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OPTIMAL INSURANCE CONTRACT DESIGN UNDER MORTALITY
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Abstract. Some recent literature on optimal pension/life insurance design studies whether

contracts with guarantees can be preferred by a utility-maximizing policyholder. In the

absence of mortality risk, the main result in the literature (e.g. Døskeland and Nordahl

(2008)) is that expected utility theory (EUT) fails to interpret demand for any forms

of guarantees, while cumulative prospect theory (CPT) is able to support the demand

for guarantees. In the present paper, we incorporate mortality in life/pension insurance

contracts and investigate the effects on EUT- and CPT-investors. Our results show that

an EUT investor might prefer products with guarantees. For CPT we propose two pos-

sibilities to include mortality in the analysis and examine their influence in a simulation

based approach.

Keywords: Cumulative prospect theory, Mortality, Life and pension insur-

ance, Portfolio choice

JEL: G11, G13, G22

1. Introduction

The optimal design of pension and life insurance contracts has attracted a lot of atten-

tion in the recent literature. In particular, the question whether insurance products with

guarantees can be favored is investigated. Related to this question, there are mainly two

streams of literature. The first tries to solve the optimization problem for the optimal in-

surance contracts or the optimal investment strategy, see for example Yaari (1965), Merton

(1971), Richard (1975), Raviv (1979), Pliska and Ye (2007), Nielsen and Steffensen (2008),

Huang et al. (2008), Bruhn and Steffensen (2011) and Pirvu and Zhang (2012). The second

stream considers some specific insurance products and tries to find the one (among the

given products) that delivers the highest utility or value in a given setup, see for example

Dichtl and Drobetz (2011), Ebert et al. (2012) and Døskeland and Nordahl (2008). The

Date. February 25, 2014.

∗ § † Department of Mathematics and Economics, University of Ulm, Helmholtzstrasse 20, 89081 Ulm,

Germany. E–Mail: an.chen@uni-ulm.de; felix.hentschel@uni-ulm.de; jakob.klein@uni-ulm.de .

1



main common result in these papers is: expected utility theory (EUT, taking power utility

as an example) is unable to interpret the demand for financial/insurance products which

provide a guaranteed payment. However, under Cumulative Prospect Theory (CPT, in-

troduced by Tversky and Kahneman (1992)), the demand for products with guarantees

is explainable. Our paper follows the second stream of literature and in particular the

analysis performed by Døskeland and Nordahl (2008).

In their setup they consider four different life/pension insurance contracts, where three

contain a guaranteed rate of return and one is the Merton portfolio (see Merton (1971)).

The products with guarantees are: an implicit put with a roll-up guarantee, a simple life

contract with a roll-up guarantee and a possible terminal default, as well as a product with

an annual guarantee, including the possibility of an annual default. They show that the

Merton portfolio outperforms the products with guarantees in terms of expected utility,

whereas within CPT, the products with guarantees turn out to be a better choice for the

investors. The results of Døskeland and Nordahl (2008) are certainly very interesting.

However, in the analysis of demand for insurance contracts with guarantees, they purely

consider the financial risks incorporated in these products and neglect another important

source of risk: mortality risk. The present paper aims to find out whether by incorporating

this risk, the results stated in Døskeland and Nordahl (2008) can be confirmed.

To add mortality risk in the analysis of demand for guarantees, we extend the model of

Døskeland and Nordahl (2008) by a factor for the remaining life time of the liability holder

and thus account for payouts in the case of premature death. In other words, we consider

an endowment insurance contract. We then analyze the considered products with EUT

and CPT and compare the resulting utility/value levels. For the analysis with CPT we

propose two ways to include mortality in the calculation of the CPT value which has, to

our best knowledge, not been done in literature so far. We find that an EUT investor is,

depending on his risk aversion, indifferent between products with and without guarantees.

In the case of a premature death the investor even favors the products with guarantees

over a pure investment into the available assets. In the CPT case, we confirm the existing

results, that a CPT investor prefers products with guarantees. However, we also find,

that in the situation of the Tversky and Kahneman (1992) setup, a CPT investor actually

favors the pure Merton investment over the guaranteed products.
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The remainder of this paper is organized as follows. In Section 2, we introduce our

model setup and particularly specify the payoffs of the contracts. Section 3 introduces

the expected utility theory (EUT) and cumulative prospect theory (CPT) on which the

liability holder bases his decision. Section 4 provides numerical results and shows the

impact of key parameters on the optimal choice. Our conclusions are set out in Section 5.

2. Model setup

We consider an endowment insurance contract of a single liability holder. We assume

the insurance contract is issued at time t0 = 0. At time 0, the liability holder provides

an upfront premium payment of L0 to the insurance company. The company receives an

amount of initial contributions E0 from the equity holder at time 0. Consequently, the

initial asset value of the company is given by the sum of the contributions from both the

liability holder and the equity holder, i.e. A0 = L0 + E0. Furthermore, we denote the

upfront premium as a fraction α of the total assets, i.e. L0 = αA0 with α ∈ (0, 1). The in-

surance company invests the proceeds in a diversified portfolio of risky and non-risky assets.

The contract has a finite maturity date T , which can be e.g. considered as the retirement

date of the liability holder. In case of an endowment life insurance contract, the liability

holder receives payments both upon survival of the maturity date T and upon premature

death. We use ΦL to denote the terminal contract payoff of the liability holder:

ΦL = 1{τx>T}ΨL(AT ) +
T∑
t=1

1{t−1<τx≤t} ·ΨL(At) · er(T−t), (1)

where τx denotes the remaining life time of the contract holder (with an age x at the

contract-issuing time) and 1A denotes the indicator function which is 1 if A occurs and 0

otherwise. If the contract holder survives the maturity date T , he receives ΨL(AT ). If the

liability holder dies within (t−1, t], t = 1, . . . , T , the contract payoff ΨL(At) follows at the

end of the period (time t). To make payments comparable, we assume that all the death

payments will be invested in the risk-free asset until maturity, as in Bauer et al. (2008).

Figure 1 illustrates the time line of the payment upon premature death between (t− 1, t].

Furthermore, we allow both the premature and maturity payoffs to depend on the asset

evolution of the insurance company’s assets. These payoffs will be specified later.
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Figure 1. Timeline in the event of death between t− 1 and t

2.1. Underlying financial and demographic risks. Assume a financial market in

which there are two traded investment opportunities: a risky and a riskfree asset (bank

account). The traded risky asset S satisfies

dSt = µStdt+ σStdWt

whereWt is a standard Brownian motion on our probability space (Ω,F ,P) (P is the market

probability measure), i.e. this asset follows Black-Scholes dynamics with an instantaneous

rate of return µ > 0 and a constant volatility σ > 0. Also assume the existence of a riskfree

asset R which satisfies

dRt = rRtdt

for a deterministic riskfree rate r. The insurance company invests in these two assets

in a self-financing way starting with initial wealth A0. The insurance companies’ wealth

process At is given by the following stochastic differential equation (SDE)

dAt = At(r + θ(µ− r))dt+ θ σ At dWt. (2)

The parameter θ denotes the fraction invested in the risky asset S and the remainder (1-θ)

is invested in the riskless asset R. We assume short-selling is not allowed, i.e. θ ∈ [0, 1].

For a given θ, the solution to the SDE is given by

At(θ) = A0 exp

{(
r + θ(µ− r)− θ2σ2

2

)
t+ σθWt

}
. (3)

We assume the mortality risk is independent of financial market risk. Other than that,

we do not impose any restrictions on the underlying mortality model. As we will see

in Section 3, the sole relevant quantities for the derivation of EUT- and CPT- values
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are annual survival and death probabilities. In the following we use standard actuarial

notations to denote the survival and death probabilities. The probability that an x-year

old person survives time t is denoted by

tpx = P (τx > t). (4)

Similarly, P (t − 1 < τx ≤ t) = t−1px · qx+t−1 denotes the probability that an x-year old

person dies between (t− 1, t].

2.2. Contract specifications. In order to better compare our results with existing liter-

ature in this field, we take the four contract types used in Døskeland and Nordahl (2008)

as an example to specify our ΨL(At), ∀ t = 1, · · ·T .1 The four contract types are: Mer-

ton, implicit put, simple life insurance and annual guarantees. In case of a Merton-type

contract, the liability holder obtains at time t

ΨL(At) = αAt. (5)

In other words, the liability holder bears all the financial market risk and no guarantees

are provided.

In case of an implicit put, the liability holder’s payoffs at time t are given by

ΨL(At) = L0e
gt + αδ

[
At −

1

α
L0e

gt

]+

. (6)

The beneficiary obtains a guaranteed amount with an interest rate g < r and an indexed

bonus payment contingent on the insurance company’s assets. Given that the assets are

sufficiently large (At >
1
α
L0e

gt), the liability holder is allowed to participate in the surplus

of the company (At − 1
α
L0e

gt) with a participation rate δ, where δ ∈ [0, 1] is the surplus

distribution parameter.

In a simple life insurance contract, the contract payoff can be expressed as

ΨL(At) = L0e
gt + αδ

[
At −

1

α
L0e

gt

]+

−
[
L0e

gt − At
]+
. (7)

Compared to the implicit put contract, the life insurance contract does not provide an ab-

solute guaranteed amount and takes into account the shortfall possibility of the company.

1Our performed analysis is general. We can also analyze other (equity-linked) life insurance contracts.
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It is characterized by the default put option. When the company performs extremely bad

(At < L0e
gt), the liability holder receives At smaller than the guaranteed amount.

The last contract is so-called annual guarantees which dates back to Miltersen and

Persson (2003) and Grosen and Jørgensen (2000). This contract contains a bonus account

(Bt) which serves as an additional buffer. The proportion declared to this account is

denoted by b. The liabilities Lt at time t can be specified as follows

Lt =



At if At ≤ Lt−1e
g

Lt−1e
g if Lt−1e

g < At ≤ Lt−1e
g + Et−1e

g +Bt−1

Lt−1e
g + δα(1− b)·

· (At − (Lt−1e
g + Et−1e

g +Bt−1)) if At > Lt−1e
g + Et−1e

g +Bt−1

where the bonus account Bt and the equity account Et evolve according to

Bt =



0 if At ≤ Lt−1e
g + Et−1

At − Lt−1e
g − Et−1 if Lt−1e

g + Et−1 < At ≤ Lt−1e
g + Et−1 +Bt−1

Bt−1 if Lt−1e
g + Et−1 +Bt−1 < At ≤ Lt−1e

g + Et−1e
g +Bt−1

Bt−1 + δαb
[
At−

(Lt−1e
g + Et−1e

g +Bt−1)
]

if At > Lt−1e
g + Et−1e

g +Bt−1

Et = At − Lt −Bt.

The contract payoff ΨL(At) at time t consists of the liabilities at time t and the surplus

accumulated in the bonus account up to time t, i.e. ΨL(At) = Lt + Bt. In this contract,

when the insurance company performs relatively well, it provides the liability holder with

annual guaranteed amounts and annual bonuses. When it performs moderately, only a

periodic guaranteed payment is distributed to the liability holder. When there is a pre-

mature default, the liability holder ends up with what remains in the insurance company.

Given the random time of default t̃ < t, t̃ ∈ {1, 2, . . . , T}, we have (at time t):

Et = 0, Bt = 0,ΨL(At) = At̃ · er(t−t̃), for t̃ ≤ t ≤ T. (8)
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3. Utility- and CPT-based comparison

In order to analyze the optimal insurance contract, we assume the liability holder bases

his optimal contract decision on expected utility theory (EUT) or cumulative prospect

theory (CPT).

Under EUT, we assume that the liability holder is risk averse and bases his optimal

insurance contract decision on maximizing the following expected utility:

E[U(X)] = E

[
X1−γ

1− γ

]
with γ 6= 1

where γ is the coefficient of relative risk aversion. We choose the power utility with CRRA,

since it is the mostly accepted utility function and commonly used in settings like ours.

A higher value of γ corresponds to a more risk-averse liability holder and γ = 0 gives the

special case that the beneficiary is risk-neutral. According to the definition of ΦL as in

(1), the expected utility of the terminal payoff ΦL of the liability holder is given by

E[U(ΦL)] =E

[
U

(
1{τx>T} ·ΨL(AT ) +

T∑
t=1

1{t−1<τx≤t} ·ΨL(At) · er(T−t)
)]

=E

[
1{τx>T} · U (ΨL(AT )) +

T∑
t=1

1{t−1<τx≤t} · U
(
ΨL(At) · er(T−t)

)]

=E
[
1{τx>T} · U (ΨL(AT ))

]
+

T∑
t=1

E
[
1{t−1<τx≤t} · U

(
ΨL(At) · er(T−t)

)]
=Tpx · E[U (ΨL(AT ))] +

T∑
t=1

t−1px · qx+t−1 · E
[
U
(
ΨL(At) · er(T−t)

)]
.

The second equality follows because all the events in the indicator functions are disjoint

events. Furthermore, we have used the fact that mortality and financial market risk are

independent. For the first three contracts, it is possible to compute the expectations

E
[
U
(
ΨL(At) · er(T−t)

)]
analytically, based on the cumulative distribution function of the

normal distribution (see Appendix A).

In the numerical section, we will derive the certainty equivalents from

E[U(ΦL)] = U(CEQ)

to ease our comparison.
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CPT dates back to Tversky and Kahneman (1992) and can be considered as an extension

of the usual EUT. CPT uses a value function with different shapes around a so called

reference point Γ. Above the reference point the value function is concave, whereas it is

convex below the reference point. More specifically, in Tversky and Kahneman (1992) the

following value function is considered

V (X) =

V+(X) = (X − Γ)β, X ≥ Γ

V−(X) = −λ(Γ−X)β, X < Γ

where λ > 1 is the so called loss aversion parameter. Figure 2 shows the s-shaped form of

the value function.

x

U
(x

)

personal loss reference point personal gain

0

Figure 2. Value function in CPT with different shapes for gains and losses

with β = 0.5 and λ = 2.25.

For the calculation of the expected value, real world probabilities are transformed with

a weighting function w. It assigns to each real world probability a personal probability

which reflects the attitude of the investor (see Figure 3). Different weighting functions

have been used in the literature. In order to obtain results which are comparable to those

found in the literature, we use the weighting function proposed by Prelec (1998), which is

a one-parametric weighting function with the following form:

w(p) = e−(− log(p))ϕ .
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Figure 3. Probability weighting function w(p) = e−(− log p)ϕ in CPT with

ϕ = 0.75.

Where ϕ ∈ (0, 1) controls the shape of the probability distortion, a detailed discussion

of the properties of w(p) can be found in Prelec (1998). Considering n possible out-

comes for the evolution of the risky asset, we get n different contract payoffs Ψi
L(AT )

with corresponding real-world probabilities pi, i = 1, . . . , n. Applying the parametrization

of Tversky and Kahneman (1992) in our context to evaluate the ordered n outcomes of

Ψ1
L(AT ) < Ψ2

L(AT ) < · · · < Ψn
L(AT ), we obtain

CPT (ΨL(AT )) =
n∑
i=1

πiV (Ψi
L(AT ))

with πi := w(p1 + · · · + pi) − w(p1 + · · · + pi−1).2 Similarly, we can also compute for the

ordered n outcomes of Ψ1
L(At) < Ψ2

L(At) < · · · < Ψn
L(At):

CPT (ΨL(Ate
r(T−t))) =

n∑
i=1

πiV (Ψi
L(At)e

r(T−t)).

To further study the effects of mortality we will analyze the CPT value under two different

assumptions. On the one hand, we assume that the investor is able to anticipate the

real world distribution of his remaining life time. In other words, we only apply the

transformation of the probabilities onto the distribution of the assets and thus on the

2With w(p1 + p0) := 0.
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distribution of the liabilities and not onto the distribution of the remaining life time τx.

Thus the total CPT-value for ΦL is given by

CPT (ΦL) = Tpx · CPT (ΨL(AT )) +
T∑
t=1

t−1px · qx+t−1 · CPT (ΨL(At · er(T−t))).

On the other hand we consider the occurrence of death and the state of the economy as

one single combined outcome, with n possible realizations. We denote the random time of

death of the individual in the i-th state by τ ix and use the following representation:

τ ix =

T if ζ ij 6= 0∀j = 0, . . . , T

min{j ∈ {0, . . . , T} : ζ ij = 0} otherwise

where ζ ij ∼ Bernoulli(jpx · qx+j).

By distorting the probabilities for the financial outcome and the occurrence of death,

we account for the fact, that individuals may not anticipate the real world probabilities of

both financial and mortality risk. The CPT value under this assumption is of the form

CPT (ΦL) =
n∑
i=1

πiV (Ψi
L(Aτ ix)er(T−τ

i
x)).

In the numerical section, we will focus on determining the certainty equivalent of the CPT

value:

CEV (ΦL) =

CPT (ΦL)1/β + Γ if CPT (ΦL) ≥ 0

−
(
−CPT (ΦL)

λ

)1/β

+ Γ if CPT (ΦL) < 0.

4. Numerical results

This section focuses on the effect of mortality on the optimal insurance problem of the

liability holder. Specifically, we want to answer the following questions:

• What is the optimal choice (among the four contracts specified above) of an expected-

utility-maximizing liability holder?

• What is the optimal choice of a CPT-maximizing liability holder?

• Is EUT really not able to interpret demand for life/pension insurance contracts

with guarantees?

• Can we identify main driving factors influencing the optimal choice under EUT and

CPT?
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In order to investigate these questions, we follow the considerations of Døskeland and

Nordahl (2008) and fix the parameters for our benchmark case as follows:

L0 = 4.75, A0 = L0/α, r = 4%, µ = 6.5%, σ = 15%, g = 2%, α = 90% and b = 20%.

Yet, we choose a different time of maturity T = 25, in order to account for the long term

nature of pension insurance contracts and to be able to observe the effects of premature

death. The calculation of the expected utility for the Merton investment, the implicit put

and the simple life contract can be done with the formulas in Appendix A using numerical

integration. For the annual guarantees and the values for the cumulative prospect theory

for all four products, we performed Monte Carlo simulations with 100 000 paths.

4.1. German life table. Our model considers a representative liability-holder. We as-

sume this person is aged 40 at the contract-issuing time, i.e. would be 65 at the maturity

of the contract, which is a realistic age for a retiree. For the corresponding death and

survival probabilities we use the standard mortality table DAV2008T from the German

Actuarial Society (DAV) (see German Actuarial Society (2008)). The table is designed for

contracts where the main source of risk is premature death. The resulting death probabil-

ities tpx · qx+t are between 0.1% and 1% and the probability to survive the whole period

of 25 years is about 85.79% as seen in Figure 4.

0 5 10 15 20 25

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

year t

t y
ea

r 
su

rv
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Figure 4. t year survival probability (tpx) for an x = 40 year old for mor-

tality data from German Actuarial Society (2008).

4.2. Fair contract specification. Comparison between different contracts makes only

sense when the initial investments in these contracts are identical. Therefore, we base our
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comparison on the fair contract principle. A contract is called fair if the initial investment

of the liability holder equals the expected discounted value of the contract payoff under the

risk-neutral pricing measure Q. I.e. from the perspective of the liability holder, it holds

L0 =e−rTEQ [ΦL] = TpxE
Q[e−rTΨL(AT )] +

T∑
t=1

t−1px · qx+t−1 · EQ[e−rtΨL(At)]. (9)

For equation (9) we have assumed independence of mortality and financial risk under the

risk neutral measure Q. Following Dhaene et al. (2013) this assumption makes sense in

our simple model setup.

Here, we choose to determine the fair surplus participation rate δ implicitly through

equality (9). Since the right-hand side of the equality boils down to determining some

standard option values in a Black-Scholes economy, we will jump to the fair participation

rate.

In the case of implicit put, the fair participation rate is given by

δIP =

1− Tpx · e(g−r)T −
T∑
t=1

t−1px · qx+t−1e
(g−r)t

Tpx · (Φ(d
(T )
1 )− e(g−r)TΦ(d

(T )
2 )) +

T∑
t=1

t−1px · qx+t−1 · (Φ(d
(t)
1 )− e(g−r)tΦ(d

(t)
2 ))

with d
(t)
1 =

(r − g + (θσ)2

2
) · t

θσ
√
t

, d
(t)
2 = d

(t)
1 − θσ

√
t.

In case of a simple life contract, the fair participation rate can be expressed as

δSL =

α− Tpx ·
(

1− (Φ(d̂
(T )
1 )− αe(g−r)TΦ(d̂

(T )
2 ))

)
−

T∑
t=1

t−1pxqx+t−1

(
1− (Φ(d̂

(t)
1 )− αe(g−r)tΦ(d̂

(t)
2 ))

)
Tpx

(
αΦ(d

(T )
1 )− αe(g−r)TΦ(d

(T )
2 )
)

+
T∑
t=1

t−1pxqx+t−1

(
αΦ(d

(t)
1 )− αe(g−r)tΦ(d

(t)
2 )
)

with d̂
(t)
1 =
− log(α)

θσ
√
t

+ d
(t)
1 , d̂

(t)
2 = d̂

(t)
1 − θσ

√
t,

d
(t)
1 and d

(t)
2 take the same values as in the implicit put case. In case of annual guarantees,

we need to rely on numerical methods to determine the fair participation rate. In Figure 5,

δ is plotted as a function of the proportion invested in the risky asset for a fixed guarantee

value of g = 2% on the left side and on the right side as a function of the minimum interest

guarantee g for θ = 40%.

Under all contracts including guarantees, a higher proportion invested into the risky

asset and a higher guarantee rate lead to a lower surplus participation δ. For the same g,
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the annual guarantee case delivers the lowest δ, which is followed by the implicit put case,

and the resulting δ in the simple life case is the highest. It is due to the fact that for the

same parameters (particularly same g and δ), the annual guarantee delivers the highest

contract payoff, and the contract payoff in the implicit put is always larger than in the

simple life case (because of the shorted default option).

Implict put
Simple life
Annual guarantees
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0.
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0

δ values for g = 2%

θ

δ

Implict put
Simple life
Annual guarantees
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6

0.
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0.
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9

1.
0

δ values for θ = 40%

guarantee rate g in percent

δ

Figure 5. Values of δ for the three products with µ = 6.5%, r = 4%, left:

different values of θ, for g = 2%, right: different values of g, for θ = 40%

4.3. Expected utility. We start comparing the four contracts using expected utility the-

ory, with the previously described utility function. For the coefficient of risk aversion γ

we consider the values γ = 0.5, γ = 3 and γ = 6 to compare different risk attitudes of

the investor. In Figure 6 we plot the certainty equivalents for the expected utility for the

three different values of γ and observe that we get clearly different results depending on

the chosen risk aversion. When considering the case γ = 0.5 we get the same result as

Døskeland and Nordahl (2008), namely that the Merton investment is clearly preferred

over the other three products. The Merton investment delivers for low values of θ a CEQ

equal to that of the other products, but has a significantly higher CEQ at the optimal θ of

100%. This also shows that an investor with a relatively small risk aversion prefers a high

expected payout over any form of guarantee and seeks the complete investment into the

risky asset. But when the risk aversion is larger than one, this is not necessarily the case
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Figure 6. CEQ for E[U(ΦL)] left: γ = 0.5, middle: γ = 3, right: γ = 6

and all other parameters as described before.

anymore. For an investor with risk aversion of γ = 3, the optimal portion of risky assets

in case of the Merton investment, the implicit put and the simple life contract is between

30% and 40%. This investor does not see much difference between these three products at

the optimal θ. Yet, as soon as the proportion invested into the risky asset is larger than

the optimal value, the products including simple guarantees, namely the implicit put and

the simple life, deliver a higher CEQ than the Merton investment. The annual guarantee

mostly delivers the least CEQ in this case and only outperforms the other products, when

the investment in the risky asset is very high, i.e. a lot of risk is contained in the portfolio.

When the risk aversion is further increased to γ = 6, the optimal θ for all four products

is between 15% and 20%. Now we even observe that for the optimal θ the Merton in-

vestment, the implicit put and the simple life contract yield the exact same CEQ and the

annual guarantees have a slightly smaller CEQ than the other three products. Comparing

the products for a proportion invested in the risky asset above the optimal one, the Mer-

ton investment delivers a CEQ below the one of the other three products. Now even the

annual guarantees deliver the highest CEQ for a value of θ above 30%. This shows that

when the risk in the investment is increasing the products offering a guarantee deliver a

higher CEQ than the pure Merton investment. This increased risk may either result from

a higher proportion invested into the risky asset, or for example a higher volatility σ of

the risky asset. Hence, for an investor with a high risk aversion, the products including

14



guarantees are more favorable than a pure investment into the portfolio without any sort

of guarantee. When the risk aversion is high and the risk contained in the portfolio is large

enough, even an annual guarantee is preferred over the other simple types of guarantee.

The above result is mainly driven by the expected utility upon premature death. Recall

the expected utility of the liability holder is given by

E[U(ΦL)] = Tpx · E[U (ΨL(AT ))] +
T∑
t=1

t−1px · qx+t−1 · E
[
U
(
ΨL(At) · er(T−t)

)]
.

The Merton portfolio delivers the highest expected utility upon survival, i.e. E[U (ΨL(AT ))],

for a constant proportion invested in the risky asset (see Merton (1971)). However, it

may no longer be optimal when it comes to the expected utility upon premature death.

For a single payout prior to maturity at time t < T , the expected utility is given by

E[U(ΨL(At) · er(T−t))]. Hence a constant proportion in risky and riskless assets is held up

to the time of death and after that the proceedings will be invested completely in the risk-

less asset until the maturity date. This payout might not be optimal anymore compared

to the other products including guarantees. In Figure 7 we plot the expected utility of the

payout in case of death in year t = 15 and observe that the Merton portfolio is no longer

optimal, but depending on the risk aversion γ, one of the other products becomes optimal.

This is also the case for other values of t < T , up to a certain time point t∗. From that

point on, the closer t gets to T , the better the Merton case becomes compared to the other

products. The value of t∗ depends on the chosen parameters and especially the size of the

risk aversion.

The previous observations show that, depending on the risk aversion of the individual,

the products including a guarantee, especially the implicit put and the simple life contract,

become favorable in the sense, that they give the same or a higher CEQ than the Merton

investment for any value of θ. In the following we consider the relation between the size

of the included guarantee and the risk aversion of the investor.

In Table 1 we show different CEQ values for combinations of risk aversion γ and guar-

antee g at the optimal θ and a θ value above the optimal one. When the risk aversion is

below 1, e.g. γ = 0.5, the Merton investment delivers a CEQ equal or above the other

products for all θ no matter how small the value of the guarantee is (even for g = 0.01%).

Hence we do not show CEQ values for this risk aversion in the table.
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Figure 7. Expected utility from premature payment (E[U(ΨL(At) ·

er(T−t))]) at time t = 15, left: γ = 0.5, middle: γ = 3, right: γ = 6

and all other parameters as described before.

For a risk aversion of γ = 3, we see that for a low guarantee the CEQ at the optimal

θ are nearly the same for the Merton investment, implicit put and simple life. When

the guarantee is too high, the Merton investment yields the higher CEQ. When the risk

aversion is increased up to γ = 6, even higher guarantees are preferable over the Merton

investment. For a risk aversion of γ = 12, even a guarantee of g = 3.5% is favored by the

investor over the pure investment into the portfolio.

4.4. Cumulative prospect theory. In this section we analyze the preferences of CPT-

investors with varying assumptions about their risk awareness (i.e. the way we incorporate

mortality) and varying contract parameters (e.g. the guarantee rate). To make results

comparable we fix the market-parameters as described at the beginning of this chapter.

For the CPT parameters we choose for the risk aversion β = 0.5 and the loss aversion

λ = 2.25 following Døskeland and Nordahl (2008). As they have already mentioned there

are multiple estimations of probability weighting functions and their parameters, hence

we follow them by applying the weighting by Prelec (1998) (with φ = 0, 75), for reasons

of comparability. For the reference point Γ, Barberis (2012) argues that the choice of

adequate reference points is not trivial and, in general, can not be answered definitively.

We choose Γ = L0 to reflect the initial investment, which is a standard choice in the

literature. Furthermore, it seems natural to consider Γ = L0e
gT since investors might

16



Merton portfolio Implicit put Simple life Annual guarantee

γ = 3

θ∗ θ = 60% θ∗ θ = 60% θ∗ θ = 60% θ∗ θ = 60%

g = 1.0% 14.4214 13.8279 14.4207 13.9327 14.4213 13.8902 14.1572 13.7333

g = 2.0% 14.4214 13.8279 14.4094 14.0822 14.4183 13.9779 13.9297 13.6609

γ = 6

θ∗ θ = 40% θ∗ θ = 40% θ∗ θ = 40% θ∗ θ = 40%

g = 2.0% 13.6454 12.679 13.6454 12.8825 13.6454 12.8221 13.6037 13.342

g = 3.0% 13.6454 12.679 13.6389 13.2955 13.6404 13.0749 13.4334 13.3293

γ = 12

θ∗ θ = 30% θ∗ θ = 30% θ∗ θ = 30% θ∗ θ = 30%

g = 3.5% 13.2717 11.5776 13.2692 12.9638 13.2695 12.4418 13.179 13.1275

Table 1. CEQ of the total payoff for an EU investor for different γ and

different guarantee values g and the previously described parameters.

expect to earn at least the guarantee rate, as there are products available which promise

this return. Another choice could for example be the expected payout of the Merton

investment. But all other products mostly deliver a payout below this reference point

and are thus considered losses and are therefore dominated by the Merton investment.

Therefore we do not consider this reference point in the following analysis.

In the following we first calculate the CPT values under the assumption that the investor

anticipates the real world death probabilities. Hence, the weighting is only applied to the

financial risk. The resulting CEV’s for the two above mentioned reference points are shown

in Figure 8. We see that, considering the maximal achievable certainty equivalents (CEV),

we get in both cases that the implicit put delivers the highest value, followed by the simple

life contract, the Merton investment and finally the annual guarantees. This shows that

CPT reflects the demand for guarantees with the inclusion of mortality.

Considering a CPT investor with a lower risk aversion, i.e. a higher value of β (e.g.

β = 0.88) as proposed by Tversky and Kahneman (1992), we get the resulting CEVs
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Figure 8. CEV for CPT with Γ = L0 (left) and Γ = L0 · egT (right) with

β = 0.5 and ϕ = 0.75

as shown in Figure 9.3 We see that the investor would prefer the Merton portfolio over

the products including guarantees. This result is similar to the previous EUT analysis,

where we see that guarantees are only preferred when the risk aversion is large enough.

When the risk aversion parameter β is lowered to e.g. β = 0.35, we even see that for

the optimal θ, although the implicit put still gives the highest CEV, it is followed by

the annual guarantees, which deliver a CEV higher than the simple life contract and the

Merton investment. Hence, we observe, exactly as in the EUT case, that an investor with

a high risk aversion benefits more from guarantees included in these products.

These preferences of a CPT investor seem to result from the so called skewness prefer-

ence, a major driving factor for decision making for CPT-investors, which is among others

described in Ebert and Strack (2012). They state that a CPT investor prefers right-skewed

risks over others. We compare the expected total payoff and the skewness of each con-

tract at a fixed value of θ in Table 2. We see that for each guarantee value, the Merton

investment delivers the highest expected total payout. But on the other hand all four

products have a higher skewness than the pure Merton investment. The expected value

3We want to note at this point, that using β = 0.88, but the weighting function suggested by Prelec

(1998), we are not back at the original setting of Tversky and Kahneman (1992). However, when applying

their weighting function, the results turn out to be similar to the ones presented above.
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Figure 9. CEV for CPT with Γ = L0 (left) and Γ = L0 · egT (right) with

β = 0.88 and ϕ = 0.75

of the payoff of the Merton investment, implicit put and simple life are quite close, but

since the implicit put and the simple life contract have a higher positive skewness, they

are preferred by the CPT investor, when β = 0.5. Although the annual guarantees have

the highest skewness, their expected payoff is much smaller than the payoff of the other

three products, therefore it is not the favored contract.

Merton portfolio Implicit put Simple life Annual guarantee

Expected Expected Expected Expected

value Skewness value Skewness value Skewness value Skewness

g = 1.0% 15.4542 0.670703 15.4531 0.671164 15.4532 0.671131 14.9586 0.847502

g = 2.0% 15.4542 0.670703 15.4358 0.676369 15.4401 0.675472 14.4333 0.939844

g = 3.0% 15.4542 0.670703 15.1651 0.759176 15.2761 0.733827 13.8055 0.88429

Table 2. Expected value and skewness of the total payout at θ = 30% for

all four contracts and all other parameters as before.

When the investment in the risky asset is further increased, i.e. θ is increased, the

skewness of the payouts also increases. Since the CPT investor prefers right-skewness, he

desires a high investment into the risky asset. Hence, we observe in the above two figures,

that θ = 100% is optimal for all four considered products.
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So far we have focused on a CPT-investor who can asses his own survival probabilities

realistically. This assumption may not seem realistic, in particular since Andersson and

Lundborg (2007) show that individuals tend to under estimate their mortality risk. Hence,

we examine those CPT investors where the probability of a premature death is incorporated

into the cash flow, as described in Section 3, using the weighting function suggested by

Prelec (1998).4 However the resulting CEV values are almost the same as in the previous

case, where we did not apply the weighting on the death probabilities. This suggests, that

the distortion of the mortality risk might be different than the ones of the financial risk, to

account for the individual perception of the different risks. To our knowledge there have

not been made any suggestions yet, on how to weigh the death probabilities within the

CPT framework.

We thus observe that a CPT investor might favor products including guarantees over the

Merton investment, as long as the risk aversion is large enough. To compare the results for

different guarantee values, we show in Table 3 the CEV for a CPT investor with β = 0.5,

λ = 2.25 and φ = 0.75 for different values of g at the optimal value of θ. Comparing the

CEV for one single product and different guarantee values, we see that for all products and

for both reference points, the general level of the CEV decreases with increasing guarantee.

Hence, we see that, other than an EUT investor, a CPT investor in favors, independet of

the reference point, a lower guarantee, no matter which guarantee product.

Merton portfolio Implicit put Simple life Annual guarantee

Γ = L0 Γ = L0e
gT Γ = L0 Γ = L0e

gT Γ = L0 Γ = L0e
gT Γ = L0 Γ = L0e

gT

g = 1.0% 18.5862 17.1742 20.042 18.8915 18.8354 17.4228 16.3281 16.1074

g = 2.0% 18.5862 15.5406 19.5751 17.563 18.7799 15.8121 15.8096 15.2521

g = 3.0% 18.5862 14.1571 18.0094 15.6614 18.6226 14.3638 15.2241 13.7536

Table 3. CEV of the total payoff for a CPT investor at the optimal θ,

β = 0.5, λ = 2.25, φ = 0.75, different guarantee values g and the previously

described parameters.

4We also applied the weighting function suggested by Tversky and Kahneman (1992), but got similar

results. Hence we do not show these results here in further detail.
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5. Conclusion

In the present paper, we extend optimal life/pension insurance design literature by

incorporating mortality risk, hence analyzing more realistic contracts. We assess the value

of these contracts within expected utility theory and cumulative prospect theory. For the

latter we propose two possibilities to incorporate mortality in the calculation of the CPT

value. Our main findings in the present paper are:

• By including mortality in the contract design, we show that EUT can actually prefer

products with guarantees or be indifferent regarding guarantees, depending on the

risk aversion.

• We can confirm existing literature that CPT can explain the demand for products

with guarantees. But we also find examples where CPT does not reflect the demand

for guarantees, especially in the original Tversky and Kahneman (1992) setup, which

is in contrast to existing literature.

• In general, we see that products including (simple) roll-up guarantees are mostly

favored over the contract including annual guarantees.

Our analysis shows that EUT and CPT may yield a similar ranking regarding the con-

sidered contracts. But where the preferences of an EUT investor clearly depend on the

level of the risk aversion γ, the application of CPT contains a lot of uncertainty resulting

from the wide variety of choices for the CPT parameters. The literature offers several

diverse parameters, which may lead to different results, like in our setup. For instance, we

encounter similar problems as described in Barberis (2012), i.e. the correct choice of the

reference point.

Furthermore, the correct application of CPT with financial and mortality risk is not

completely clear. Our proposed solutions assume that either individuals are able to assess

their mortality rates in a realistic manner or distort them the same way as the financial

risk. The second seems not appropriate to reflect the individual perception of mortality

risk, but to our knowledge, there have been no studies so far on how to apply the CPT

framework of probability weighting to the death probabilities.

In our paper, we show that both EUT and CPT can succeed as well as fail to reflect the

investor’s preference for products with guarantees. A possible extension of our analysis

could include more realistic aspects: stochastic interest rates due to the long-term nature
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of life & pension contracts, periodic beneficiaries’ contributions and consumption, etc.

Further research might also consider including a dynamic reference point in a dynamic

optimization setting or a different weighting of the mortality risk in the evaluation of the

CPT values.

Appendix A. Expected utility of Merton investment, implicit put and

simple life contract

The expected utility of one payout at time t can be calculated in closed form for the

Merton investment and up to an integral for the implicit put contract and the simple life

contract. For shorter description we assume the following notation:

µ̄ =

(
r + θ(µ− r)− θ2σ2

2

)
t and σ̄2 = θ2σ2t

From the properties of the asset process we know that At

A0
∼ LN(µ̄, σ̄2) and hence can get

the expected utility of a payout of the Merton investment at time t:

E
[
U(αAt(θ)e

r(T−t))
]

=
L1−γ

0

1− γ
· er(T−t)(1−γ) · exp

(
µ̄(1− γ) +

σ̄2(1− γ)2

2

)

To get the expected utility of the implicit put we first rewrite the payout the following

way:

ΨL(At) = L0e
gt + αδmax

{
At −

1

α
L0e

gt, 0

}
= L0

(
(δ
At
A0

+ (1− δ)egt)1At
A0
>egt

+ egt · 1At
A0
≤egt

)
Then we get for the expected utility:

E[U(ΨL(At)e
r(T−t))] =

L1−γ
0

1− γ
· er(T−t)(1−γ) ·

(∫ ∞
egt

(δz + (1− δ)egt)1−γfAt
A0

(z)dz + egt(1−γ) · FAt
A0

(egt)

)

To get the expected utility of the simple life contract we rewrite the payout the following

way:

ΨL(At) = L0e
gt + αδ

(
At −

1

α
L0e

gt, 0

)+

−
(
L0e

gt − At
)+

= egt1
αegt≤At

A0
≤egt + (δ

At
A0

+ (1− δ)egt)1
egt<

At
A0

+
1

α

At
A0

1At
A0
<αegt
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and we hence get for the expected utility:

E[U(ΨL(At)e
r(T−t))] =

L1−γ
0

1− γ
· er(T−t)(1−γ) ·

(
+ egt(1−γ) ·

(
FAt

A0

(egt)− FAt
A0

(αegt)

)
+

∫ ∞
egt

(δz + (1− δ)egt)1−γfAt
A0

(z)dz

+

(
1

α

)1−γ

· exp

(
(1− γ)µ̄+

1

2
(1− γ)2σ̄2

)
· Φ
(

log(αegt)− µ̄
σ̄

− (1− γ)σ̄

))
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