) x Q) wrt. || - lx and || - |y (which is also the reason for our
notation, see Section 5). Then there exists a unique expansion u = uT ¥¥ of the
solution u of (2.8) where we formally interpret both u € £5(J) and ¥¥ as column
vectors. Now, the equivalent formulation of (2.8) reads as follows:

(3.3) Finduc((J): Bu=f  fec(J),

— 7Y N _ N SANY — 7 ;
where B := [( MBWJ;YMAej,Hej = [b(z\/ji”lp}\)]kej,ue.vf = (UY B[¥Y)) is
the bi-infinite stiffness matriz and f = [ngj’fﬂ)\ej = (WY f) is the infinite
right-hand side. It is easy to see that (3.3) is well- posed. Since, f € l5(F) and

B € L(X,)') is boundedly invertible, also B € L(£2(F),l2(J)) is boundedly
invertible. In particular, with || - || :== || - |le,—¢, (compare [SS09, (2.2) & (2.3)])

1 _ B~y »x

34) Bl <|B  Ca(TX)2 Cy(BY)2, IB7Y < ”Alil
(34)  |IB[[ < [[Bllx—y Cx(¥7)2 Cy(¥)z, B[ < e (B} oy (89)F
3.3. Further notations. We need to restrict the bi-inﬁnAitevmatrices B and BT
in both rows and columns. For a pair (A, J) with J € {J,J} and A C J, set

(3.5) Ep :lo(A) = 0(T), and Ry :=E} : 6(T) = la(A),
where Ep is the trivial embedding, i.e., the extension of vao € ¢2(A) by zeros to

62(.7) Consequently, its adjoint R is the restriction of v € £5(J) to v|a € la(A).
For AC J and A C J we define the following restriction of B and BT:

. . Bt .= R-B"E« BT — .
(3.6) 3Bz =RxBE;, Bj;:=;sB;, ;B; =R;B E;, ;B ._JB

Finally, C' < D means that C can be bounded by a constant times D and C
is defined as D < C. In this setting, C = D is defined as C < D and C 2 D.

>>—|

2\/

4. QUASI—OPTIMAL ALGORITHMS FOR BI-INFINITE MATRIX-VECTOR PROBLEMS

We may now focus on the approzimate solution of (3.3). To this end, we first
discuss what can be expected in terms of convergence rate and complexity.

4.1. Best N-term approximation. For a given number of degrees of freedom
(d.o.f) N € N, the best approximation vy of a function v = v ¥¥ € X in the
basis ¥ with N d.o.f. is a nonlinear, best N'-term approzimation (e.g. [DeV98]),
i.e., vy = argonr(v), where the best N-term approximation error is defined as
on():= _  inf inf v —ownllx
{AeT :#A=N} {vy€Espan{py :A€A}}
Since WY is a Riesz basis, it holds that |v — vnlle, =~ oan(v) where v always
denotes an N-term approximation of the vector v (i.e., the N largest coefficients
in modulus of v). As described in [DeV98], it is meaningful to collect all vectors
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v € {5(J) that permit an approzimation rate s > 0 in the sense that |[v —var|le, S
N ¢ within the nonlinear approzimation class (compare [Ste09, (2)]):

(4.1) A={ve 0(T) |V a0 ::sli%g-[min{J\/’ € N():HV—VNHEQ(JA) <e}] <o)

For a given v € A% and € > 0, the required number of degrees of freedom MN; in
order to obtain ||v — v~ |le, < € is bounded by N, < E_l/SHVHi(SS. It is important

to remark that this bound on N; is usually sharp (see [Ste09, (3)]).

4.2. Quasi-optimal algorithms. Let us now assume that the solution u € A*

for some s > 0 and that we want to approximate it with a target tolerance ¢ > 0.

The benchmark is given by a best N -term approximation wy.. satisfying o (u) =

[lu —upn. ”zg(.f) < ¢ which is, however, in general not computable. So, we need to

focus on the computation of a quasi-optimal approximation u.:

(O1) Convergence rate: ||ju — uE”eg(.f) < e and #suppu, S 571/5”"“}4/&'8'

(02) Computational work: The number of operations required for the compu-
tation of u. is of order C’)(s_l/sHuHXf), i.e., for any ¢ > 0, u. can be
computed within linear complexity, recalling that N, < =1/ S||u||}4/f.

~

In order to realize (02), we require the wavelet bases U¥ and ¥ to be of tensor
product type which will be the topic of the next section.

5. TENSOR PRODUCT WAVELET BASES
Recall that X and Y can be characterized as follows (see [GO95]),
(5.1) X~ [L(0,T)® V] N [Hye (0, T) @ V'], Y= Ly(0,T) @ V.

Furthermore, by the definition of V in (2.3), the construction of UX and WY can
be obtained by tensorization of univariate wavelet bases.

5.1. Uniformly local, piecewise polynomial wavelet bases. Let us consider a
univariate Sobolev space H € {H}.(0,T), VD, .. . VW} with V) C Ly(;) and a
univariate wavelet basis W for Ly(€2) where Q C Ris either (0,T) (if H = H},(0,T))
or Q; (if H =V recall Q; CR,ie., wlo.g Q =(0,1)),

(5.2) U= ] U ={gr:A=(j,k) € T} CH,
J€No

as well as W := {¢h : A € J;} and J; :={A € J : |A\| = j}. Here, [X\|:=5>0
denotes the level (steering the diameter of the support of 1;; in the sense that
diam(supp ¢ 1) ~ 277) and k is a translation indexr indicating the position of
supp ¥;, 5. Note that the elements of W, are not wavelets but scaling functions.
For details on wavelets on the interval, we refer e.g. to [Urb09]. By the Wauvelet
Characterization Theorem [Dah97], if the elements of ¥ (and also those of the
unique dual wavelet basis) are sufficiently smooth, the properly normalized collec-
tions {¥x/[|Yalln : A € T}, {a/llvalln : A € J} are Riesz bases for the Sobolev
spaces H and H', respectively. Besides that, we shall assume that ¥ is a uniformly
local, piecewise polynomial wavelet basis of order d € N, i.e.:

(W1) Local supports: diam(suppy) =~ 271 for all X € 7.

(W2) Level-wise finite number of overlaps: There exists C' € N independent of

j € Ng such that sup,¢ . #{N € J; : |supp ¥ Nsupp | > 0} < C.
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(W3) Piecewise polynomials: For all A € J, v, is a piecewise polynomial of
maximum degree d — 1 and has d vanishing moments (except for scaling
functions and few boundary adapted wavelets).

Furthermore, we assume that the projection Q;[v] = Z{)\GJ:MK]} vy for
v =) e VAP satisfies the following Jackson estimates [[Id—Q; || g (o)nm—r.(2) S
27, 1d = Qll gayrm—n S 27, |1 = Q;ll goyrm—rr S 27T, where
m=1if H = H. (0, 7).

per

5.2. Temporal discretization. In order to ensure the periodic boundary condi-
tions in time (see (2.1)) in X we need a (univariate) periodic wavelet basis

(5.3) P = {R" : N e P} C H),.(0,T)

being a uniformly local, piecewise polynomial wavelet basis of order d; € N (the
index t stands for ‘time’) for L2(0,T") with associated Riesz constants cr, (©P°"),
Cr,(OP°"). We assume that the elements of OP" are sufficiently smooth so that
the properly normalized collection {63 /|0 || : A € JF'} is a Riesz basis for
H}..(0,T) with constants cy, (OP), Cya (OP). Recall that the construction of
periodic wavelet bases is particularly easy, [Urb09]. For the temporal part of the
test space Y (involving also non-periodic functions), we consider a uniformly local,

piecewise polynomial wavelet basis for Lo(0,7),
(5.4) 0:={V\: A€ T},

with Riesz constants ¢y, (0), Cr,(0) and wavelets being not necessarily periodic.

5.3. Spatial discretization. For the spatial discretization, we use the fact that
Q=0 x---xQ, is a product domain. Here, we shall use that V' is the (intersection
of) tensor products of univariate Sobolev spaces (see (2.3)) with Ly(2) C V and
Ly () = La(21)®- - -®@La2 () (see, e.g., [GO95]). We assume that fori € {1,...,n}
we are given univariate uniformly local, piecewise polynomial wavelet bases of order
d, € N (the index  indicating the spatial variable) for Ly(Q;), £(*) := {Ug\i) A E
JD} ¢ V@, We require that these functions are sufficiently smooth so that
{U&i)/Hogf)va tA e JWY, {Ug\i)/HO’g’i)”V(i)/ : X € JWDY are Riesz bases for V®,
V) with constants ¢y (), Cyri) (23) and cyoy (X)), Cyray (2@). Now,
(5.5) Y={or:Ae T} =2V ..gxm

is a Riesz basis for Ly(Q) where oy := 0'§\11) - ® Uf\z) is a tensor product wavelet
and J, .= JM x .- x 7™ [Dij09, Lemma 3.1.7]. Moreover,

(5.6) sVi={ox/loallv:Ae T}, =V = {or/lloalv i Ae T}

are Riesz bases for V, V', [Dij09, Lemma 3.1.8]. The associated Riesz constants
will be denoted by cy (X), Cy (X), cy/(X) and Cy/ (X).

5.4. Space-time discretization. We are now in the position to define the Riesz
wavelet bases W and WY from (3.2). With L2(0,T; La(€2)) = L2(0,T) ® L2(£2),

(5.7) - {12)\ = Hg\’fr ®ox, A= (M, Ag) € T = P X Jw} =P 3,
(5.8) W= {r =), Qor, A=A A) €T =T xTu} =003,
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are both Riesz bases for Lo(0,T; Lo(€2)). At this point, we only need to normalize
the above Riesz bases appropriately (see [GO95, Propositions 1 & 2]) so that

(5.9) Y= {Px/[dalx: A€ T} =DY¥, DY :=diag [(|dalx") s 7],

(5.10) Y= {gs/[¢ally : A€ T} =DY¥, DY :=diag [(||?Z>\||3_;1))\6j]7

are Riesz bases for X, respectively Y (compare [SS09, Section 6]).

Remark 5.1. We shall denote a tensor product wavelet basis ¥ € {lil, \\I/l} as follows:
=00 uWg. .00 ={yp =90 Ve o xeT}

where X = ()\0,)\1, o) and J = JO x gW x .o 7 In this setting, it is
clear that () ¢ {@r 0}, 7O € { 7P 7;} and &) = 2O for i € {1,...,n}.

5.5. Riesz constants for test and trial bases. For the 1mplementation of an

AWGM we need estimates for the Riesz constants cx (¥), Cx(¥), cy(¥), Cy(¥)
(3.4). Again, we use that X and ) are (intersections of) tensor products of

Hilbert spaces. As in [SS09, §6], we have the following estimates for ¥¥ and WY

(5.11) cx(®) > min {c, (OP7) - ey (), e, (OPF) ey (2)},
(5.12) Cx(¥) < min {CL, (OP7) - Cy(X), Cppy_ (O°F) - Cv(B)},
(5.13) cy(®) > c1,(0) - cv(B), Cy(P) < CL,(0)-Cy ().

The Riesz constants cy (%), Cy (X)) can also be bounded by those of the 1D bases
»@ i€ {1,...,n}. Using (2.3), it can be shown as in [DSS09, §2], that

(5.14)  cy(D) > me?iill.l.)n}min{CL2(Z(m)),Cv<m)(E(m))} I cz.(z®

k#m
(5.15)  Cy(Z)<  max max{CL2(2<m>),cv(m)(z<m>)} I] Cr.(s®).
me{l,...,n} htm

Unfortunately, the same approach does not apply to the (dual) Riesz constants
ey (2), Cyi () of BV in (5.6). However, one may consider 3V being the unique
Riesz basis for V' that is dual to =V <2~]V SV pxyr = Id. Denoting by cv (2,
Cy () the associated Riesz constants, it can be shown that Cy (2 2)” L < ey (2)
and Cy/(X) < ¢y (X)L, Observe that for computing bounds for ¢y (2), Cy (X), we
may proceed as for bounding cy (%), Cy(X). We conclude that for the computation
of the bounds in (5.11), (5.12) and (5.13), it is sufficient to compute bounds for
univariate Riesz constants which can be easily approximated (e.g. [Dij09, §2]).

Remark 5.2. Recalling the construction of wavelets, note that the numerical ap-
prozimation of ¢y (%), Cy (%) may be difficult since the the dual basis £V (and
their derivatives) may not be available in a closed form. If sharp bounds are needed,
one may use an Lo(€2)-orthonormal basis ¥ so that V= 3V, e.g. multiwavelets.

5.6. Best approximation rates. We need to know for which values of s the
solution u of (3.3) is in .A®. More precisely, for a fixed trial basis T the question
is what is the largest value sy, of s for which u € A*® can be expected and that
cannot be increased by imposing higher smoothness conditions on u (excluding
special cases where u is (close to) a finite vector). This value spax is referred to
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as best possible approzimation rate. For our setting, we may apply the results from
[SS09, §7.2]. With u = u'¥¥ € X N H¥(0,T) ® 5% (Q) and the Sobolev space

. N & Lo(), i #j,
%d(ﬂ) = ﬂ@Zij, where Zij Z:{ ]{2(1(“(31)’ ’L:j,

i=1j=1
of dominating mixed derivatives, the best possible rate is given by
(5.16) Smax = min{d; — 1,d, — m}.

We recall that d; denotes the polynomial order of ©P¢" and d,, those of (1) ... 2",
This rate does not depend on the spatial dimension n. Moreover, we remark that
u € % (Q) is sufficient but not necessary for obtaining the above rate. In fact,
the Sobolev space H% (0, T) ® % ({2) can be replaced by a (weaker) Besov space
of dominating mixed derivatives, [Nit06, SU09]. Note that the order of the wavelet
bases for the test space ) does not enter the best approximation rate.

6. ADAPTIVE WAVELET (GALERKIN METHODS

An infinite fo-problem (3.3) arising from a wavelet discretization of (2.8) can be
solved by an AWGM, e.g. [CDD01, GHS07]. We now first present the main idea
of an AWGM for the solution of an (for convenience) elliptic operator problem.
Secondly, we highlight the additional challenges related to parabolic problems and
indicate a possible way-out using normal equations.

6.1. Elliptic operator problems. Solely for explanation purposes, we consider
elliptic operator problems of the following type. For a linear, self-adjoint op-
erator C € L(X,X’) induced by a continuous and coercive bilinear form (i.e.,
(v, Clw aescrr S vllxllwl|x, (v,Clv])ascar 2 ||v]|% for all v,w € X), we consider:

(6.1) Find u € X : Clu] = g, ge X'

Analogously to (3.3), the equivalent £5-problem to this problem reads:

~ A~

(6.2) Find u € 6,(J) : Cu=g, g€ :(T),

~

where C = <\ilX,C[\IlX]>X><X/ and g = (@X,g>;gx;g/ with ¥ from (5.9). In the
elliptic case, i.e., X =Y and may use ¥* as trial and test basis. Furthermore, C
is s.p.d. and || - ||? := (-, C- >42(‘7A)X£2(‘7A) defines an equivalent norm, [Ste09, p. 565]

—1—4 1 =
(6.3) ICTH=ZIVlle, < VI < ICIZIVIIey, Vv € ().

The idea of an AWGM for (6.2) is outlined in an (idealized) Algorithm 1, [Ste09,
p. 567]. Within this algorithm, we make some non-realistic assumptions, which
will be discussed below. Abandoning these assumptions will then give rise to the
realizable AWGM variants introduced in later sections. Starting from an initial
index set _/AXl cT , a sequence of nested finite index sets (_/AXk) 1 is computed. On
cach such Ay, a Galerkin problem is solved that yields the (finite) vector ug . Due
to the Riesz basis property, it holds that (see also (3.1))

o1 ~ o~ 1
2(®)F [~ ug |, < Jlu—uk Ty < Ca (@) u—ug, |, 5
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Given u A the computation of the next Kk;_i'_l is based on the infinitely supported

~

residual g—Cuy € l2(J) and the error estimator |[g—Cug, ||€2(JA) which satisfies:

64) [[CI g ~ Cug, Il ) < I~z oz < IC"llg ~ Cug, I,y 5

This also explains the stopping criterion in line 4 of Algorithm 1. Consequently,
indices corresponding to the largest entries in the residual are added to Ay. This
so-called bulk-chasing process is steered by the parameter 4.

Algorithm 1 [u.] = IDEALIZED-AWGM]e, A]

Input: Target tolerance € and an index set ./Ah = .
Parameter: § € (0,x(C)2).
1: for k=1,2,...do

2: Solve the Galerkin problem:

(6.5)  Find u; € lo(Ag) AkCAkuKk =8A,> BA, = Rf\kg € la(Ay).
3: Residual computation: Compute g — Cuy, and vy := [|g — Cug |le,-
4: if v, <e/||C!| then return u. :=uy .

5: Bulk chasing criterion: Find smallest index set _/AXk_H ) _/AX;C such that

(6.6) HRﬂkﬂ(g - Cuf\k)HgZ(kaH) > dllg — CU—ka ||gz(j)-

6: end for

Proposition 6.1 ([Ste09, Proposition 4.1]). The iterates uy, produced by Algo-
rithm 1 satisfy lu —ug || < [1 - 82k(C)"Y*?|lu|. For the output u. it holds
|[u— ugng(j) <e. Ifue A* for some s >0, it also holds for Ny, := #Ay, that

1 s _ 1
VAN, #suppue S e Vo)

67 Ju-ug, 0z Sl

Remark 6.2. Algorithm 1 cannot be implemented as the residual cannot be com-
puted exactly in general. Implementable versions are given in [CDDO01, GHS07].
The algorithm in [CDDO1] requires an additional thresholding and thus can be ex-
pected to be less efficient than [GHS07]. The adaptive wavelet method in [CDD02]
relies on an inexact Richardson iteration that is applied directly to (6.2) without
Galerkin projection. However, as shown in [GHS07], also this scheme can be ex-
pected to be less efficient than [GHS07]. Thus, we shall focus on [GHS07] here.

6.2. Parabolic problems. One may try to analyze IDEALIZED—-AWGM for
Bu = f in (3.3). However, the generalization of the idealized scheme to (3.3) is
not trivial: (1) Symmetry and positive definiteness. Recall that B from (3.3) is not

~

s.p.d., so that (-, B- >Zg(j)><€2(j) is not an equivalent norm on ¢5(J ). However, the
availability of an equivalent energy norm as in (6.3) is crucial for the convergence
analysis of Algorithm 1 (see [Ste09, Proposition 4.1]). (2) Bulk chasing and residual
computation. It is not clear how to construct z/ik_H from Aj. In analogy to (6.4),

~

the residual f — Bug € (2(J) with error estimator ||f —Bug ||, 7 satisfies

68)  IBI7If ~Bug Il 7 < I —ug, I, 5 < IBIE - Buz, [, -
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But the residual is an element of 62(.,’7), J # J. Thus, we cannot compute Ay
by selecting some contributions from the residual as in (6.6). (3) Petrov-Galerkin
problems. Since TX #* \ily, the (well-posed) Galerkin problem in line 5 of Algorithm
1 here becomes a Petrov-Galerkin problem. Hence the uniform well-posedness of
the finite-dimensional problems is no longer inherited from the infinite dimensional
problem (3.3) and has to be ensured for all Ay.

Hence, we focus on the associated normal equations, as proposed in [CDDO02]:

~

(6.9) Findue(,(J): B'Bu=BTf, BTfeci(J)

Since B is boundedly invertible, the unique solution of (6.9) is also the unique
solution of (3.3) (see [CDD02, Thm. 7.1]). Indeed, (6.9) are the (infinite) normal
equations associated to the least squares problem (compare [CDDO02, §7]) of finding

u € (2(J) such that u = argmin_, 7 \|Bv7f||§2(j) for given f € £5(J). We an-

ticipate that one does not expect the usually dramatic effect of a squared condition
number for BT B since B is wavelet-preconditioned, see below.

6.3. AWGMs for normal equations. Now we investigate if the reformulation of
(3.3) in terms of (6.9) addresses the issues mentioned in Section 6.2.

(1) Symmetry and positive definiteness. Obviously, BT B is symmetric. Moreover,
by (3.4), it is also positive definite and it holds that

(6.10) IB"B| <|B|? [(B'B)~| <[B7?

hence x(B'B) < ||BJ||?||B~!||?>. Thus, we consider Cu = g with C = B'B,
g=BTfand |-|?:=(-,B"B:) and use Algorithm 1.

(2) Bulk chasing and residual computation. Instead of considering the residual in
lo(J), we now obtain BT (f — Bujy ) € {2(J) with error estimator py := IBT(f —
Buﬁk)”&(j). In analogy to (6.4) and (6.8), we infer that

(6.11) IBI 2o < lu—ug, I,z < IBpx

In this setting, the residual f —Buyg from (6.8) is also referred to as primal residual

whereas BT (f — Bujy ) is called dual residual. Observe that this kind of residual
allows for a bulk chasing strategy as used in line 5 of IDEALIZED-AWGM.
(3) Well-posedness. With ;BT and By defined in (3.6), we get (B"B)|3, 4 =

4B "Bj so that (6.5) for general A C J with C = BB now reads as follows:

~

(6.12) Finduj € fo(A): ;B Biuz =;B'f,  ;B'fel(A).

Observe that the unique solution uy = argminvie&(;&) IBAVA — f||§2(j) to (6.12)

can also be characterized as the solution of a least-squares problem. Moreover, the
Galerkin problem (6.12) is uniformly well-posed. Since BT B is s.p.d., we infer from
(6.10) that || ;BTB4| < ||B|? as well as [|(;BTBz) || < [B~'|? for all A C J.
In particular, the condition number x( ABTB A) is bounded independently of A.

Remark 6.3. Obviously, neither the residual in (6.11) nor the solution uz of (6.12)
can be computed exactly since the involved matrices are of infinite dimension. In
order to obtain an implementable scheme, we work with an approximation w A, to

uy, and an approximate residual ¥y, to BT (f- Buy, ). This will be discussed next.
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7. AN IMPLEMENTABLE SPACE-TIME ADAPTIVE WAVELET (GALERKIN METHOD

Now we describe the quasi-optimal (in terms of (O1) and (02)) AWGM for the
numerical solution of (6.9) and call it LS—FAWGM (least squares adaptive wavelet
Galerkin method), see Algorithm 2. We first describe the required subroutines. We
assume that u € A°® and denote by w; an approximate solution to (6.12).

(RES) Approzimate residual: For a given relative tolerance 0 < wys < 1, the output
r of RESIDUAL[w R, wis] should satisfy

(7.1) IBT(f = Bwy) — i, 5 i vy vi= [l .5,

71/5 /\9)

1

([all 4

(GAL) Approzimate Galerkin problem: For a given relative tolerance 0 < vy < 1,
the output w; of GALSOLVE[A, W3, s - v] should satisfy

and the associated computational cost is of order O(#IAX +v

(7.2) ||[\BT<f - B]\WK)”ez(K) < Vs -V,

where v is defined in (7.1) and the associated computational cost is of order
O(#A + 1/_1/5||u||}4/f). Moreover, we assume that we are given an initial
value W satisfying || BT (f — BKWA)HZZ(J\) <1+ ) v

(EXP) Approzimate bulk chasing: For a given parameter 0 < § < 1, the output
A C J of EXPANDIA,T, ¢] should satisfy

(7.3) ADA, |RTl,, 4y 20l )

and, up to some absolute multiple, A is minimal among all sets that satisfy
(7.3). The computational cost of this routine is of order O(#A +# suppT).

Algorithm 2 [u.] = LS~AWGM][e, A4, ]

Input: Target tolerance ¢, finite index set A; C J and tolerance vy =~ ||BTf||22(j).
Parameters: §,wis, s with wis € (0, 6) dfw KZ(BTB>_%,

7 l-wig
s € (0, U= 0—ed y(BTB) 1),
1: Set wy, =0.
2: for k=1,2,...do

3: W3, = GALSOLVE[./AX;S,WKMI,%S “Vg—1].

4 == RESIDUAL[w} ,wis| and set vy := [[Tx]|es.
5: if v, <e/||B7* then return u. := wy .

6: Aji1 = EXPAND|A,, 7, 6]

7: end for

In analogy to Proposition 6.1, we have the following result for LS—AWGM
which is a direct consequence of [Ste09, Proposition 4.2 & Theorem 4.1]:

Theorem 7.1 ([GHS07, Ste09]). Let the assumptions on (RES), (GAL) and
(EXP) and the requirements on 6,ws, s from Algorithm 2 hold. Then, the iter-
ates Wy, produced by LS—AWGM satisfy [lu — w3 || < pF2|a|| where p := 1 —
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(f;ﬁi)n(BTB)—l . "/51 )ZK(BTB) < 1 and the output u. satisifes |lu—uc|l,, 7 <

e. If, moreover, u € A for some s > 0, it holds for Ny := #_/AXk that

1/s s —1/s 1/5

(7.4) [u— WA,CH£2(J) S lhal 4 #suppu. S e ([ul] 4

Note that a realization of EXPAND can easily be obtained by an approximate
sorting of T and a subsequent thresholding (e.g. [Ste09, p. 569]). Possible realiza-
tions of the routines RESIDUAL and GALSOLVE that are based on so-called
APPLY -routines (i.e., an adaptive, column-wise approximation of B and B ") have
been discussed in [SS09, Ste09]. We shall focus on a multitree approach which has
been shown to outperform APPLY-based AWGMs in elliptic settings (see [KS13]).

8. A MULTITREE IMPLEMENTATION

8.1. Tree and multitree structured index sets. Let ¥ = {1, : A € J} be a
univariate uniformly local, piecewise polynomial wavelet basis as in (5.2).

Definition 8.1. A subset A C J is called a tree if for any A € A with || > 0 it
holds that supp ) C UueA;lulefl supp ¥,

It holds for all A, € A with |pu| = |A] — 1 and |supp ¢ Nsupp,| > 0 that
Sy D Sy, where

(8.1) S, :={x € Q:dist(z,suppty,) < Dy2 1} Dy := sup 2/* diam(supp 1y).
reJ

Let us now consider a tensor product wavelet basis ¥ = {1 : A € J} € {¥, ¥}
with ¥ and ¥ as in (5.7) and (5.8). The extension of Definition 8.1 then reads:

Definition 8.2 ([KS12]). An index set A € J is called a multitree if for all
i €{0,...,n} and all indices p; € JU) for j # i, the index set

(82) A(z) = {)‘2 € j(z) : (IU’Oa ceey Mi—1, >‘ia Mit1s - 7,u'n) € A} C \7(2)
is either the empty set or a tree in the sense of Definition 8.1.

Loosely speaking, a multitree A € J is “when frozen in any n coordinate direc-
tions, a tree in the remaining coordinate” (see [KS13, §3.1]).

Remark 8.3. Note that quasi-optimality of LS—AWGM is maintained if Kk are
required to be multitrees (cf. [KS13]). The only modification is to replace the
unconstrained nonlinear approximation space A® (see (4.1)) by the constrained
< oo}, where ||v]as, =

mtr(,t,

approximation space A .. := {v € Eg( 7) : [vIlas,..

Sup.sg€ - [min{N € Ny : [|[v — VNl 7y S € A suppvyisa multitree}|”. This
means we only allow those vas that are supported on a multitree.

The reason for using trees and multitrees for solving linear operator equations
instead of arbitrary index sets lies in the much more efficient evaluation of system
matrices which we explain next. Moreover, tree and multitree-structured index sets
are crucial ingredients for the evaluation of non-linearities in both tensor product
settings (e.g. [SS11]) and non-tensor product settings (e.g. [CDDO03]).
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8.2. Fast evaluation of tensor product system matrices. We assume that for
some M € N, there exist univariate bilinear forms bgﬁ) such that

M n M n
83) B=DY [ ST @, \T/(i))]DX = Dy[ J§f,§>}DX,

m=11=0 m=1 i=0
where BY) .= b%)(\i/(i), \\I/'(i)) fori=0,...,nand m = 1,..., M. This means that B
is a preconditioned sum of tensor product bilinear forms. As we shall see below, this
form holds true for a large class of operators. Moreover, we shall always assume
that by are local in the sense that b (w,v) = 0 whenever |suppv N suppw| =
0. The special structure of B - can be used to efﬁc1ently reahze the apphcatlon
of xBi to a vector vi € 62( ) for finite multitrees A € J and A € J As
descrlbed in [KS12], this can be realized in linear complexity, i.e., O(#A + #A)
by using a separation of By into unidirectional operations and an efficient tree-
based application of unidirectional operations. These principles are also known
from sparse grid algorithms (see, e.g., [Zen91, BG04]).

We recall the Kronecker product of two general (possible bi-infinite) matrices

A'(l), A® and identity matrices Ia(l), Id® of appropriate dimension:

(8.4) AW @ A =[AV) @ 4] o [V © AD] =[[AV) @ 4] o [AV @ Td@)].

Then we split B = LW + T into a (stricly) lower LY = [(Bﬁ))hu]lkblul

= [(B)SL))/\WMMSW" With (84), it can then
be shown that there exist multitrees 2 and Z such that we have the following
equivalent representation of xBj,

and an upper triangular matrix (7,(,? :

/—\

M
DY l: Z RK [Ia(o) ® éﬁé) - m)]E*O Ri[U(O) ® Id(l) ® Ia(n)]E]\

m=1

=:(I) =:(II)
M
+Y RR[LYV eIV @ @ 1d™]|EgoRu[ld¥ @ BY ® --- @ BJV]E; |DY.

m=1

=:(III) =:(IV)

It holds #E+#E < #A+#A. The application of (IT), (I1I) (and (I), (IV) forn = 1)
is referred to as um’directional operation as only the application of the univariate
matrices L} |A(O)><A(O)7 A |X(0) x A0y and B |A(1)XA(1) (n =1) is required. Due to
the tree structure, these tasks can be realized in linear complexity despite the fact
that neither of the matrices E&S), (77(,?) or éﬁi) is sparse in general (see [KS12, §2]).
For n > 2, the remaining parts (I) and (IV) can be treated recursively by applying
the same procedure to éﬁ) R ® B'ﬁ,?).

Theorem 8.4 ([KS12, Theorem 3.1]). Let A be a linear differential operator with
polynomml coefficients and let AC ._’7 A € J be multitrees. Then, for any vy €
Lo(A ), the product {Bivi can be computed in (’)(#A + #A) operations.

Remark 8.5. If A is a linear differential operator with polynomial coefficients, B
has the form (8.3). Furthermore, all matrices can be applied in linear complexity
if A and A are trees (cf. [KS12, §2]).
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8.3. RESIDUAL: Multitree residual approximation. We need to approxi-
mate the residual B (f — Bw}) by a residual of type éBTé (fé - BAWA)

8.3.1. Primal residual. We first recall the approximation of the primal residual.

Theorem 8.6 ([KS13]). Let 0 < w < 1, let A be a differential operator with
polynomial coeﬁ%czents and let u € Amtree for some s > 0. Then for all ﬁmte
multitrees A C J and all Wi € { (A), there exists a multitree 2 = E(A,w) C J

such that #2 < #A + v=1/5 with v := HFHEQ(J“): fz := Rxf and

(8.5) [(f=Bwgz) —Fll,, 5 S wlFlly,5) T=fz-gBiw;i.

Remark 8.7. Due to the multitree structure of A and é, the computational cost for
computing ¥ is O(#A+v~1/9) if an entry fy of f = (fA) xc 5 can be computed ezactly
at unit cost, which is e.g. the case if f is a (piecewibe) polynomial. If this assumption
is not met, replace f by some f. with ||f —f. ”z y S € and #supp f. < e~1/# which

is possible if f is sufficiently (piecewise) smooth (see [KS13, §3.4]).

8.3.2. Dual residual. We may now follow [KS13, §1.1] using a wavelet compression
of Band BT. If A is a linear differential operator with polynomial coefficients, it
can be shown that for any 0 < n < 1, there exists By, : £2(J) — £2(J) such that

(8.6) BB, <n B -B,|<n

where the number of nonzeros in each row and each column of B, are of order
O(n~'/%") for some s* > Smax, (5.16). This means that B is s*-admissible (see
[SS09]). Assuming that 7 is chosen sufficiently small so that B, and B, are bound-
edly invertible, we obtain the estimate (see Proposition B.2)

(8.7) IB (£ — Bwy) — By ¥ll,, 7 < wisl By ¥ll,, 7

for wis = (2= + (IBI| + nw)||B; || so that wis — 0 as w — 0 and 7 — 0. Even
though B,, and B; are sparse (for fixed 7), the application of these matrices to
finite vectors can be computationally expensive since the product structure of B
in (8.3) cannot be exploited. Unfortunately, the approximate residual B;]r T is not
necessarily supported on a multitree. Hence, we define the multitree-based residual

(8.8) = gBEL (fg — gBiwyi) = gBET

A~

such that |BT (f — Bwjy) —?||£2(j) < w13||?|\e2(j) where E is the smallest multitree

containing supp B; T. The residual computation requires (’)(#E + #E) operations.

Remark 8.8. Theorem 8.6 only ensures the existence of an appropriate multitree =
but does not give any information on its explicit construction. The same holds true
for E. In Section 8.5, we will discuss how we can construct the multitrees = and 2
without setting up the compressed matrix B, so that T from (8.8) satisfies (RES).
Furthermore, numerical experiments in Section 9 indicate appropriate choices of =
and E with preferably small cardinalities and optimal balancing of the error arising
from the approximations of the primal (see (8.5)) and dual residual (see (8.7)).
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8.4. GALSOLVE: Multitree solution of finite-dimensional least squares
problems. Concerning the numerical solution of the least squares problem (6.9),
the approach proposed in [Ste09, SS09] consists of replacing KBTB A by a sparse
approximation [A\[B;Bn];x = R;\[B;B,,]E;\ satisfying || ;B B4 — Z\[BnTBn]i\” hS
7. In analogy to (6.9), we consider:

(8.9) Findu, 3 € 2(A):  z[B,B,Jzu, 3 = RzB, 5.

Indeed, under the assumption that 7 is sufficiently small, x(; [BTB JA) is bounded

independently of A (see Appendix B). In particular, there exist algorithms based on
linear iterative solvers like the conjugate gradient (cg) method that approximate
(8.9) such that [jug — un,foeg(fx)H < n and (GAL) is satisfied. Similar to the
residual approximation, the disadvantage of this approach is that we cannot use
the fast matrix-vector multiplication w.r.t. multitrees. To this end, we intend to
compute wy as an approximate solution of the problem:

(8.10) Find x5 € lo(A):  iBXxBaxz = aBkfx-

We could choose A as the smallest multitree that contains supp B, vz for all vi €
Kg(f&). However, this is not an implementable approach. Hence, we are concerned
with the question how the multitree A can be constructed in dependency of A such
that (1) the condition number of ; B is uniformly bounded and (2) an approximate
solution w3 to (8.10) satisfies (GAL). This will be discussed in Sections 8.5 and
9. For fized multitrees, the solution of (8.10) can be computed e.g. with cg.

8.5. Choice of index sets. The expansion Kk — Kk+1 of the trial sets in Al-
gorithm 2 is based upon the remdual r;, but it is so not clear how to construct
appropriate test sets Ay = Ak(Ak) Similarly for the aux1hary sets B and Ej, re-
quired for (8.8): While the construction of the test sets By for the primal residual
in a Galerkin setting has been investigated in [KS13], there are so far no results for
good choices of ék and ék within a Petrov-Galerkin framework.

Choice of test sets ijk For a given index set Ak € ._’7 we have to ensure that the
finite-dimensional test set Ak eJis large enough to ensure well-posedness. At the
same time, for efficiency we would like to choose Ak € ._’7 as small as possible. We
describe a corresponding iteration. As initial sets Ao, AO7 we follow [And13, §6.2]

(811) Ag=Ascs:={Ae T |\ <J},
(812) Ao=Asc s ={AeT: A< Jor|h|=J+1,|\=0,1<i<n},

where |A| := 31" |A\i[.2 Such bases are provably stable, however, this only holds
true for uniform (full or sparse) discretizations. In later iterations, i.e. for adap-
tively constructed trial sets Ay, k > 0, we propose the following (heuristic) choices:

(i) Apa = FullStableExpansion(A, () is defined as
(8.13) ./VXFHH::{)\ eJ:3pcAst forallj=0,....n: [N < |ps| +£
and dlst(suppr ﬁuppiﬁfj)) < D\f,(j)2_|)‘j‘}.

2We will also use ASG’J and KSG’J within a uniform sparse grid (SG) discretization.



A SPACE-TIME ADAPTIVE WAVELET METHOD FOR TIME-PERIODIC PDES 17

(ii) AReq = ReducedStableExpansion(f&,E) is a subset of Apy defined as
n

(8.14) Ageq := U{)\ €eJ:dpeAst foral j=0,....n: [Aj] < |ps| +0i 5 ¢
=0 and dist(suppizgi),supp @Zl(i)) < D\f,(j)Qfl)‘jl}.
(iii) XTemp = TemporalStableExpansion(A/AX7 £): consists of only temporal
higher level extensions, i.e.,
(815)  Amemp:={A€ T :3peAst forall j=0,....n:\| <|p| +d,¢
and dist(suppzzgi),supp@g)) < D\imZ—')‘J'}.

We refer to [KS13, Prop. 2] for a proof that the above index sets are indeed
multitrees. An algorithmic realization is shown in Algorithm 3.

Algorithm 3 [A] = FullStableExpansion[jAX /]

Input Finite 1ndex set A C .7 expansion level £ € N.

1L A=0cJ. R

2: for)\f (Aos---5An) € Ado

3: Find all “neighbours w = (o, ptn) € J on the same level:
A AU{ped :|ul =Nl SUPpWﬂSUppw #0Vi=0,...,n}.

4: Find all “nelghbourb o= (ft1,. .., fin) € J on the ¢ higher levelb
A—Au{ped: qul =X + 5,1 <j < £, suppdy, Nsupp ¥y, # 0

Vi=0,...,n}.
5: Complete A to form a multitree in the sense of Definition 8.2.
6: end for

Choice of sets B, Ej. The proposed index set reads

~

B, = ReducedMultiTreeCone(./A\, f)

(8.16) = U{)\ €J:3IpcApst forallj=0,...,n: INj| < || +6i 50
=" and dist(suppzzgi),supp zZ/(]J)) < D@(j)2—|>\j|}

It was shown in [KS12, KS13] that this index set for £ = 1 and the analogously
defined FullMultlTreeCone(A 1) are adequate choices for an accurate appr0x1—
mation of the primal residual in the Galerkin setting, where T = \Ily E=E.

In our Petrov-Galerkin setting, we combine the multitree cone extension with
the expansions (8.13)-(8.15). More precisely, we consider the two variants Full-
ResConstruction and OptimResConstruction, see Figure 1. For the primal
residual (i.e., in )), we expand Ay to éZmp = ReducedMultiTreeCone (_/AXk,E)
and obtain the desired Z; by one of the expansion variants in (8.13)-(8.15). For
the dual residual (in X), we consider two approaches. In the first one, shown in
Fig. 1(a), we take the set =, as above and set 2, = FullStableExpansmn(._.k,E)
(with obvious inverted roles of primal and dual basis). Then, Zj is the smallest
multitree containing Supp BTFk for sufficiently small 7. The second approach uses

the by far smaller set Ej, = _.Z as indicated in Fig. 1(b), [KS13].



18 SEBASTIAN KESTLER, KRISTINA STEIH, AND KARSTEN URBAN
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&
[I]( S~ [I]
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(a) FullResConstruction (b) OptimResConstruction

o

FiGURE 1. Constructions of index sets Ey, Ej for residual approximation.

9. NUMERICAL EXPERIMENTS

We report numerical examples for time-periodic problems of type (2.1). We focus
on the stability of the arising normal equations (8.10) in view of different choices for
Kk. Moreover, we numerically investigate the quantitative behavior of approximate
primal and dual residuals in view of Remark 8.8. It is sufficient to consider the case
n =1 (so that @ = (0, 1)), since we employ an Ly (0, 1)-orthonormal (multi-)wavelet
basis 3 = ¥ (see (5.5)) as in [Rupl3], with d, = 2 and homogeneous boundary
conditions. In this case, the Riesz constants in (5.14), (5.15) are independent of
n. In particular, the condition numbers of BTB and of KBTU&B 4 do not depend
on n so that the 1D case gives all relevant information. In [KS13], it was shown
numerically that the asymptotic behavior of the multitree-based residual only differs
by a constant depending on n from the unconstrained case.

We choose ©P" (see (5.3)) as a collection of bi-orthogonal B-spline wavelets of
order dy = d; = 2 on the real line, periodized onto [0, T, [Urb09]. For © (see (5.4)),
we choose bi-orthogonal B-spline wavelets from [Dij09] with d; = d; = 2. As further
parameters for the LS-AWGM we choose § = 0.72, 415 = 0.01 and, if not indicated
differently, £ =1 for the stable extensions from Section 8.5. We obtain qualitatively
similar results for choosing ¥ as in [Dij09] for d, = d, = 2 even though they do not
satisfy our assumptions.*

We also compare the LS—AWGM to a (uniform) sparse grid approach (SG),
i.e., to computing the solutions on a sequence of uniform finite-dimensional sets
Asc.s, Asa.y, J=0,1,..., as in (8.11), (8.12), e.g. [Zen91, BG04].

9.1. Heat Equation. We consider the 1D-inhomogeneous heat equation
U — Uge = f(L,2) on Q= (0,1), :
u(t,0) = u(t, 1) for all t € [0,T],

uw(0,z) =u(T,z)  on Q,

with a discontinuous source function f(t,z) = f(t) = K (& — [5t]), N € N,
K € Ry. Our figures correspond to the choice N =3, K = 1.

Starting with the optimized residual (as in Fig. 1(b)) and the full stable expan-
sions as in (8.13), we investigate the convergence of the adaptive algorithm and the
stability of the finite-dimensional systems (8.10). The norms of primal and dual

3We have chosen a larger value for § than required by Algorithm 2 for efficiency reasons.
4Note that these bases cannot be normalized to be a Riesz basis of H=Y(Q).
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residuals are shown in Figure 2(a) for AWGM and SG. As expected, LS—FAWGM
reaches the optimal rate spax = d — 1 = 1, whereas uniform SG suffers from the
lack of smoothness of the solution. We observe in Figure 2(b) that the iteration

150

100

10* E

—o— AWGM ||| 500 [

- e AWGM i 10° £
1ot L= SG R | —e— AWGM CGLS iterations F

- .- SG ||F| —a— SG CGLS iterations 102} ]

I T L L ok £ L L L T
10% 10° 10* 10° 10? 10° 10* 10°
N=#A Ni = #4y 10t Ni = #A,
(a) Residual convergence (b) Iteration numbers (c) Test set sizes

FIGURE 2. Heat Equation Example: Comparison of LS—AWGM
(AWGM) and Sparse Grids (SG).

numbers for the least squares cg method in each LS—AW GMe-iteration stabilize at
about 150 iterations in both approaches. This indicates that the choice of test sets
Aj, = Apa yields stability. Figure 2(c) shows the cardinalities of the test sets. They
grow only linearly with #?&k, so that both Wi, and T can be computed within
linear complexity in each iteration (cf. (GAL), (RES)). These results are based

T
10-1 E —e— Optim Constr |[Fx|| .
—a—  Full Constr |[Tx|| 10

1072

. 104
1073 £

108 | - SuE
—e— Optim Constr #&j,

—=—  Full Constr #3;
I I I I 10% & I T T i
10% 10% 10* 10° 102 10% 10* 10°
Ny = #Ay Ny = #A,,
(a) Convergence of dual residual (b) Index set sizes #Zy,

FiGURE 3. Heat Equation Example: Comparison of Residual Constructions

on OptimResConstruction for ék. In Figure 3 FullResConstruction is used.
As ék hardly impacts T, we monitor only the dual residual. Since using a larger
index set, ||Tx]| t2(5) 18 slightly increased (as expected), but it exhibits the same
behaviour as OptimResConstruction (Fig. 3(a)). This marginal improvement
comes at a high cost, #EZ is 40-50 times larger, sec Fig. 3(b).

Finally, in Figure 4, we compare the stable expansion types (Full, Reduced,
Temporal). We find no discernible differences in the residual (Fig. 4(a)) and only a
very slight increase in the iteration numbers in GALSOLVE (Fig. 4(b)). It seems
that choosing ék = TemporalStableExpansion(ézmp, 1) yields results that are
comparable to the other extensions, which could not be deduced from [KS12, KS13].
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(a) Residual convergence (b) Iteration numbers (c) Test set Sszes (normal eq.)

FIGURE 4. Heat Equation Example: Comparison of Stable Expansions

All three methods seem stable, and we can reduce the size of the test sets by a factor
of about 3.4 for Ay (and likewise by 2.5 for Ey).

9.2. Convection-Diffusion-Reaction Equation. As a second example, we con-
sider the convection-diffusion-reaction (CDR) equation

Up — Ugg + Uy +u = f(t,2) on Q= (0,1),
u(t,0) = u(t, 1) for all t € [0, 77,
u(0,z) =u(T,z) =0 on Q,

for a f(t,x) that yields u(t, z) = e~ 1000(z=(0-5+0.25sin(27)))* ' gee Figure 5(a). Note
that u is infinitely smooth but exhibits large gradients in non axis-aligned directions.

(a) Solution u(¢,z) of the CDR example (b) Support centres of basis functions in
Ay, for k=12 (#A12 = 9445).

FiGURE 5. CDR Example: Solution and adaptive refinement

The support centers (i.e., the centers of supp 1,B>\, A€ Kk) in Figure 5(b) in-
dicate that the AWGM benefits from its ability to refine not only independently
in each dimension, but in particular locally in the full space-time domain. This
is also mirrored in Figure 6(a), where we observe the optimal $pyax = 1 for the
LS-AWGM, and a stable number of inner iterations (Fig. 6(b)), employing the
optimized construction of ék and only temporal stable expansions for Kk, ék. The
smoothness of the solution allows for a convergence rate close to 1 for the sparse
grid approach, however, the asymptotic regime and comparable residual norms are
only reached for index sets that are over a magnitude larger.
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Finally, we compare the above AWGM results with those obtained for larger sets,
i.e., using full stable expansions and the FullResConstruction for ;. As before,
we see in Figures 7(a), 7(b) that we can reduce the size of the test sets Ay, Zp by

factors 2 to 3 without losing accuracy. Likewise, the full construction of =

=) yields

index sets that are approximately 20 times as large as for the optimized version (cf.
Fig. 7(c)), with only a slight improvement in the residual approximation.

APPENDIX A. PROOF OF PROPOSITION 2.1

We follow [SS09] to verify the Babuska-Aziz conditions in a time-periodic setting.
(1) Continuity. Follows from (2.2), the definitions of ||-||x, ||-||y as well as Cauchy-
Schwarz’s, Holder’s and Young’s inequalities.
(2) Inf-sup condition. We consider an arbitrary 0 # w € X and define z,(t)

(A(t)*) " 1i(t) for the adjoint A(t)* of A(t).

The bound [[(A(t)*)7Y < a7t

then yields for vy, (t) := 2, () + w(t) that |[v,|y < vV2max{l,a !}|w|x < co.

By definition of z, and (2.
> S lat)..
(2w, A()[w])v sy dt =
= (D)% —IIw( )15

|w|| x]|vwly > 0.

allzw @)

amin{l,y?

V2 max{1,a~ 1}

2), (zu(t),

w(t»vxvl = <Zw(t)7~’4(t)[zw(t)]>v><V’ Z

. . . T .
Since w € X is periodic, we have fo (w, W)y xyr +

fo w, W)y <y +f0 W, W)y xy = f
=0, so that we finally get b(w, vy) > am1n{1,7’2}||w||f\, >

dillw ()1 dt
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(8) Surjectivity. Let 0 # v € ). We aim to construct z € X with (w(t), 2(¢))vxv: +
(w(t), A(t)[= (t)]>v><\// = (w(t),A(t)[v(t)])VXV/ for all w € ), and t a.e. on (0,7,
as then b(z,v) fo ), AR () vy > CY||UH§, > 0, so that the surjectivity
condition is fulfilled.

(i) Faedo-Galerkin approximation of an initial value problem Let {¢; : i € N} be a

basis for V, V,, :=span{¢;,i = 1,...,n}, z,(t) == > 1", 2 l ( )¢;. Then the linear
system of ODEs (wn, 2, (t))vxv: + (Wn, A(t) 20 (&) )vxv: = (wn, AQR)[v(E) v v,
21 (0) = 20, has a solution z, € C(0,T;V,,) with 2, € Ly(0,T;V,,) for all w,, € V,,
a.e. on I and for (arbitrary) zg € H and its orthogonal projection z,q onto V;,.

(ii) A-priori estimates. (i), (2.2) and Young’s inequality with some & < £ & yield

1d 2 2 2 Y 2
< L
(A1) 5 dtHZ"( W+ allzn (@) < vellzn@®)ly + 4€Hv(t)||v

and hence by integration over |0, s] s € 0,77, using (o —ye) > 0 that ||z,,(s)||% —
12 ()3 = Jy dEllzn@IFdt < 3= [ ll(®)]Fdt, so that sup,epo ryll2n(s)llF < o0
and {zp, fnen 18 umformly bounded in Lo (0,T; H). Similarly, we can conclude that
2(a —e)llznlly < I2n(0)IIF — llzn(D)IIF + %HUH%; < 09, so that {2, }nen is also
uniformly bounded in ).

(iii) Periodicity. Ab})reviate ¢:= % Q= 2(a 76) > 0 with ¢1 := supyey ”¢”H and
multiply (A.1) by e®t. Then % (ea ||zn( )||2 ) =eMe d 2z (t W3 +e?tallz. ()% <
e®é||lv(t)||?, and by integration over [0,T], we obtaln

T
(A.2) l2n (D1 < e_aTIIZn(O)II%JrEe_aT/O ™ lu(®)]7 dt.

Set M:={zecV,:|z|lg<R:=Kz(1—eT)"2}, K :=ce o7 fOT e lo(t) |3 dt.
The set M is convex and compact in V. If 2,(0) € M, (A.2) implies that
|z (D)%, < e “TR?2 + K < R, ie. 2,(T) € M. Since by Gronwall’s lemma
the mapping S : M — M, z,(0) — z,(T), is continuous, the existence of a fixed-
point S(z,) = z, € M follows from Brouwer’s fixed-point theorem. By the a-priori
estimates, the sequence {Zz, }nen is bounded in H, so that there exists a subsequence
(also denoted by {z,}) converging weakly to some z € H.

(iv) Convergence. Consider the periodic solution z,(t) from (iii), i.e. the solution
of the ODE system with initial value z,9 = Z,. From the a-priori estimates, we
have that {z,} is uniformly bounded in the separable space Y, so that there exists
a subsequence (also denoted {z,}) converging weakly to some z in ). For w, :=
6(t)p;, O(t) € C1(0,T), we then have by integration over [0, 7] and integration by
parts of the first term that for all j = 1,...,n —(0¢;, 2,) = (0(0)p; —0(T)¢;, Zn) ur+
(0, A(t)[v — 2p]). As 2z, = zin Y and Z, — Z in H, we can pass to the limit
n — oo and obtain

(A.3) —(068;.2) = (0(0)6; — O(T)b5, 2) st + (065, AD - ).

This particularly holds true for all 8 € D(I), so that 2 = A(-)(v — z) in the
distributional sense and hence z € L2(0,T;V’). Moreover, (A.3) implies that for
w € CH0,T;V), we have — (1, z) — (w(0) — w(T),2) = (w, A(t)[v — 2]) = (3,w) =
—(w, z) + (w(T), 2(T)) g — (w(0), 2(0)) i, so that indeed Z = z(0) = 2(T") in H and
hence z € X. With this z, the surjectivity condition is fulfilled.
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APPENDIX B. AUXILIARY WAVELET COMPRESSION RESULTS

Here, we report two facts for B defined in (3.3) which are required in Section 8.
We shall always assume that (8.6) holds. For further details, we refer to [Kesl3].

~ ~

Lemma B.1 ([KS13]). For sufficiently small n < 1, By, € L(2(T),¢2(T)) and
BJB,7 € LU(T), l2(T)) are boundedly invertible with bounds depending on 1.

Proposition B.2 ([KS13]). Let the assumptions of Theorem 8.6 hold. Then, there

~

exists a constant wis such that |[BT(f — Bwjy) — ?”zg(.f) < W1s\|?||52(j), r:=BT.
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