
	
  
	
  
	
  

 
 

 

An Efficient Space-Time Adaptive Wavelet  
 

Galerkin Method for Time–Periodic Parabolic  
 

Partial Differential Equations 
 

Sebastian Kestler, Karsten Urban und Kristina Steih 
 

 
 
 

Preprint Series: 2013 - 06 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fakultät für Mathematik und Wirtschaftswissenschaften 

UNIVERSITÄT ULM 



AN EFFICIENT SPACE-TIME ADAPTIVE WAVELET

GALERKIN METHOD FOR TIME-PERIODIC PARABOLIC

PARTIAL DIFFERENTIAL EQUATIONS

SEBASTIAN KESTLER, KRISTINA STEIH, AND KARSTEN URBAN

Abstract. We introduce a multitree-based adaptive wavelet Galerkin algo-
rithm for space-time discretized linear parabolic partial differential equations,

focusing on time-periodic problems. It is shown that the method converges

with the best possible rate in linear complexity and can be applied for a wide
range of wavelet bases. We discuss the implementational challenges arising

from the Petrov-Galerkin nature of the variational formulation and present

numerical results for the heat and a convection-diffusion-reaction equation.

1. Introduction

In recent years, space-time variational approaches for linear parabolic partial
differential equations (PDE) of the form

ut +A(t)[u] = g(t) on Ω ⊂ Rn, for t ∈ [0, T ],

have been considered in various contexts. These methods treat both temporal and
spatial variables simultaneously, allowing e.g. for targeted adaptive refinement of
the numerical discretization in the full space-time domain or efficient paralleliza-
tion. On the other hand, this in general amounts to solving an (n+ 1)-dimensional
problem. This differs from standard time-stepping techniques for time-dependent
PDEs, which are usually based on semi-discretization schemes: The vertical method
of lines requires the solution of a system of coupled ordinary differential equations
that arise from a discretization in space. Within the horizontal method of lines
and the discontinuous Galerkin method, the temporal variable is discretized first,
leading to a (coupled) sequence of elliptic problems in the spatial domain. Such
time-stepping schemes have some drawbacks: The sequential treatment of the time
variable often does not allow for parallelization in time. Furthermore, adaptive
schemes typically focus either on the spatial or on the temporal variable or are
based on local error estimators (e.g. [Raa07]), thus forfeiting optimality. Moreover,
a posteriori error estimators – needed e.g. for adaptive schemes or model reduction
approaches – are usually increasing functions in time, therefore losing efficiency over
long time horizons. These issues are amplified when considering time-periodic prob-
lems, i.e., when searching for solutions u with u(0) = u(T ). Such problems arise
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naturally in different physical, biological or chemical models, e.g. flows around a ro-
tor or propeller, biological models or chemical engineering [JPSU07, SZ99, KB06].
Standard numerical methods for periodic problems require either an additional
fixed-point scheme (when using a temporal semi-discretization) or the solution of
a system of boundary value problems (in case of the method of lines), both en-
tailing non-negligible additional computational effort. In the present work, we will
therefore consider a space-time variational formulation for time-periodic problems.

Space-time variational formulations for initial value problems in particular in-
clude space-time multigrid methods [HV95], space-time sparse grids [And13, GO07]
or space-time wavelet collocation methods [AKV06]. Other space-time formu-
lations based on special test bases or discontinuous Galerkin methods are e.g.
[MV07, UP12, UP13]. These approaches exploit the space-time approach mainly
for theoretical considerations and allow the use of a time-stepping scheme – thus
effectively circumventing the main drawback of space-time methods, i.e., the addi-
tional dimension introduced by the temporal variable. However, optimality has not
yet been investigated in such a framework.

Here, we follow the approach proposed by [SS09], where a space-time adaptive
scheme using tensorized wavelet bases is proven to be optimal for initial value prob-
lems. In this setting, the partial differential equation is reformulated as an equiv-
alent non-symmetric bi-infinite matrix-vector problem of the form Bu = f and
is numerically approximated by employing an adaptive wavelet Galerkin method
(AWGM) to the corresponding normal equations. As opposed to standard algo-
rithms for time-periodic problems, the upshot of this approach is that time-periodic
boundary conditions can be incorporated into the underlying ansatz basis.

AWGMs may be described as follows, [CDD01, GHS07]: Consider a bi-infinite
linear system Cu = g in `2 with a symmetric positive definite (s.p.d.) stiffness
matrix C : `2 → `2, an infinite right-hand side g ∈ `2 and a unique solution u ∈ `2
which arises e.g. from the wavelet discretization of an elliptic operator problem. In
each iteration, these bi-infinite problems are approximated on a finite-dimensional
index set Λk steering the local refinement. This means that a finite vector uΛk

satisfying C|Λk×Λk
uΛk

= g|Λk
is computed. The (infinite-dimensional) residual

rΛk
:= g−CuΛk

is then approximated to serve as an error estimator and to identify
an update, i.e. an (usually refined) index set Λk+1 (typically Λk+1 corresponds to
the significant coefficients of rΛk

).
Space-time variational approaches to parabolic problems lead to non-symmetric

Petrov-Galerkin formulations and hence do not directly fit into this framework. In
particular, the bi-infinite associated stiffness matrix is no longer s.p.d. which is,
however, a crucial ingredient for the convergence analysis of AWGMs. Moreover,
the residual belonging to a test space which is not identical to the trial space does
not directly convey information for an update of the trial space. So, working with
the normal equations, i.e., with the s.p.d. operator C := B>B and right-hand side
g = B>f , is a natural approach for initial value problems (e.g. [CS11, SS09]) and,
as well we will show in this article, also for time-periodic problems.

The treatment of normal equations by adaptive wavelet methods has first been
discussed in [CDD02]. The main difficulty lies in the (approximate) evaluation of
B>B and B>f . There are several approaches in the literature that address these
issues. The techniques proposed in [CDD01] rely on so-called wavelet matrix com-
pression schemes, whereas [CS11, CS12] use special wavelet constructions leading
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to truly sparse matrices B. In the present work, we use another approach based
on multitree-structured index sets as introduced in [KS12, KS13]. This allows for
the exact application of B for wavelet discretizations of linear differential operators
with polynomial coefficients within linear complexity when the underlying wavelet
basis is of tensor product type. It basically consists of the so-called unidirectional
principle first introduced in sparse grid algorithms (e.g. [BG04, Zen91]) where co-
ordinate directions may be treated separately. The evaluation is then based on
multitree-structured index sets that permit a tree structure when all but one coor-
dinate directions are frozen.

We stress that, to the best of our knowledge, no quantitative results on the nu-
merical solution of parabolic operator problems using the multitree concept within
an AWGM are available. So far, only numerical results for elliptic operator problems
are presented in [KS12, KS13]. Even though we focus on time-periodic problems,
we expect that our results can be extended to non-periodic settings as well.

The outline of this article is as follows. In Section 2, we introduce parabolic
problems with periodic boundary conditions in time. The derivation of the equiv-
alent `2-problem by means of tensor product wavelet bases is explained in Section
3. Next, in Section 4, we define quasi-optimal algorithms showing what can be
expected in terms of convergence rates and computational work. Some details on
wavelet bases are then given in Section 5. In Section 6, we explain AWGMs for
elliptic problems and extend it to our parabolic problem. The realization and anal-
ysis of an efficient, multitree-based AWGM is then presented in Sections 7 and 8.
We underline our theoretical findings by numerical experiments in Section 9.

2. Time-periodic parabolic problems

Let Ω := Ω1 × · · · × Ωn ⊂ Rn be a product domain and V be a real separable
Hilbert space with dual V ′ such that V ↪→ H := L2(Ω) ↪→ V ′ is a Gelfand triple.
For A(t) ∈ L(V, V ′) and g ∈ L2(0, T ;V ′) we consider the time-periodic equation

(2.1) ut +A(t)[u(t)] = g(t) in V ′ for a.e. t ∈ [0, T ], u(0) = u(T ) in H.

Denoting by 〈·, ·〉V×V ′ the duality pairing on V ×V ′, we assume that t 7→ 〈v,A(t)[u]〉
is measurable on [0, T ] and that A(t) is uniformly coercive and bounded in time,
i.e., there exist 0 < α ≤ α(t), ∞ > γ ≥ γ(t) such that for a.e. t ∈ [0, T ]

(2.2) 〈v,A(t)[w]〉V×V ′ ≤ γ‖w‖V ‖v‖V , 〈v,A(t)[v]〉V×V ′ ≥ α‖v‖2V ∀ v, w ∈ V.
Moreover, we assume that the space V is a Sobolev space of nonnegative order

(2.3) V :=

n⋂
i=1

n⊗
j=1

Wij , where Wij :=

{
L2(Ωi), i 6= j,
V (i), i = j,

and, for a fixed m ∈ N, V (i) is either Hm(Ωi) or a subspace incorporating essential
boundary conditions. Note that several partial differential operators allow such a
structure. As an example, think of V = H1

0 (Ω) and V (i) = H1
0 (Ωi) (see [GO95]).

2.1. Space-time formulation. We derive a variational formulation where the
temporal periodicity can be integrated into the function spaces and is therefore
ultimately incorporated into the basis of a discrete approximation space. To this
end, we derive a space-time variational formulation: Defining

H1
per(0, T ) := {v ∈ H1(0, T ) : v(0) = v(T )},(2.4)
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we consider the spaces Y := L2(0, T ;V ) and X := L2(0, T ;V )∩H1
per(0, T ;V ′), i.e.,

X = {v ∈ L2(0, T ;V ) : vt ∈ L2(0, T ;V ′), v(0) = v(T ) in H},(2.5)

where X is equipped with the norm ‖v‖2X := ‖v‖2L2(0,T ;V ) + ‖vt‖2L2(0,T ;V ′), v ∈
X . Note that v(0), v(T ) are well-defined due to H1(0, T ) ⊂ C([0, T ]) and {v ∈
L2(0, T ;V ) : vt ∈ L2(0, T ;V ′)} ⊂ C(0, T ;H), e.g. [DL92]. By integration of (2.1)
over [0, T ], we obtain the problem:

Find u ∈ X : b(u, v) = f(v) ∀ v ∈ Y,(2.6)

with forms b(·, ·) : X × Y → R, f(·) : Y → R defined by, [SS09, (5.6)-(5.7)]

b(u, v) :=

∫ T

0

[〈v(t), ut(t) +A(t)[u]〉V×V ′dt, f(v) :=

∫ T

0

〈v(t), g(t)〉V×V ′dt.(2.7)

We define the space-time operator B ∈ L(X ,Y ′) by 〈v,B[u]〉 := b(u, v) with 〈·, ·〉 :=
〈·, ·〉Y×Y′ , so that (2.6) is a variational formulation of the operator equation:

(2.8) Find u ∈ X : B[u] = f, f ∈ Y ′.

2.2. Well-posedness. The well-posedness of a space-time formulation of (non-
periodic) initial value problems has been discussed in [SS09]. In Appendix A, we
verify the Babuška-Aziz conditions:

(i) Continuity : γB := sup06=u∈X sup06=v∈Y
b(u,v)

‖u‖X ‖v‖Y <∞.

(ii) Inf-sup condition: βB := inf0 6=u∈X sup0 6=v∈Y
b(u,v)

‖u‖X ‖v‖Y > 0.

(iii) Surjectivity: sup06=u∈X |b(u, v)| > 0 for all 0 6= v ∈ Y.

Proposition 2.1. Problem (2.6) is well-posed. In particular, B from (2.8) is bound-

edly invertible with ‖B‖ = γB =
√

2 max{1, γ}, ‖B−1‖ = 1
βB

=
√

2 max{1,α−1}
αmin{1,γ−2} .

3. Equivalent bi-infinite matrix-vector problem

We consider the reformulation of (2.8) as an equivalent `2-problem, i.e., a discrete
problem posed on the sequence space `2. This was first introduced in [CDD01,
CDD02] for stationary problems and extended to parabolic problems in [SS09].

3.1. Riesz bases. We recall that for a separable Hilbert space H of infinite dimen-
sion, a dense collection Υ := {γi : i ∈ N} ⊂ H is called a Riesz basis for H if there
exist constants c,C > 0 such that for v =

∑∞
i=1 viγi, it holds that

(3.1) c‖v‖2`2(N) ≤ ‖v‖
2
H ≤ C‖v‖2`2(N) ∀v = (vi)i∈N ∈ `2(N).

The largest c and the smallest C for which (3.1) holds, are referred to as lower and
upper Riesz constant and are denoted by cΥ(H) and CΥ(H), respectively.1

1Sometimes a different definition of Riesz constants is used, namely cΥ(H) and CΥ(H) being
the largest and the smallest constant such that cΥ(H)‖v‖`2(N) ≤ ‖v‖H ≤ CΥ(H)‖v‖`2(N).
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3.2. Wavelet discretization of the parabolic operator problem. Let us now
consider two different Riesz bases

(3.2) pΨX :=
{

pψXλ : λ ∈ pJ
}
⊂ X , qΨY :=

{
qψYλ : λ ∈ qJ

}
⊂ Y,

labeled w.r.t. two (possibly) different countable index sets pJ and qJ . More precisely,

we consider a trial basis pΨX for the ansatz space X and a test basis qΨY for the test

space Y with associated Riesz constants cX ( pΨX ), CX ( pΨX ) and cY( qΨY), CY( qΨY).

It is important to note that pΨX , qΨY arise from normalizing different Riesz bases
pΨ, qΨ, for L2((0, T ) ×Ω) w.r.t. ‖ · ‖X and ‖ · ‖Y (which is also the reason for our

notation, see Section 5). Then there exists a unique expansion u = u> pΨX of the

solution u of (2.8) where we formally interpret both u ∈ `2( pJ ) and pΨX as column
vectors. Now, the equivalent formulation of (2.8) reads as follows:

(3.3) Find u ∈ `2( pJ ) : Bu = f , f ∈ `2( qJ ),

where B :=
[
〈 qψYλ ,B[ pψXµ ]〉

]
λ∈ qJ ,µ∈ pJ =

[
b( pψXµ ,

qψYλ )
]
λ∈ qJ ,µ∈ pJ = 〈 qΨY ,B[ pΨX ]〉 is

the bi-infinite stiffness matrix and f =
[
〈 qψYλ , f〉

]
λ∈ qJ = 〈 qΨY , f〉 is the infinite

right-hand side. It is easy to see that (3.3) is well-posed. Since, f ∈ `2( qJ ) and

B ∈ L(X ,Y ′) is boundedly invertible, also B ∈ L(`2( pJ ), `2( qJ )) is boundedly
invertible. In particular, with ‖ · ‖ := ‖ · ‖`2→`2 (compare [SS09, (2.2) & (2.3)])

(3.4) ‖B‖ ≤ ‖B‖X→Y′ CX ( pΨX )
1
2 CY( qΨY)

1
2 , ‖B−1‖ ≤ ‖B−1‖Y′→X

cX ( pΨX )
1
2 cY( qΨY)

1
2

.

3.3. Further notations. We need to restrict the bi-infinite matrices B and B>

in both rows and columns. For a pair (Λ,J ) with J ∈ { pJ , qJ } and Λ ⊆ J , set

(3.5) EΛ : `2(Λ)→ `2(J ), and RΛ := E>Λ : `2(J )→ `2(Λ),

where EΛ is the trivial embedding, i.e., the extension of vΛ ∈ `2(Λ) by zeros to
`2(J ). Consequently, its adjoint RΛ is the restriction of v ∈ `2(J ) to v|Λ ∈ `2(Λ).

For pΛ ⊆ pJ and qΛ ⊆ qJ , we define the following restriction of B and B>:

(3.6)
qΛB

pΛ := R
qΛ B E

pΛ, B
pΛ :=

qJ B
pΛ, pΛB

qΛ
> := R

pΛ B>E
qΛ, pΛB> :=

qJ B
pΛ
>.

Finally, C . D means that C can be bounded by a constant times D and C & D
is defined as D . C. In this setting, C h D is defined as C . D and C & D.

4. Quasi-optimal algorithms for bi-infinite matrix-vector problems

We may now focus on the approximate solution of (3.3). To this end, we first
discuss what can be expected in terms of convergence rate and complexity.

4.1. Best N -term approximation. For a given number of degrees of freedom

(d.o.f.) N ∈ N, the best approximation vN of a function v = v> pΨX ∈ X in the

basis pΨX with N d.o.f. is a nonlinear, best N -term approximation (e.g. [DeV98]),
i.e., vN = arg σN (v), where the best N -term approximation error is defined as

σN (v) := inf
{ pΛ∈ pJ :# pΛ=N}

inf
{vN∈span{ pψXλ :λ∈ pΛ}}

‖v − vN ‖X .

Since pΨX is a Riesz basis, it holds that ‖v − vN ‖`2 h σN (v) where vN always
denotes an N -term approximation of the vector v (i.e., the N largest coefficients
in modulus of v). As described in [DeV98], it is meaningful to collect all vectors
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v ∈ `2( pJ ) that permit an approximation rate s > 0 in the sense that ‖v−vN ‖`2 .
N−s within the nonlinear approximation class (compare [Ste09, (2)]):

(4.1) As :=
{
v ∈ `2( pJ ) :‖v‖As :=sup

ε>0
ε·
[

min{N ∈ N0 :‖v−vN ‖`2( pJ ) ≤ ε}
]s
<∞

}
.

For a given v ∈ As and ε > 0, the required number of degrees of freedom Nε in

order to obtain ‖v − vNε‖`2 ≤ ε is bounded by Nε ≤ ε−1/s‖v‖1/sAs . It is important
to remark that this bound on Nε is usually sharp (see [Ste09, (3)]).

4.2. Quasi-optimal algorithms. Let us now assume that the solution u ∈ As
for some s > 0 and that we want to approximate it with a target tolerance ε > 0.
The benchmark is given by a best Nε-term approximation uNε

satisfying σNε
(u) =

‖u− uNε‖`2( pJ ) ≤ ε which is, however, in general not computable. So, we need to

focus on the computation of a quasi-optimal approximation uε:

(O1) Convergence rate: ‖u− uε‖`2( pJ ) ≤ ε and # supp uε . ε−1/s‖v‖1/sAs .

(O2) Computational work : The number of operations required for the compu-

tation of uε is of order O(ε−1/s‖u‖1/sAs ), i.e., for any ε > 0, uε can be

computed within linear complexity, recalling that Nε . ε−1/s‖u‖1/sAs .

In order to realize (O2), we require the wavelet bases pΨX and qΨY to be of tensor
product type which will be the topic of the next section.

5. Tensor product wavelet bases

Recall that X and Y can be characterized as follows (see [GO95]),

X h
[
L2(0, T )⊗ V

]
∩
[
H1

per(0, T )⊗ V ′
]
, Y h L2(0, T )⊗ V.(5.1)

Furthermore, by the definition of V in (2.3), the construction of pΨX and qΨY can
be obtained by tensorization of univariate wavelet bases.

5.1. Uniformly local, piecewise polynomial wavelet bases. Let us consider a
univariate Sobolev spaceH ∈ {H1

per(0, T ), V (1), . . . , V (n)} with V (i) ⊂ L2(Ωi) and a

univariate wavelet basis Ψ for L2(Ω) where Ω ⊂ R is either (0, T ) (ifH = H1
per(0, T ))

or Ωi (if H = V (i), recall Ωi ⊂ R, i.e., w.l.o.g. Ωi = (0, 1)),

(5.2) Ψ =
⋃
j∈N0

Ψj = {ψλ : λ = (j, k) ∈ J } ⊂ H,

as well as Ψj := {ψλ : λ ∈ Jj} and Jj := {λ ∈ J : |λ| = j}. Here, |λ| := j ≥ 0
denotes the level (steering the diameter of the support of ψj,k in the sense that
diam(suppψj,k) h 2−j) and k is a translation index indicating the position of
suppψj,k. Note that the elements of Ψ0 are not wavelets but scaling functions.
For details on wavelets on the interval, we refer e.g. to [Urb09]. By the Wavelet
Characterization Theorem [Dah97], if the elements of Ψ (and also those of the
unique dual wavelet basis) are sufficiently smooth, the properly normalized collec-
tions {ψλ/‖ψλ‖H : λ ∈ J }, {ψλ/‖ψλ‖H′ : λ ∈ J } are Riesz bases for the Sobolev
spaces H and H′, respectively. Besides that, we shall assume that Ψ is a uniformly
local, piecewise polynomial wavelet basis of order d ∈ N, i.e.:

(W1) Local supports: diam(suppψλ) h 2−|λ| for all λ ∈ J .
(W2) Level-wise finite number of overlaps: There exists C ∈ N independent of

j ∈ N0 such that supλ∈Jj
#{λ′ ∈ Jj : | suppψλ ∩ suppψλ′ | > 0} ≤ C.
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(W3) Piecewise polynomials: For all λ ∈ J , ψλ is a piecewise polynomial of

maximum degree d − 1 and has d̃ vanishing moments (except for scaling
functions and few boundary adapted wavelets).

Furthermore, we assume that the projection Qj [v] :=
∑
{λ∈J :|λ|<j} vλψλ for

v =
∑
λ∈J vλψλ satisfies the following Jackson estimates ‖Id−Qj‖Hd(Ω)∩H→L2(Ω) .

2−dj , ‖Id−Qj‖Hd(Ω)∩H→H . 2−(d−m)j , ‖Id−Qj‖Hd(Ω)∩H→H′ . 2−(d+m)j , where

m = 1 if H = H1
per(0, T ).

5.2. Temporal discretization. In order to ensure the periodic boundary condi-
tions in time (see (2.1)) in X we need a (univariate) periodic wavelet basis

(5.3) Θper :=
{
θper
λ : λ ∈ J per

t

}
⊂ H1

per(0, T )

being a uniformly local, piecewise polynomial wavelet basis of order dt ∈ N (the
index t stands for ‘time’) for L2(0, T ) with associated Riesz constants cL2

(Θper),
CL2

(Θper). We assume that the elements of Θper are sufficiently smooth so that
the properly normalized collection

{
θper
λ /‖θper

λ ‖H1 : λ ∈ J per
t

}
is a Riesz basis for

H1
per(0, T ) with constants cH1

per
(Θper), CH1

per
(Θper). Recall that the construction of

periodic wavelet bases is particularly easy, [Urb09]. For the temporal part of the
test space Y (involving also non-periodic functions), we consider a uniformly local,
piecewise polynomial wavelet basis for L2(0, T ),

(5.4) Θ :=
{
ϑλ : λ ∈ Jt

}
,

with Riesz constants cL2
(Θ), CL2

(Θ) and wavelets being not necessarily periodic.

5.3. Spatial discretization. For the spatial discretization, we use the fact that
Ω = Ω1×· · ·×Ωn is a product domain. Here, we shall use that V is the (intersection
of) tensor products of univariate Sobolev spaces (see (2.3)) with L2(Ω) ⊆ V and
L2(Ω) h L2(Ω1)⊗· · ·⊗L2(Ωn) (see, e.g., [GO95]). We assume that for i ∈ {1, . . . , n}
we are given univariate uniformly local, piecewise polynomial wavelet bases of order

dx ∈ N (the index x indicating the spatial variable) for L2(Ωi), Σ(i) := {σ(i)
λ : λ ∈

J (i)} ⊂ V (i). We require that these functions are sufficiently smooth so that

{σ(i)
λ /‖σ(i)

λ ‖V (i) : λ ∈ J (i)}, {σ(i)
λ /‖σ(i)

λ ‖V (i)′ : λ ∈ J (i)} are Riesz bases for V (i),

V (i)′ with constants cV (i)(Σ(i)), CV (i)(Σ(i)) and cV (i)′(Σ(i)), CV (i)′(Σ(i)). Now,

(5.5) Σ :=
{
σλ : λ ∈ Jx

}
:= Σ(1) ⊗ · · · ⊗ Σ(n)

is a Riesz basis for L2(Ω) where σλ := σ
(1)
λ1
⊗ · · · ⊗ σ(n)

λn
is a tensor product wavelet

and Jx := J (1) × · · · × J (n), [Dij09, Lemma 3.1.7]. Moreover,

(5.6) ΣV :=
{
σλ/‖σλ‖V : λ ∈ Jx

}
, ΣV ′ :=

{
σλ/‖σλ‖V ′ : λ ∈ Jx

}
are Riesz bases for V , V ′, [Dij09, Lemma 3.1.8]. The associated Riesz constants
will be denoted by cV (Σ), CV (Σ), cV ′(Σ) and CV ′(Σ).

5.4. Space-time discretization. We are now in the position to define the Riesz

wavelet bases pΨX and qΨY from (3.2). With L2(0, T ;L2(Ω)) h L2(0, T )⊗ L2(Ω),

pΨ :=
{

pψλ := θper
λt
⊗ σλx

: λ := (λt,λx) ∈ pJ := J per
t ×Jx

}
= Θper ⊗Σ,(5.7)

qΨ :=
{

qψλ := ϑλt
⊗ σλx

: λ := (λt,λx) ∈ qJ := Jt ×Jx
}

= Θ⊗Σ,(5.8)
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are both Riesz bases for L2(0, T ;L2(Ω)). At this point, we only need to normalize
the above Riesz bases appropriately (see [GO95, Propositions 1 & 2]) so that

pΨX :=
{

pψλ/‖ pψλ‖X : λ ∈ pJ
}

= DX pΨ, DX := diag
[(
‖ pψλ‖−1

X
)
λ∈ pJ

]
,(5.9)

qΨY :=
{

qψλ/‖ qψλ‖Y : λ ∈ qJ
}

= DY qΨ, DY := diag
[(
‖ qψλ‖−1

Y
)
λ∈ qJ

]
,(5.10)

are Riesz bases for X , respectively Y (compare [SS09, Section 6]).

Remark 5.1. We shall denote a tensor product wavelet basis Ψ ∈ { pΨ, qΨ} as follows:

Ψ = Ψ(0) ⊗Ψ(1) ⊗ · · · ⊗Ψ(n) =
{
ψλ := ψ

(0)
λ0
⊗ ψ(1)

λ1
⊗ · · · ⊗ ψ(n)

λn
: λ ∈ J

}
,

where λ = (λ0, λ1, . . . , λn) and J := J (0) ×J (1) × · · · × J (n). In this setting, it is
clear that Ψ(0) ∈ {Θper,Θ}, J (0) ∈ {J per

t ,Jt} and Ψ(i) = Σ(i) for i ∈ {1, . . . , n}.

5.5. Riesz constants for test and trial bases. For the implementation of an

AWGM, we need estimates for the Riesz constants cX ( pΨ), CX ( pΨ), cY( qΨ), CY( qΨ)
in (3.4). Again, we use that X and Y are (intersections of) tensor products of

Hilbert spaces. As in [SS09, §6], we have the following estimates for pΨX and qΨY

cX ( pΨ) ≥ min
{

cL2(Θper) · cV (Σ), cH1
per

(Θper) · cV ′(Σ)
}
,(5.11)

CX ( pΨ) ≤ min
{

CL2(Θper) · CV (Σ), CH1
per

(Θper) · CV ′(Σ)
}
,(5.12)

cY( qΨ) ≥ cL2(Θ) · cV (Σ), CY( qΨ) ≤ CL2(Θ) · CV (Σ).(5.13)

The Riesz constants cV (Σ), CV (Σ) can also be bounded by those of the 1D bases
Σ(i), i ∈ {1, . . . , n}. Using (2.3), it can be shown as in [DSS09, §2], that

cV (Σ) ≥ min
m∈{1,...,n}

min
{

cL2
(Σ(m)), cV (m)(Σ(m))

} ∏
k 6=m

cL2
(Σ(k)),(5.14)

CV (Σ) ≤ max
m∈{1,...,n}

max
{

CL2(Σ(m)),CV (m)(Σ(m))
} ∏
k 6=m

CL2(Σ(k)).(5.15)

Unfortunately, the same approach does not apply to the (dual) Riesz constants

cV ′(Σ), CV ′(Σ) of ΣV ′ in (5.6). However, one may consider Σ̃V being the unique

Riesz basis for V that is dual to ΣV ′ , i.e., 〈Σ̃V ,ΣV ′〉V×V ′ = Id. Denoting by cV (Σ̃),

CV (Σ̃) the associated Riesz constants, it can be shown that CV (Σ̃)−1 ≤ cV ′(Σ)

and CV ′(Σ) ≤ cV (Σ̃)−1. Observe that for computing bounds for cV (Σ̃), CV (Σ̃), we
may proceed as for bounding cV (Σ), CV (Σ). We conclude that for the computation
of the bounds in (5.11), (5.12) and (5.13), it is sufficient to compute bounds for
univariate Riesz constants which can be easily approximated (e.g. [Dij09, §2]).

Remark 5.2. Recalling the construction of wavelets, note that the numerical ap-

proximation of cV (Σ̃), CV (Σ̃) may be difficult since the the dual basis Σ̃V (and
their derivatives) may not be available in a closed form. If sharp bounds are needed,

one may use an L2(Ω)-orthonormal basis Σ so that Σ̃V = ΣV , e.g. multiwavelets.

5.6. Best approximation rates. We need to know for which values of s the

solution u of (3.3) is in As. More precisely, for a fixed trial basis pΨX , the question
is what is the largest value smax of s for which u ∈ As can be expected and that
cannot be increased by imposing higher smoothness conditions on u (excluding
special cases where u is (close to) a finite vector). This value smax is referred to
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as best possible approximation rate. For our setting, we may apply the results from

[SS09, §7.2]. With u = u> pΨX ∈ X ∩Hdt(0, T )⊗H dx(Ω) and the Sobolev space

H dx(Ω) :=

n⋂
i=1

n⊗
j=1

Zij , where Zij :=

{
L2(Ωi), i 6= j,
Hdx(Ωi), i = j,

of dominating mixed derivatives, the best possible rate is given by

(5.16) smax = min{dt − 1, dx −m}.

We recall that dt denotes the polynomial order of Θper and dx those of Σ(1), . . . ,Σ(n).
This rate does not depend on the spatial dimension n. Moreover, we remark that
u ∈ H dx(Ω) is sufficient but not necessary for obtaining the above rate. In fact,
the Sobolev space Hdt(0, T )⊗H dx(Ω) can be replaced by a (weaker) Besov space
of dominating mixed derivatives, [Nit06, SU09]. Note that the order of the wavelet
bases for the test space Y does not enter the best approximation rate.

6. Adaptive wavelet Galerkin methods

An infinite `2-problem (3.3) arising from a wavelet discretization of (2.8) can be
solved by an AWGM, e.g. [CDD01, GHS07]. We now first present the main idea
of an AWGM for the solution of an (for convenience) elliptic operator problem.
Secondly, we highlight the additional challenges related to parabolic problems and
indicate a possible way-out using normal equations.

6.1. Elliptic operator problems. Solely for explanation purposes, we consider
elliptic operator problems of the following type. For a linear, self-adjoint op-
erator C ∈ L(X ,X ′) induced by a continuous and coercive bilinear form (i.e.,
〈v, C[w]〉X×X ′ . ‖v‖X ‖w‖X , 〈v, C[v]〉X×X ′ & ‖v‖2X for all v, w ∈ X ), we consider:

(6.1) Find u ∈ X : C[u] = g, g ∈ X ′.

Analogously to (3.3), the equivalent `2-problem to this problem reads:

(6.2) Find u ∈ `2( pJ ) : Cu = g, g ∈ `2( pJ ),

where C = 〈 pΨX , C[ pΨX ]〉X×X ′ and g = 〈 pΨX , g〉X×X ′ with pΨX from (5.9). In the

elliptic case, i.e., X = Y and may use pΨX as trial and test basis. Furthermore, C
is s.p.d. and ||| · |||2 := 〈 · ,C · 〉`2( pJ )×`2( pJ ) defines an equivalent norm, [Ste09, p. 565]

(6.3) ‖C−1‖− 1
2 ‖v‖`2 ≤ |||v||| ≤ ‖C‖

1
2 ‖v‖`2 , ∀v ∈ `2( pJ ).

The idea of an AWGM for (6.2) is outlined in an (idealized) Algorithm 1, [Ste09,
p. 567]. Within this algorithm, we make some non-realistic assumptions, which
will be discussed below. Abandoning these assumptions will then give rise to the
realizable AWGM variants introduced in later sections. Starting from an initial

index set pΛ1 ⊂ pJ , a sequence of nested finite index sets (pΛk)k is computed. On

each such pΛk, a Galerkin problem is solved that yields the (finite) vector u
pΛk

. Due

to the Riesz basis property, it holds that (see also (3.1))

cX ( pΨ)
1
2 ‖u− u

pΛk
‖`2( pJ ) ≤ ‖u− u>

pΛk

pΨX ‖X ≤ CX ( pΨ)
1
2 ‖u− u

pΛk
‖`2( pJ ).
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Given u
pΛk

, the computation of the next pΛk+1 is based on the infinitely supported

residual g−Cu
pΛk
∈ `2( pJ ) and the error estimator ‖g−Cu

pΛk
‖`2( pJ ) which satisfies:

(6.4) ‖C‖−1‖g −Cu
pΛk
‖`2( pJ ) ≤ ‖u− u

pΛk
‖`2( pJ ) ≤ ‖C

−1‖‖g −Cu
pΛk
‖`2( pJ ).

This also explains the stopping criterion in line 4 of Algorithm 1. Consequently,
indices corresponding to the largest entries in the residual are added to Λk. This
so-called bulk-chasing process is steered by the parameter δ.

Algorithm 1 [uε] = IDEALIZED–AWGM[ε, Λ1]

Input: Target tolerance ε and an index set pΛ1 6= ∅.
Parameter: δ ∈ (0, κ(C)−

1
2 ).

1: for k = 1, 2, . . . do
2: Solve the Galerkin problem:

(6.5) Find u
pΛk
∈ `2(pΛk) :

pΛk
C

pΛk
u

pΛk
= g

pΛk
, g

pΛk
:= R

pΛk
g ∈ `2(pΛk).

3: Residual computation: Compute g −Cu
pΛk

and νk := ‖g −Cu
pΛk
‖`2 .

4: if νk ≤ ε/‖C−1‖ then return uε := u
pΛk

.

5: Bulk chasing criterion: Find smallest index set pΛk+1 ⊃ pΛk such that

(6.6) ‖R
pΛk+1

(g −Cu
pΛk

)‖`2( pΛk+1) ≥ δ‖g −Cu
pΛk
‖`2( pJ ).

6: end for

Proposition 6.1 ([Ste09, Proposition 4.1]). The iterates u
pΛk

produced by Algo-

rithm 1 satisfy |||u − u
pΛk
||| ≤ [1 − δ2κ(C)−1]k/2|||u|||. For the output uε it holds

‖u− uε‖`2( pJ ) ≤ ε. If u ∈ As for some s > 0, it also holds for Nk := #pΛk that

(6.7) ‖u− u
pΛk
‖`2( pJ ) . ‖u‖

1/s
As N−sk , # supp uε . ε−1/s‖u‖1/sAs .

Remark 6.2. Algorithm 1 cannot be implemented as the residual cannot be com-
puted exactly in general. Implementable versions are given in [CDD01, GHS07].
The algorithm in [CDD01] requires an additional thresholding and thus can be ex-
pected to be less efficient than [GHS07]. The adaptive wavelet method in [CDD02]
relies on an inexact Richardson iteration that is applied directly to (6.2) without
Galerkin projection. However, as shown in [GHS07], also this scheme can be ex-
pected to be less efficient than [GHS07]. Thus, we shall focus on [GHS07] here.

6.2. Parabolic problems. One may try to analyze IDEALIZED–AWGM for
Bu = f in (3.3). However, the generalization of the idealized scheme to (3.3) is
not trivial: (1) Symmetry and positive definiteness. Recall that B from (3.3) is not

s.p.d., so that 〈 · ,B · 〉`2( pJ )×`2( qJ ) is not an equivalent norm on `2( pJ ). However, the

availability of an equivalent energy norm as in (6.3) is crucial for the convergence
analysis of Algorithm 1 (see [Ste09, Proposition 4.1]). (2) Bulk chasing and residual

computation. It is not clear how to construct pΛk+1 from pΛk. In analogy to (6.4),

the residual f −Bu
pΛk
∈ `2( qJ ) with error estimator ‖f −Bu

pΛk
‖`2( qJ ) satisfies

(6.8) ‖B‖−1‖f −Bu
pΛk
‖`2( qJ ) ≤ ‖u− u

pΛk
‖`2( pJ ) ≤ ‖B

−1‖‖f −Bu
pΛk
‖`2( qJ ).
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But the residual is an element of `2( qJ ), qJ 6= pJ . Thus, we cannot compute pΛk

by selecting some contributions from the residual as in (6.6). (3) Petrov-Galerkin

problems. Since pΨX 6= qΨY , the (well-posed) Galerkin problem in line 5 of Algorithm
1 here becomes a Petrov -Galerkin problem. Hence the uniform well-posedness of
the finite-dimensional problems is no longer inherited from the infinite dimensional

problem (3.3) and has to be ensured for all pΛk.

Hence, we focus on the associated normal equations, as proposed in [CDD02]:

(6.9) Find u ∈ `2( pJ ) : B>Bu = B>f , B>f ∈ `2( pJ ).

Since B is boundedly invertible, the unique solution of (6.9) is also the unique
solution of (3.3) (see [CDD02, Thm. 7.1]). Indeed, (6.9) are the (infinite) normal
equations associated to the least squares problem (compare [CDD02, §7]) of finding

u ∈ `2( pJ ) such that u = argminv∈`2( pJ ) ‖Bv− f‖2
`2( qJ )

for given f ∈ `2( qJ ). We an-

ticipate that one does not expect the usually dramatic effect of a squared condition
number for B>B since B is wavelet-preconditioned, see below.

6.3. AWGMs for normal equations. Now we investigate if the reformulation of
(3.3) in terms of (6.9) addresses the issues mentioned in Section 6.2.
(1) Symmetry and positive definiteness. Obviously, B>B is symmetric. Moreover,
by (3.4), it is also positive definite and it holds that

(6.10) ‖B>B‖ ≤ ‖B‖2, ‖(B>B)−1‖ ≤ ‖B−1‖2,

hence κ(B>B) ≤ ‖B‖2‖B−1‖2. Thus, we consider Cu = g with C = B>B,
g = B>f and ||| · |||2 := 〈 · ,B>B · 〉 and use Algorithm 1.
(2) Bulk chasing and residual computation. Instead of considering the residual in

`2( qJ ), we now obtain B>(f −Bu
pΛk

) ∈ `2( pJ ) with error estimator ρk := ‖B>(f −
Bu

pΛk
)‖`2( pJ ). In analogy to (6.4) and (6.8), we infer that

(6.11) ‖B‖−2ρk ≤ ‖u− u
pΛk
‖`2( pJ ) ≤ ‖B

−1‖2ρk.

In this setting, the residual f−Bu
pΛk

from (6.8) is also referred to as primal residual

whereas B>(f − Bu
pΛk

) is called dual residual. Observe that this kind of residual
allows for a bulk chasing strategy as used in line 5 of IDEALIZED–AWGM.
(3) Well-posedness. With

pΛB> and B
pΛ defined in (3.6), we get (B>B)|

pΛ× pΛ =

pΛB>B
pΛ so that (6.5) for general pΛ ⊂ pJ with C = B>B now reads as follows:

(6.12) Find u
pΛ ∈ `2(pΛ) :

pΛB>B
pΛu

pΛ =
pΛB>f ,

pΛB>f ∈ `2(pΛ).

Observe that the unique solution u
pΛ = argminv

xΛ
∈`2( pΛ) ‖B pΛv

pΛ − f‖2
`2( qJ )

to (6.12)

can also be characterized as the solution of a least-squares problem. Moreover, the
Galerkin problem (6.12) is uniformly well-posed. Since B>B is s.p.d., we infer from

(6.10) that ‖
pΛB>B

pΛ‖ ≤ ‖B‖
2 as well as ‖(

pΛB>B
pΛ)−1‖ ≤ ‖B−1‖2 for all pΛ ⊆ pJ .

In particular, the condition number κ(
pΛB>B

pΛ) is bounded independently of pΛ.

Remark 6.3. Obviously, neither the residual in (6.11) nor the solution u
pΛk

of (6.12)
can be computed exactly since the involved matrices are of infinite dimension. In
order to obtain an implementable scheme, we work with an approximation w

pΛk
to

u
pΛk

and an approximate residual qrk to B>(f−Bu
pΛk

). This will be discussed next.
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7. An implementable space-time adaptive wavelet Galerkin method

Now we describe the quasi-optimal (in terms of (O1) and (O2)) AWGM for the
numerical solution of (6.9) and call it LS–AWGM (least squares adaptive wavelet
Galerkin method), see Algorithm 2. We first describe the required subroutines. We
assume that u ∈ As and denote by w

pΛ an approximate solution to (6.12).

(RES) Approximate residual: For a given relative tolerance 0 < ωls < 1, the output
pr of RESIDUAL[w

pΛ, ωls] should satisfy

(7.1) ‖B>(f −Bw
pΛ)− pr‖`2( pJ ) ≤ ωls · ν, ν := ‖pr‖`2( pJ ),

and the associated computational cost is of order O(#pΛ + ν−1/s‖u‖1/sAs ).

(GAL) Approximate Galerkin problem: For a given relative tolerance 0 < γls < 1,

the output w
pΛ of GALSOLVE[pΛ,w

pΛ, γls · ν] should satisfy

(7.2) ‖
pΛB>(f −B

pΛw
pΛ)‖`2( pΛ) ≤ γls · ν,

where ν is defined in (7.1) and the associated computational cost is of order

O(#pΛ + ν−1/s‖u‖1/sAs ). Moreover, we assume that we are given an initial
value w

pΛ satisfying ‖
pΛB>(f −B

pΛw
pΛ)‖`2( pΛ) ≤ (1 + γls) · ν.

(EXP) Approximate bulk chasing: For a given parameter 0 < δ < 1, the output
pΛ ⊂ pJ of EXPAND[pΛ,pr, δ] should satisfy

(7.3) pΛ ⊃ pΛ, ‖R
pΛ

pr‖`2( pΛ) ≥ δ‖pr‖`2( pJ ),

and, up to some absolute multiple, pΛ is minimal among all sets that satisfy

(7.3). The computational cost of this routine is of order O(#pΛ+# supppr).

Algorithm 2 [uε] = LS–AWGM[ε, pΛ1, ν0]

Input: Target tolerance ε, finite index set pΛ1 ⊂ pJ and tolerance ν0 h ‖B>f‖`2( pJ ).

Parameters: δ, ωls, γls with ωls ∈ (0, δ), δ+ωls

1−ωls
< κ(B>B)−

1
2 ,

γls ∈ (0, (1−ωls)(δ−ωls)
1+ωls

κ(B>B)−1).
1: Set w

pΛ0
:= 0.

2: for k = 1, 2, . . . do

3: w
pΛk

:= GALSOLVE[pΛk,w pΛk−1
, γls · νk−1].

4: prk := RESIDUAL[w
pΛk
, ωls] and set νk := ‖prk‖`2 .

5: if νk ≤ ε/‖B−1‖2 then return uε := w
pΛk

.

6: pΛk+1 := EXPAND[pΛk,prk, δ]
7: end for

In analogy to Proposition 6.1, we have the following result for LS–AWGM
which is a direct consequence of [Ste09, Proposition 4.2 & Theorem 4.1]:

Theorem 7.1 ([GHS07, Ste09]). Let the assumptions on (RES), (GAL) and
(EXP) and the requirements on δ, ωls, γls from Algorithm 2 hold. Then, the iter-
ates w

pΛk
produced by LS–AWGM satisfy |||u −w

pΛk
||| ≤ ρk/2|||u||| where ρ := 1 −
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( δ−ωls

1+ωls
)κ(B>B)−1+

γ2
ls

(1−ωls)2
κ(B>B) < 1 and the output uε satisifes ‖u−uε‖`2( pJ ) ≤

ε. If, moreover, u ∈ As for some s > 0, it holds for Nk := #pΛk that

(7.4) ‖u−w
pΛk
‖`2( pJ ) . ‖u‖

1/s
As N−sk , # supp uε . ε−1/s‖u‖1/sAs .

Note that a realization of EXPAND can easily be obtained by an approximate
sorting of pr and a subsequent thresholding (e.g. [Ste09, p. 569]). Possible realiza-
tions of the routines RESIDUAL and GALSOLVE that are based on so-called
APPLY-routines (i.e., an adaptive, column-wise approximation of B and B>) have
been discussed in [SS09, Ste09]. We shall focus on a multitree approach which has
been shown to outperform APPLY-based AWGMs in elliptic settings (see [KS13]).

8. A multitree implementation

8.1. Tree and multitree structured index sets. Let Ψ = {ψλ : λ ∈ J } be a
univariate uniformly local, piecewise polynomial wavelet basis as in (5.2).

Definition 8.1. A subset Λ ⊂ J is called a tree if for any λ ∈ Λ with |λ| > 0 it
holds that supp ψλ ⊂

⋃
µ∈Λ;|µ|=λ−1 supp ψµ.

It holds for all λ, µ ∈ Λ with |µ| = |λ| − 1 and | suppψλ ∩ suppψµ| > 0 that
Sµ ⊃ Sλ, where

(8.1) Sµ := {x ∈ Ω : dist(x, suppψµ) ≤ DΨ2−|µ|}, DΨ := sup
λ∈J

2|λ| diam(suppψλ).

Let us now consider a tensor product wavelet basis Ψ = {ψλ : λ ∈ J } ∈ { pΨ, qΨ}
with pΨ and qΨ as in (5.7) and (5.8). The extension of Definition 8.1 then reads:

Definition 8.2 ([KS12]). An index set Λ ∈ J is called a multitree if for all
i ∈ {0, . . . , n} and all indices µj ∈ J (j) for j 6= i, the index set

(8.2) Λ(i) := {λi ∈ J (i) : (µ0, . . . , µi−1, λi, µi+1, . . . , µn) ∈ Λ} ⊂ J (i)

is either the empty set or a tree in the sense of Definition 8.1.

Loosely speaking, a multitree Λ ∈ J is “when frozen in any n coordinate direc-
tions, a tree in the remaining coordinate” (see [KS13, §3.1]).

Remark 8.3. Note that quasi-optimality of LS–AWGM is maintained if pΛk are
required to be multitrees (cf. [KS13]). The only modification is to replace the
unconstrained nonlinear approximation space As (see (4.1)) by the constrained

approximation space Asmtree := {v ∈ `2( pJ ) : ‖v‖As
mtree

< ∞}, where ‖v‖As
mtree

:=

supε>0 ε ·
[

min{N ∈ N0 : ‖v − vN ‖`2( pJ ) ≤ ε ∧ supp vN is a multitree}
]s

. This

means we only allow those vN that are supported on a multitree.

The reason for using trees and multitrees for solving linear operator equations
instead of arbitrary index sets lies in the much more efficient evaluation of system
matrices which we explain next. Moreover, tree and multitree-structured index sets
are crucial ingredients for the evaluation of non-linearities in both tensor product
settings (e.g. [SS11]) and non-tensor product settings (e.g. [CDD03]).
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8.2. Fast evaluation of tensor product system matrices. We assume that for

some M ∈ N, there exist univariate bilinear forms b
(i)
m such that

(8.3) B = DY
[ M∑
m=1

n∏
i=0

b(i)m (pΨ(i), qΨ(i))
]
DX = DY

[ M∑
m=1

n⊗
i=0

~B(i)
m

]
DX ,

where ~B
(i)
m := b

(i)
m (pΨ(i), qΨ(i)) for i = 0, . . . , n and m = 1, . . . ,M . This means that B

is a preconditioned sum of tensor product bilinear forms. As we shall see below, this
form holds true for a large class of operators. Moreover, we shall always assume

that b
(i)
m are local in the sense that b

(i)
m (w, v) = 0 whenever | supp v ∩ suppw| =

0. The special structure of B can be used to efficiently realize the application

of
qΛB

pΛ to a vector v
pΛ ∈ `2(pΛ) for finite multitrees pΛ ∈ pJ and qΛ ∈ qJ . As

described in [KS12], this can be realized in linear complexity, i.e., O(#pΛ + #qΛ)
by using a separation of

qΛB
pΛ into unidirectional operations and an efficient tree-

based application of unidirectional operations. These principles are also known
from sparse grid algorithms (see, e.g., [Zen91, BG04]).

We recall the Kronecker product of two general (possible bi-infinite) matrices
~A(1), ~A(2) and identity matrices ~Id(1), ~Id(2) of appropriate dimension:

(8.4) ~A(1) ⊗ ~A(2) =
[
~A(1) ⊗ ~Id(2)

]
◦
[
Id(1) ⊗ ~A(2)

]
=
[
~Id(1) ⊗ ~A(2)

]
◦
[
~A(1) ⊗ ~Id(2)

]
.

Then we split ~B
(i)
m = ~L

(i)
m + ~U

(i)
m into a (stricly) lower ~L

(i)
m :=

[
( ~B

(i)
m )λ,µ]|λ|>|µ|

and an upper triangular matrix ~U
(i)
m :=

[
( ~B

(i)
m )λ,µ]|λ|≤|µ|. With (8.4), it can then

be shown that there exist multitrees Ξ and Ξ such that we have the following
equivalent representation of

qΛB
pΛ,

DY
[ M∑
m=1

R
qΛ

[
~Id(0) ⊗ ~B(1)

m ⊗ · · · ⊗ ~B(n)
m

]
EΠ︸ ︷︷ ︸

=:(I)

◦RΠ

[
~U (0)
m ⊗ ~Id(1) ⊗ · · · ⊗ ~Id(n)

]
E

pΛ︸ ︷︷ ︸
=:(II)

+

M∑
m=1

R
qΛ

[
~L(0)
m ⊗ ~Id(1) ⊗ · · · ⊗ ~Id(n)

]
EΠ︸ ︷︷ ︸

=:(III)

◦RΠ

[
~Id(0) ⊗ ~B(1)

m ⊗ · · · ⊗ ~B(n)
m

]
E

pΛ︸ ︷︷ ︸
=:(IV)

]
DX .

It holds #Ξ+#Ξ . #qΛ+#pΛ. The application of (II), (III) (and (I), (IV) for n = 1)
is referred to as unidirectional operation as only the application of the univariate

matrices ~L
(0)
m |

qΛ(0)×pΛ(0) , ~U
(0)
m |

qΛ(0)×pΛ(0) and ~B
(1)
m |

qΛ(1)×pΛ(1) (n = 1) is required. Due to
the tree structure, these tasks can be realized in linear complexity despite the fact

that neither of the matrices ~L
(0)
m , ~U

(0)
m or ~B

(1)
m is sparse in general (see [KS12, §2]).

For n > 2, the remaining parts (I) and (IV) can be treated recursively by applying

the same procedure to ~B
(1)
m ⊗ · · · ⊗ ~B

(n)
m .

Theorem 8.4 ([KS12, Theorem 3.1]). Let A be a linear differential operator with

polynomial coefficients and let pΛ ⊂ pJ , qΛ ∈ qJ be multitrees. Then, for any v
pΛ ∈

`2(pΛ), the product
qΛB

pΛv
pΛ can be computed in O(#pΛ + #qΛ) operations.

Remark 8.5. If A is a linear differential operator with polynomial coefficients, B
has the form (8.3). Furthermore, all matrices can be applied in linear complexity

if pΛ(i) and qΛ(i) are trees (cf. [KS12, §2]).
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8.3. RESIDUAL: Multitree residual approximation. We need to approxi-
mate the residual B>(f −Bw

pΛ) by a residual of type
pΞB

qΞ
> (f

qΞ − qΞB
pΛw

pΛ

)
.

8.3.1. Primal residual. We first recall the approximation of the primal residual.

Theorem 8.6 ([KS13]). Let 0 < ω < 1, let A be a differential operator with
polynomial coefficients and let u ∈ Asmtree for some s > 0. Then, for all finite

multitrees pΛ ⊂ pJ and all w
pΛ ∈ `2(pΛ), there exists a multitree qΞ = qΞ(pΛ, ω) ⊂ qJ

such that #qΞ . #pΛ + ν−1/s with ν := ‖qr‖`2( qJ ), f
qΞ := R

qΞf and

(8.5) ‖(f −Bw
pΛ)− qr‖`2( qJ ) ≤ ω‖qr‖`2( qJ ), qr := f

qΞ − qΞB
pΛw

pΛ.

Remark 8.7. Due to the multitree structure of pΛ and qΞ, the computational cost for

computing qr isO(#pΛ+ν−1/s) if an entry fλ of f = (fλ)λ∈ qJ can be computed exactly

at unit cost, which is e.g. the case if f is a (piecewise) polynomial. If this assumption
is not met, replace f by some fε with ‖f − fε‖`2( qJ ) ≤ ε and # supp fε . ε−1/s which

is possible if f is sufficiently (piecewise) smooth (see [KS13, §3.4]).

8.3.2. Dual residual. We may now follow [KS13, §1.1] using a wavelet compression
of B and B>. If A is a linear differential operator with polynomial coefficients, it

can be shown that for any 0 < η < 1, there exists Bη : `2( pJ )→ `2( qJ ) such that

(8.6) ‖B−Bη‖ ≤ η, ‖B> −B>η ‖ ≤ η,

where the number of nonzeros in each row and each column of Bη are of order

O(η−1/s∗) for some s∗ > smax, (5.16). This means that B is s∗-admissible (see
[SS09]). Assuming that η is chosen sufficiently small so that Bη and B>η are bound-
edly invertible, we obtain the estimate (see Proposition B.2)

(8.7) ‖B>(f −Bw
pΛ)−B>η qr‖`2( pJ ) ≤ ωls‖B>η qr‖`2( pJ ),

for ωls = (η 1
1−ω + (‖B‖ + η)ω)‖B−1

η ‖ so that ωls → 0 as ω → 0 and η → 0. Even

though Bη and B>η are sparse (for fixed η), the application of these matrices to
finite vectors can be computationally expensive since the product structure of B
in (8.3) cannot be exploited. Unfortunately, the approximate residual B>η qr is not
necessarily supported on a multitree. Hence, we define the multitree-based residual

(8.8) pr :=
pΞB

qΞ
> (f

qΞ − qΞB
pΛw

pΛ

)
=

pΞB
qΞ
>

qr

such that ‖B>(f −Bw
pΛ)−pr‖`2( pJ ) ≤ ωls‖pr‖`2( pJ ) where pΞ is the smallest multitree

containing supp B>η qr. The residual computation requires O(#pΞ + #qΞ) operations.

Remark 8.8. Theorem 8.6 only ensures the existence of an appropriate multitree qΞ
but does not give any information on its explicit construction. The same holds true

for pΞ. In Section 8.5, we will discuss how we can construct the multitrees qΞ and pΞ
without setting up the compressed matrix B>η so that pr from (8.8) satisfies (RES).

Furthermore, numerical experiments in Section 9 indicate appropriate choices of qΞ

and pΞ with preferably small cardinalities and optimal balancing of the error arising
from the approximations of the primal (see (8.5)) and dual residual (see (8.7)).
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8.4. GALSOLVE: Multitree solution of finite-dimensional least squares
problems. Concerning the numerical solution of the least squares problem (6.9),
the approach proposed in [Ste09, SS09] consists of replacing

pΛB>B
pΛ by a sparse

approximation
pΛ[B>η Bη]

pΛ := R
pΛ[B>η Bη]E

pΛ satisfying ‖
pΛB>B

pΛ − pΛ[B>η Bη]
pΛ‖ .

η. In analogy to (6.9), we consider:

(8.9) Find uη, pΛ ∈ `2(pΛ) :
pΛ[B>η Bη]

pΛuη, pΛ = R
pΛB>η f

qΛ.

Indeed, under the assumption that η is sufficiently small, κ(
pΛ[B>η Bη]

pΛ) is bounded

independently of pΛ (see Appendix B). In particular, there exist algorithms based on
linear iterative solvers like the conjugate gradient (cg) method that approximate
(8.9) such that ‖u

pΛ − uη, pΛ‖`2( pΛ)‖ . η and (GAL) is satisfied. Similar to the

residual approximation, the disadvantage of this approach is that we cannot use
the fast matrix-vector multiplication w.r.t. multitrees. To this end, we intend to
compute w

pΛ as an approximate solution of the problem:

(8.10) Find x
pΛ ∈ `2(pΛ) :

pΛB
qΛ
>

qΛB
pΛx

pΛ =
pΛB

qΛ
>f

qΛ.

We could choose qΛ as the smallest multitree that contains supp Bηv pΛ for all v
pΛ ∈

`2(pΛ). However, this is not an implementable approach. Hence, we are concerned

with the question how the multitree qΛ can be constructed in dependency of pΛ such
that (1) the condition number of

pΛB
qΛ
> is uniformly bounded and (2) an approximate

solution w
pΛ to (8.10) satisfies (GAL). This will be discussed in Sections 8.5 and

9. For fixed multitrees, the solution of (8.10) can be computed e.g. with cg.

8.5. Choice of index sets. The expansion pΛk → pΛk+1 of the trial sets in Al-
gorithm 2 is based upon the residual prk, but it is so not clear how to construct

appropriate test sets qΛk = qΛk(pΛk). Similarly for the auxiliary sets pΞk and qΞk re-

quired for (8.8): While the construction of the test sets qΞk for the primal residual
in a Galerkin setting has been investigated in [KS13], there are so far no results for

good choices of qΞk and pΞk within a Petrov-Galerkin framework.

Choice of test sets qΛk. For a given index set pΛk ∈ pJ , we have to ensure that the

finite-dimensional test set qΛk ∈ qJ is large enough to ensure well-posedness. At the

same time, for efficiency we would like to choose qΛk ∈ qJ as small as possible. We

describe a corresponding iteration. As initial sets pΛ0, qΛ0, we follow [And13, §6.2]

pΛ0 = pΛSG,J := {λ ∈ pJ : |λ| ≤ J},(8.11)

qΛ0 = qΛSG,J := {λ ∈ qJ : |λ| ≤ J or |λ0| = J + 1, |λi| = 0, 1 ≤ i ≤ n},(8.12)

where |λ| :=
∑n
i=0 |λi|.

2 Such bases are provably stable, however, this only holds
true for uniform (full or sparse) discretizations. In later iterations, i.e. for adap-

tively constructed trial sets pΛk, k > 0, we propose the following (heuristic) choices:

(i) qΛFull = FullStableExpansion(pΛ, `) is defined as

qΛFull:=
{
λ ∈ qJ : ∃µ ∈ pΛ s.t. for all j = 0, . . . , n : |λj | ≤ |µj |+ `(8.13)

and dist
(
supp qψ

(j)
λj
, supp pψ(j)

µj

)
≤ D

qΨ(j)2
−|λj |

}
.

2We will also use pΛSG,J and qΛSG,J within a uniform sparse grid (SG) discretization.
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(ii) qΛRed = ReducedStableExpansion(pΛ, `) is a subset of qΛFull defined as

qΛRed :=

n⋃
i=0

{
λ ∈ qJ : ∃µ ∈ pΛ s.t. for all j = 0, . . . , n : |λj | ≤ |µj |+ δi,j `(8.14)

and dist
(
supp qψ

(j)
λj
, supp pψ(j)

µj

)
≤ D

qΨ(j)2
−|λj |

}
.

(iii) qΛTemp = TemporalStableExpansion(pΛ, `): consists of only temporal
higher level extensions, i.e.,

qΛTemp :=
{
λ ∈ qJ : ∃µ ∈ pΛ s.t. for all j = 0, . . . , n : |λj | ≤ |µj |+ δ0,j `(8.15)

and dist
(
supp qψ

(j)
λj
, supp pψ(j)

µj

)
≤ D

qΨ(j)2
−|λj |

}
.

We refer to [KS13, Prop. 2] for a proof that the above index sets are indeed
multitrees. An algorithmic realization is shown in Algorithm 3.

Algorithm 3 [qΛ] = FullStableExpansion[pΛ, `]

Input: Finite index set pΛ ⊂ pJ , expansion level ` ∈ N.

1: qΛ := ∅ ⊂ qJ .
2: for λ = (λ0, . . . , λn) ∈ pΛ do

3: Find all “neighbours” µ = (µ0, . . . , µn) ∈ qJ on the same level:
qΛ← qΛ ∪ {µ ∈ qJ : |µi| = |λi|, supp qψµi

∩ supp pψλi
6= 0 ∀ i = 0, . . . , n}.

4: Find all “neighbours” µ̃ = (µ̃1, . . . , µ̃n) ∈ qJ on the ` higher levels:
qΛ← qΛ ∪ {µ̃ ∈ qJ : |µ̃i| = |λi|+ j, 1 ≤ j ≤ `, supp qψµ̃i ∩ supp pψλi 6= 0

∀ i = 0, . . . , n}.
5: Complete qΛ to form a multitree in the sense of Definition 8.2.
6: end for

Choice of sets pΞk, qΞk. The proposed index set reads

pΞk = ReducedMultiTreeCone(pΛ, `)

:=

n⋃
i=0

{
λ ∈ pJ : ∃µ ∈ pΛk s.t. for all j = 0, . . . , n : |λj | ≤ |µj |+ δi,j `(8.16)

and dist
(
supp pψ

(j)
λj
, supp pψ(j)

µj

)
≤ D

pΨ(j)2
−|λj |

}
It was shown in [KS12, KS13] that this index set for ` = 1 and the analogously

defined FullMultiTreeCone(pΛ, 1) are adequate choices for an accurate approxi-

mation of the primal residual in the Galerkin setting, where pΨX = qΨY , pΞ = qΞ.
In our Petrov-Galerkin setting, we combine the multitree cone extension with

the expansions (8.13)-(8.15). More precisely, we consider the two variants Full-
ResConstruction and OptimResConstruction, see Figure 1. For the primal

residual (i.e., in Y), we expand pΛk to pΞtmp
k = ReducedMultiTreeCone

(
pΛk, `

)
and obtain the desired qΞk by one of the expansion variants in (8.13)-(8.15). For
the dual residual (in X ), we consider two approaches. In the first one, shown in

Fig. 1(a), we take the set qΞk as above and set pΞk = FullStableExpansion
(

qΞk, `
)

(with obvious inverted roles of primal and dual basis). Then, pΞk is the smallest
multitree containing supp B>η qrk for sufficiently small η. The second approach uses

the by far smaller set pΞk = pΞtmp
k as indicated in Fig. 1(b), [KS13].



18 SEBASTIAN KESTLER, KRISTINA STEIH, AND KARSTEN URBAN

pΛk ⊂X : pΞtmp
k

(8.16)

qΞk

pΞk

Y:

(8.13)-(8.15) (8.13)

(a) FullResConstruction

pΛkX : ⊂ pΞtmp
k =: pΞk

(8.16)

qΞkY:

(8.13)-(8.15)

(b) OptimResConstruction

Figure 1. Constructions of index sets pΞk, qΞk for residual approximation.

9. Numerical Experiments

We report numerical examples for time-periodic problems of type (2.1). We focus
on the stability of the arising normal equations (8.10) in view of different choices for
qΛk. Moreover, we numerically investigate the quantitative behavior of approximate
primal and dual residuals in view of Remark 8.8. It is sufficient to consider the case
n = 1 (so that Ω = (0, 1)), since we employ an L2(0, 1)-orthonormal (multi-)wavelet
basis Σ = Σ (see (5.5)) as in [Rup13], with dx = 2 and homogeneous boundary
conditions. In this case, the Riesz constants in (5.14), (5.15) are independent of
n. In particular, the condition numbers of B>B and of

pΛB
qΛ
>

qΛB
pΛ do not depend

on n so that the 1D case gives all relevant information. In [KS13], it was shown
numerically that the asymptotic behavior of the multitree-based residual only differs
by a constant depending on n from the unconstrained case.

We choose Θper (see (5.3)) as a collection of bi-orthogonal B-spline wavelets of

order dt = d̃t = 2 on the real line, periodized onto [0, T ], [Urb09]. For Θ (see (5.4)),

we choose bi-orthogonal B-spline wavelets from [Dij09] with dt = d̃t = 2. As further
parameters for the LS-AWGM we choose δ = 0.73, γls = 0.01 and, if not indicated
differently, ` = 1 for the stable extensions from Section 8.5. We obtain qualitatively
similar results for choosing Σ as in [Dij09] for dx = d̃x = 2 even though they do not
satisfy our assumptions.4

We also compare the LS–AWGM to a (uniform) sparse grid approach (SG),
i.e., to computing the solutions on a sequence of uniform finite-dimensional sets
pΛSG,J , qΛSG,J , J = 0, 1, . . . , as in (8.11), (8.12), e.g. [Zen91, BG04].

9.1. Heat Equation. We consider the 1D-inhomogeneous heat equation
ut − uxx = f(t, x) on Ω = (0, 1),

u(t, 0) = u(t, 1) for all t ∈ [0, T ],

u(0, x) = u(T, x) on Ω,
T

t

1

K

f(t)

with a discontinuous source function f(t, x) ≡ f(t) := K
(
Nt
T − b

Nt
T c
)
, N ∈ N,

K ∈ R+. Our figures correspond to the choice N = 3, K = 1.
Starting with the optimized residual (as in Fig. 1(b)) and the full stable expan-

sions as in (8.13), we investigate the convergence of the adaptive algorithm and the
stability of the finite-dimensional systems (8.10). The norms of primal and dual

3We have chosen a larger value for δ than required by Algorithm 2 for efficiency reasons.
4Note that these bases cannot be normalized to be a Riesz basis of H−1(Ω).
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residuals are shown in Figure 2(a) for AWGM and SG. As expected, LS–AWGM
reaches the optimal rate smax = d − 1 = 1, whereas uniform SG suffers from the
lack of smoothness of the solution. We observe in Figure 2(b) that the iteration
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SG ‖prk‖
SG ‖qrk‖

(a) Residual convergence
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(b) Iteration numbers
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(c) Test set sizes

Figure 2. Heat Equation Example: Comparison of LS–AWGM
(AWGM) and Sparse Grids (SG).

numbers for the least squares cg method in each LS–AWGM-iteration stabilize at
about 150 iterations in both approaches. This indicates that the choice of test sets
qΛk = qΛFull yields stability. Figure 2(c) shows the cardinalities of the test sets. They

grow only linearly with #pΛk, so that both w
pΛk

and prk can be computed within

linear complexity in each iteration (cf. (GAL), (RES)). These results are based

102 103 104 105

10−4

10−3

10−2

10−1

Nk = #pΛk

Optim Constr ‖prk‖
Full Constr ‖prk‖

(a) Convergence of dual residual

102 103 104 105
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105
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Nk = #pΛk

Optim Constr #pΞk

Full Constr #pΞk

(b) Index set sizes #pΞk

Figure 3. Heat Equation Example: Comparison of Residual Constructions

on OptimResConstruction for pΞk. In Figure 3 FullResConstruction is used.

As pΞk hardly impacts qrk, we monitor only the dual residual. Since using a larger
index set, ‖prk‖`2( pJ ) is slightly increased (as expected), but it exhibits the same

behaviour as OptimResConstruction (Fig. 3(a)). This marginal improvement

comes at a high cost, #pΞk is 40-50 times larger, see Fig. 3(b).
Finally, in Figure 4, we compare the stable expansion types (Full, Reduced,

Temporal). We find no discernible differences in the residual (Fig. 4(a)) and only a
very slight increase in the iteration numbers in GALSOLVE (Fig. 4(b)). It seems

that choosing qΞk = TemporalStableExpansion(pΞtmp
k , 1) yields results that are

comparable to the other extensions, which could not be deduced from [KS12, KS13].
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Figure 4. Heat Equation Example: Comparison of Stable Expansions

All three methods seem stable, and we can reduce the size of the test sets by a factor

of about 3.4 for qΛk (and likewise by 2.5 for qΞk).

9.2. Convection-Diffusion-Reaction Equation. As a second example, we con-
sider the convection-diffusion-reaction (CDR) equation

ut − uxx + ux + u = f(t, x) on Ω = (0, 1),

u(t, 0) = u(t, 1) for all t ∈ [0, T ],

u(0, x) = u(T, x) = 0 on Ω,

for a f(t, x) that yields u(t, x) = e−1000(x−(0.5+0.25 sin(2πt)))2 , see Figure 5(a). Note
that u is infinitely smooth but exhibits large gradients in non axis-aligned directions.
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(a) Solution u(t, x) of the CDR example
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(b) Support centres of basis functions in
pΛk for k = 12 (# pΛ12 = 9445).

Figure 5. CDR Example: Solution and adaptive refinement

The support centers (i.e., the centers of supp pψλ, λ ∈ pΛk) in Figure 5(b) in-
dicate that the AWGM benefits from its ability to refine not only independently
in each dimension, but in particular locally in the full space-time domain. This
is also mirrored in Figure 6(a), where we observe the optimal smax = 1 for the
LS–AWGM, and a stable number of inner iterations (Fig. 6(b)), employing the

optimized construction of pΞk and only temporal stable expansions for qΛk, qΞk. The
smoothness of the solution allows for a convergence rate close to 1 for the sparse
grid approach, however, the asymptotic regime and comparable residual norms are
only reached for index sets that are over a magnitude larger.
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Figure 6. CDR Example: Convergence and stability of LS-
AWGM (AWGM) and Sparse Grids (SG)
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Figure 7. CDR Example: Comparison of different index set constructions.

Finally, we compare the above AWGM results with those obtained for larger sets,

i.e., using full stable expansions and the FullResConstruction for pΞk. As before,

we see in Figures 7(a), 7(b) that we can reduce the size of the test sets qΛk, qΞk by

factors 2 to 3 without losing accuracy. Likewise, the full construction of pΞk yields
index sets that are approximately 20 times as large as for the optimized version (cf.
Fig. 7(c)), with only a slight improvement in the residual approximation.

Appendix A. Proof of Proposition 2.1

We follow [SS09] to verify the Babuška-Aziz conditions in a time-periodic setting.
(1) Continuity. Follows from (2.2), the definitions of ‖·‖X , ‖·‖Y as well as Cauchy-
Schwarz’s, Hölder’s and Young’s inequalities.
(2) Inf-sup condition. We consider an arbitrary 0 6= w ∈ X and define zw(t) :=

(A(t)∗)
−1
ẇ(t) for the adjoint A(t)∗ of A(t). The bound ‖(A(t)∗)−1‖ ≤ α−1

then yields for vw(t) := zw(t) + w(t) that ‖vw‖Y ≤
√

2 max{1, α−1}‖w‖X < ∞.
By definition of zw and (2.2), 〈zw(t), ẇ(t)〉V×V ′ = 〈zw(t),A(t)[zw(t)]〉V×V ′ ≥
α‖zw(t)‖2V ≥ α

γ2 ‖ẇ(t)‖2V ′ . Since w ∈ X is periodic, we have
∫ T

0
〈w, ẇ〉V×V ′ +

〈zw,A(t)[w]〉V×V ′dt =
∫ T

0
〈w, ẇ〉V×V ′ +

∫ T
0
〈ẇ, w〉V×V ′ =

∫ T
0

d
dt‖w(t)‖2Hdt

= ‖w(T )‖2H−‖w(0)‖2H = 0, so that we finally get b(w, vw) ≥ αmin{1, γ−2}‖w‖2X ≥
αmin{1,γ−2}√
2 max{1,α−1}‖w‖X ‖vw‖Y > 0.
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(3) Surjectivity . Let 0 6= v ∈ Y. We aim to construct z ∈ X with 〈w(t), ż(t)〉V×V ′+
〈w(t),A(t)[z(t)]〉V×V ′ = 〈w(t),A(t)[v(t)]〉V×V ′ for all w ∈ Y, and t a.e. on (0, T ),

as then b(z, v) =
∫ T

0
〈v(t),A(t)[v(t)]〉V×V ′ ≥ α‖v‖2Y > 0, so that the surjectivity

condition is fulfilled.
(i) Faedo-Galerkin approximation of an initial value problem. Let {φi : i ∈ N} be a

basis for V , Vn := span{φi, i = 1, . . . , n}, zn(t) :=
∑n
i=1 z

(n)
i (t)φi. Then the linear

system of ODEs 〈wn, żn(t)〉V×V ′ + 〈wn,A(t)[zn(t)]〉V×V ′ = 〈wn,A(t)[v(t)]〉V×V ′ ,
zn(0) = zn0, has a solution zn ∈ C(0, T ;Vn) with żn ∈ L2(0, T ;Vn) for all wn ∈ Vn
a.e. on I and for (arbitrary) z0 ∈ H and its orthogonal projection zn0 onto Vn.
(ii) A-priori estimates. (i), (2.2) and Young’s inequality with some ε < α

γ yield

1

2

d

dt
‖zn(t)‖2H + α‖zn(t)‖2V ≤ γε‖zn(t)‖2V +

γ

4ε
‖v(t)‖2V(A.1)

and hence by integration over [0, s], s ∈ [0, T ], using (α− γε) > 0 that ‖zn(s)‖2H −
‖zn(0)‖2H =

∫ s
0

d
dt‖zn(t)‖2Hdt ≤

γ
2ε

∫ s
0
‖v(t)‖2V dt, so that sups∈[0,T ]‖zn(s)‖2H < ∞

and {zn}n∈N is uniformly bounded in L∞(0, T ;H). Similarly, we can conclude that
2(α − γε)‖zn‖Y ≤ ‖zn(0)‖2H − ‖zn(T )‖2H + γ

2ε‖v‖
2
Y < ∞, so that {zn}n∈N is also

uniformly bounded in Y.

(iii) Periodicity. Abbreviate c̄ := γ
4ε , ᾱ := 2 (α−γε)

c1
> 0 with c1 := supφ∈V

‖φ‖V
‖φ‖H and

multiply (A.1) by eᾱt. Then d
dt

(
eᾱt ‖zn(t)‖2H

)
= eᾱt ddt‖zn(t)‖2H + eᾱtᾱ ‖zn(t)‖2H ≤

eᾱtc̄ ‖v(t)‖2V and by integration over [0, T ], we obtain

(A.2) ‖zn(T )‖2H ≤ e−ᾱT ‖zn(0)‖2H + c̄ e−ᾱT
∫ T

0

eᾱt‖v(t)‖2V dt.

Set M := {z ∈ Vn : ‖z‖H ≤ R := K
1
2 (1− e−ᾱT )−

1
2 }, K := c̄e−ᾱT

∫ T
0
eᾱt‖v(t)‖2V dt.

The set M is convex and compact in VN . If zn(0) ∈ M , (A.2) implies that
‖zn(T )‖2H ≤ e−ᾱTR2 + K ≤ R, i.e. zn(T ) ∈ M . Since by Gronwall’s lemma
the mapping S : M → M , zn(0) 7→ zn(T ), is continuous, the existence of a fixed-
point S(z̄n) = z̄n ∈M follows from Brouwer’s fixed-point theorem. By the a-priori
estimates, the sequence {z̄n}n∈N is bounded in H, so that there exists a subsequence
(also denoted by {z̄n}) converging weakly to some z̄ ∈ H.
(iv) Convergence. Consider the periodic solution zn(t) from (iii), i.e. the solution
of the ODE system with initial value zn0 = z̄n. From the a-priori estimates, we
have that {zn} is uniformly bounded in the separable space Y, so that there exists
a subsequence (also denoted {zn}) converging weakly to some z in Y. For wn :=
θ(t)φj , θ(t) ∈ C1(0, T ), we then have by integration over [0, T ] and integration by

parts of the first term that for all j = 1, . . . , n −〈θ̇φj , zn〉 = 〈θ(0)φj−θ(T )φj , z̄n〉H+
〈θφj ,A(t)[v − zn]〉. As zn ⇀ z in Y and z̄n ⇀ z̄ in H, we can pass to the limit
n→∞ and obtain

(A.3) −〈θ̇φj , z〉 = 〈θ(0)φj − θ(T )φj , z̄〉H + 〈θφj ,A(t)[v − z]〉.

This particularly holds true for all θ ∈ D(I), so that ż = A(·)(v − z) in the
distributional sense and hence ż ∈ L2(0, T ;V ′). Moreover, (A.3) implies that for
w ∈ C1(0, T ;V ), we have −〈ẇ, z〉 − 〈w(0)− w(T ), z̄〉 = 〈w,A(t)[v − z]〉 = 〈ż, w〉 =
−〈ẇ, z〉+ 〈w(T ), z(T )〉H − 〈w(0), z(0)〉H , so that indeed z̄ = z(0) = z(T ) in H and
hence z ∈ X . With this z, the surjectivity condition is fulfilled.
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Appendix B. Auxiliary wavelet compression results

Here, we report two facts for B defined in (3.3) which are required in Section 8.
We shall always assume that (8.6) holds. For further details, we refer to [Kes13].

Lemma B.1 ([KS13]). For sufficiently small η < 1, Bη ∈ L(`2( pJ ), `2( qJ )) and

B>η Bη ∈ L(`2( pJ ), `2( pJ )) are boundedly invertible with bounds depending on η.

Proposition B.2 ([KS13]). Let the assumptions of Theorem 8.6 hold. Then, there
exists a constant ωls such that ‖B>(f −Bw

pΛ)− pr‖`2( pJ ) ≤ ωls‖pr‖`2( pJ ), pr := B>η qr.
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