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MAXWELL’S EQUATIONS WITH IMPEDANCE BOUNDARY

CONDITIONS: DISCONTINUOUS GALERKIN AND REDUCED

BASIS METHODS

KRISTIN KIRCHNER, KARSTEN URBAN, AND OLIVER ZEEB

Abstract. We consider Maxwell’s equations with impedance boundary condi-
tions on a polyhedron with polyhedral holes. Well-posedness of the variational
formulation is proven and a discontinuous Galerkin (dG) approximation is in-
troduced. We prove well-posedness of the dG problem as well as a priori error
estimates.

Next, we use the frequency ω as a parameter in a multi-query context. For
this purpose, we derive a Reduced Basis Method (RBM) based upon the dG
formulation as well as the corresponding a posteriori error bound. Numerical
results indicate the efficiency and the robustness of the scheme.

1. Introduction

This paper is concerned with the analysis and the efficient numerical solution of
the time-harmonic Maxwell’s equations on a simply-connected polyhedron which
may have polyhedral holes. These holes can be seen as rigid bodies of perfectly
conducting material, whereas on the exterior we impose an impedance boundary
condition.

We start by proving well-posedness of the variational formulation in Section 2.
Although this a is more or less standard application of the Lax-Milgram theorem,
the verification of coercivity and boundedness at least under our (mild) assumptions
is not trivial and we were not able to find a proof in the literature. Hence, we detail
all arguments.

Next, in Section 3, we construct a discontinuous Galerkin (dG) numerical method
to obtain a discretization of the electric field density E. We detail well-posedness
(which is again not trivially seen) and the a priori convergence analysis. These
results are a generalization of [21]. Specifically, in §3.1 we use an interior penalty dG
flux and derive a consistent discrete variational formulation in the non-conforming
space of piecewise affine functions. The corresponding sesquilinear form is shown
to be continuous and coercive w.r.t. an appropriate energy norm in §3.2. This
provides the foundation for our error analysis in §3.3, where we show convergence
at an optimal rate w.r.t. the energy norm.

Our main objective is to solve the time-harmonic Maxwell problem for several
different values of the frequency ω. Hence, we obtain parameterized Maxwell’s
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equations, where we seek a numerical approximation for many values of the fre-
quency. For this kind of multi-query problems (i.e., solving the same problem for
many different values of the parameter), the Reduced Basis Method (RBM) has
become a well-accepted efficient numerical scheme, in particular for parameterized
partial differential equations (pde’s). Roughly speaking, the RBM is based upon
a separation into offline and online computations as well as the availability of a
detailed, but possibly costly numerical model, e.g., with a fine mesh size h and
a huge number N = Nh of unknowns. Using this detailed model and an effi-
ciently computable error bound allows one to determine “bad” parameter values,
say ω1, . . . , ωN , N ≪ N , in the offline phase by maximizing the error estimator
w.r.t. the parameter ωa. For these ωi, the detailed solution ξi := Eh(ωi) is com-
puted in the offline phase and stored. Then, the set {ξ1, . . . , ξN} is called reduced
basis, which is used in the online phase to compute an approximation EN (ω) for
a new parameter value ω 6= ωi. The already mentioned a posteriori error bound
gives rise to a certified reduced numerical approximation.

There are several papers dealing with RBMs for different versions of Maxwell’s
equations, see [9, 10, 14, 15, 18, 19, 28], just to mention a few. However, to the
best of our knowledge, the case treated in this paper has not been considered so
far. For the following reasons we think that the presented framework is particularly
interesting:
• The domain Ω, on which we consider the pde, is non-convex, so that the solution
cannot be expected to have maximal regularity and hence H1-conforming finite
elements may not be appropriate, whereas a dG approach seems adequate.

• Changing the frequency ω, i.e., interpreting it as a parameter may also change
the mathematical properties of the pde. If “critical” parameter values are not
known a priori, RBM variants such as local RBM [23] or hp-RBM [12, 13] are at
least not straightforward to apply.

• In the literature, usually perfectly conducting material and corresponding bound-
ary conditions on all of ∂Ω have been considered. Instead, we use impedance
boundary conditions on the outward part Σ of ∂Ω, see below.
Section 4 contains construction and analysis of a RBM for the above Maxwell

setting. Finally, Section 5 is devoted to the presentation of our numerical results
that show efficiency and robustness of our approach.

2. Model problem

We consider an electromagnetic cavity problem on a bounded, simply-connected
Lipschitz polyhedron Ω ⊂ R3 with M disjoint connected boundary parts Γ1, . . .,
ΓM−1, Σ. Note that Σ is the boundary of the only unbounded connected compo-
nent of the complement R

3 \ Ω̄ – the “interface” to the exterior. At the interior
boundaries Γ1, . . . ,ΓM−1 the domain Ω is assumed to be surrounded by perfectly
conducting material. At the exterior boundary Σ the electromagnetic field satisfies
an impedance boundary condition. Following the approach presented, e.g., in [25]
we obtain the following boundary value problem for the case of a time-harmonic

aIn the RBM literature, usually the letter µ is used for denoting the parameter. Since we
consider the frequency ω as the relevant parameter and here µ denotes the magnetic permeability,
we use ω to denote the parameter.
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Figure 1. Cross section of a possible 3d-domain Ω

electromagnetic wave propagation (n being the outward normal)

∇× (µ−1∇×E)− (ω2ε+ iωσ)E = iω
√
ε0Ja in Ω,(2.1a)

n×E = 0 on Γ1, . . . ,ΓM−1,(2.1b)

(µ−1∇×E)× n− iωλ

√
ε0µ

−1
0 ET = µ−1

0 g on Σ.(2.1c)

As usual, µ0 = 4π · 10−7 Hm−1 and ε0 ≈ 8.854 · 10−12 Fm−1 denote the magnetic
permeability and electric permittivity in vacuum, respectively. For a vector-valued
function u ∈ H(curl,Ω) :=

{
v ∈ L2

(
Ω;C3

) ∣∣∇× v ∈ L2
(
Ω;C3

)}
the “tangential

components trace” uT on ∂Ω is defined as uT := (n × u|∂Ω) × n, cf. [7], [25,
Theorem 3.31]. Finally, λ > 0 is a constant parameter depending on the intensity
of the impedance. In addition, we make the following assumptions on the model.

Assumption 2.1. a) The magnetic permeability µ satisfies µ−1 ∈ W 1,∞(Ω;R)
and there exist constants µ−, µ+ > 0 such that

(2.2) 0 < µ− ≤ ess inf
x∈Ω

µ(x) ≤ ess sup
x∈Ω

µ(x) ≤ µ+ < +∞.

b) We assume ε, σ ∈ L∞(Ω;R) and that Ω is a conductor, i.e, there exist constants
ε−, ε+, σ−, σ+ > 0 with

0 < ε− ≤ ess inf
x∈Ω

ε(x) ≤ ess sup
x∈Ω

ε(x) ≤ ε+ < +∞,(2.3)

0 < σ− ≤ ess inf
x∈Ω

σ(x) ≤ ess sup
x∈Ω

σ(x) ≤ σ+ < +∞.(2.4)

c) Ja ∈ H(div,Ω) :=
{
u ∈ L2

(
Ω;C3

) ∣∣∇ · u ∈ L2(Ω;C)
}
.

d) g ∈ L2
t (Σ;C

3) :=
{
v ∈ L2

(
Σ;C3

)
|n · v = 0 a.e. on Σ

}
.

Proceeding as in [25, Ch. 4], one can establish the following variational formula-
tion of (2.1a)–(2.1c): Given ω > 0, find E ∈ X such that

(2.5) ae(E,v; ω) = f(v; ω) ∀v ∈ X,

with the trial and test space defined as

(2.6) X := {u ∈ H(curl,Ω) |n× u = 0 on Γ1, . . . ,ΓM−1; uT ∈ L2(Σ;C3) on Σ},
the sesquilinear form

ae(E,v; ω) := (µ−1∇×E,∇× v)Ω − ω2(εE,v)Ω − iω(σE,v)Ω(2.7)

− iωλ

√
ε0µ

−1
0 〈ET ,vT 〉Σ,
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and the right-hand side

(2.8) f(v; ω) := iω
√
ε0(Ja,v)Ω + µ−1

0 〈g,vT 〉Σ,

where (·, ·)Ω denotes the inner product on L2
(
Ω;C3

)
, and for g ∈ L2

t (Σ;C
3) and

v ∈ H(curl,Ω), 〈·, · T 〉Σ is the dual pairing w.r.t. the pivot space L2(Σ;C3), i.e.,
〈g,vT 〉Σ :=

∫
Σ
g · vT dS. As shown in [25, Thm. 4.1], X is a Hilbert space with

inner product (u,v)X := (∇ × u,∇ × v)Ω + (u,v)Ω + 〈uT ,vT 〉Σ, u,v ∈ X , and
induced norm ‖u‖2X := ‖∇×u‖2L2(Ω)3 + ‖u‖2L2(Ω)3 + ‖uT ‖2L2(Σ)3 , u ∈ X . The next

theorem states well-posedness of (2.5).

Theorem 2.2 (Existence and uniqueness of E). Suppose Assumption 2.1 is sat-
isfied. Then, there exists a unique solution E ∈ X to (2.5) and a constant C > 0
depending on ω, µ, ε, σ, and λ such that ‖E‖X ≤ C

(
‖Ja‖L2(Ω)3 + ‖g‖L2(Σ)3

)
.

Proof. The claim follows from a complex-valued version of the Lax-Milgram lemma,
(e.g. [25, Lem. 2.21]), since ae : X ×X → C in (2.7) is continuous and coercive and
f : X → C in (2.8) is bounded. In fact, fix ω > 0 and let u, v ∈ X , then

|ae(u,v; ω)| = |(µ−1∇× u,∇× v)Ω − ω2(εu,v)Ω − iω(σu,v)Ω

− iωλ

√
ε0µ

−1
0 〈uT ,vT 〉Σ|

≤ µ−1
− ‖∇× u‖L2(Ω)3‖∇× v‖L2(Ω)3 +

(
ω2ε+ + ωσ+

)
‖u‖L2(Ω)3‖v‖L2(Ω)3

+ ωλ

√
ε0µ

−1
0 ‖uT ‖L2(Σ)3‖vT ‖L2(Σ)3

≤ max

{
µ−1
− ,
(
ω2ε+ + ωσ+

)
, ωλ

√
ε0µ

−1
0

}
‖u‖X‖v‖X .

This shows continuity. To prove coercivity we have:

|ae(u,u; ω)| =
∣∣∣(µ−1∇× u,∇× u)Ω − ω2(εu,u)Ω − iω(σu,u)Ω

− iωλ

√
ε0µ

−1
0 〈uT ,uT 〉Σ

∣∣∣

=

[
(
(µ−1∇× u,∇× u)Ω − ω2(εu,u)Ω

)2

+

(
ω(σu,u)Ω + ωλ

√
ε0µ

−1
0 ‖uT ‖2L2(Σ)3

)2
]1/2

≥
[
(µ−1∇× u,∇× u)2Ω − 2ω2(µ−1∇× u,∇× u)Ω(εu,u)Ω

+ ω4(εu,u)2Ω + ω2(σu,u)2Ω + ω2λ2ε0µ
−1
0 ‖uT ‖4L2(Σ)3

]1/2
.

Young’s inequality gives for δ ∈ (0, 1)

|ae(u,u; ω)| ≥
[
(1− δ)(µ−1∇× u,∇× u)2Ω +

(
1− δ−1

)
ω4(εu,u)2Ω

+ ω2(σu,u)2Ω + ω2λ2ε0µ
−1
0 ‖uT ‖4L2(Σ)3

]1/2
.



MAXWELL’S EQUATIONS WITH IMPEDANCE BOUNDARY CONDITIONS 5

The fact that
√
a+ b ≥ 1√

2
(
√
a +

√
b) for a, b ≥ 0, together with (2.2), (2.3) and

(2.4) in Assumption 2.1, leads to

|ae(u,u; ω)| ≥
1√
2

[
(1− δ)(µ−1∇× u,∇× u)2Ω +

(
1− δ−1

)
ω4(εu,u)2Ω

+ ω2(σu,u)2Ω

]1/2
+

ωλ
√
ε0√

2µ0
‖uT ‖2L2(Σ)3

≥ 1√
2

[
1− δ

µ2
+

‖∇× u‖4L2(Ω)3 +
(
ω2σ2

− −
(
δ−1 − 1

)
ω4ε2+

)
‖u‖4L2(Ω)3

]1/2

+
ωλ

√
ε0√

2µ0
‖uT ‖2L2(Σ)3 .

Choose 1 > δ >
ω2ε2+

ω2ε2
+
+σ2

−
> 0, e.g., δ =

ω2ε2++σ2
−/2

ω2ε2
+
+σ2

−
,

|ae(u,u; ω)| ≥
1√
2

[ σ2
−

2(ω2ε2+ + σ2
−)µ

2
+

‖∇× u‖4L2(Ω)3+
ω4σ2

−ε
2
+ + ω2σ4

−
2ω2ε2+ + σ2

−
‖u‖4L2(Ω)3

] 1
2

+
ωλ

√
ε0√

2µ0
‖uT ‖2L2(Σ)3

≥ 1

2

(
σ2
−

2(ω2ε2+ + σ2
−)µ

2
+

) 1
2

‖∇× u‖2L2(Ω)3

+
1

2

(
ω4σ2

−ε
2
+ + ω2σ4

−
2ω2ε2+ + σ2

−

) 1
2

‖u‖2L2(Ω)3 +
ωλ

√
ε0√

2µ0
‖uT ‖2L2(Σ)3

≥ min





σ−

2µ+

√
2(ω2ε2+ + σ2

−)
,
1

2

(
ω4σ2

−ε
2
+ + ω2σ4

−
2ω2ε2+ + σ2

−

) 1
2

,
ωλ

√
ε0√

2µ0



 ‖u‖2X .

For the right-hand side, standard arguments yield for all v ∈ X the estimate
|f(v; ω)| ≤

(
ω
√
ε0‖Ja‖L2(Ω)3 + µ−1

0 ‖g‖L2(Σ)3
)
‖v‖X , which proves the claim. �

3. Discontinous Galerkin approximation

In this section we introduce a discontinuous Galerkin (dG) formulation of the
impedance boundary value problem (2.1a)–(2.1c) in order to approximate the solu-
tion to (2.5). For this purpose, we adapt an interior penalty numerical flux in [21]
(there for the special case of a perfectly conducting boundary, n×E = 0 on all of
∂Ω, and constant material parameters µ ≡ µ0, ε ≡ ε0 and σ ≡ 0).

3.1. Interior penalty dG formulation. The derivation of the dG formulation
follows the ideas of [4], where a general dG approach for elliptic problems using
different numerical fluxes is described. Instead of the Laplace operator we have to
investigate the curl-curl operator.

First, we introduce the auxiliary function q ∈ L2(Ω;C3) satisfying µq = ∇×E
a.e. in Ω, so that instead of (2.1a)–(2.1c) we can consider the first-order system

∇× q − (ω2ε+ iωσ)E = iω
√
ε0Ja in Ω,(3.1a)

µq = ∇×E in Ω,(3.1b)

n×E = 0 on Γ1, . . . ,ΓM−1,(3.1c)
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q × n− iωλ

√
ε0µ

−1
0 ET = µ−1

0 g on Σ.(3.1d)

We will follow the standard discontinuous Galerkin approach now:

1. Partition of the polyhedron Ω into a finite set of elements.
2. Multiply (3.1a) and (3.1b) with test functions, integrate over Ω and use integra-

tion by parts on each element.
3. In the integrals over the elemental boundaries replace q andE by their numerical

fluxes q∗h and E∗
h.

4. Again, integrate (3.1b) by parts on each element.

For this purpose, let Th be a shape-regular mesh of tetrahedra covering the polyhe-
dral domain Ω. For each element T ∈ Th we define hT as the diameter of the smallest
sphere containing T , and for Th we define the mesh size as h := maxT∈Th

hT .
Furthermore, let Fh denote the set of all faces in Th, FI

h the set of all interior faces,

FI
h := Fh ∩ Ω, and FB

h := Fh ∩ ∂Ω

the set of all faces in the mesh on the boundary ∂Ω. We partition FB
h in accordance

to the two different boundary conditions (3.1c) and (3.1d),

FΓ
h := Fh ∩ (Γ1 ∪ . . . ∪ ΓM−1) , FΣ

h := Fh ∩ Σ.

The size of each face F ∈ Fh is measured by the diameter hF of the smallest
circle containing F . In this context, we additionally define the function h by

(3.2) h :
⋃

F∈Fh

F → R>0, h(x) :=
∑

F∈Fh

hF χF (x).

For the dG formulation we will need the following definitions of the tangential jump
and average across an interface F ∈ Fh between two tetrahedra TL 6= TR, which
are well-defined for functions u ∈

{
f ∈ L2(Ω;C3)

∣∣f |T ∈ C0(T ;C3) ∀T ∈ Th
}
,

JuK :=

{
nTL × u|TL + nTR × u|TR on F ∈ FI

h , F ⊂ ∂TL ∩ ∂TR,

n× u on F ∈ FB
h ,

{{u}} :=

{
1
2 (u|TL + u|TR) on F ∈ FI

h , F ⊂ ∂TL ∩ ∂TR,

u on F ∈ FB
h .

Here, nTL denotes the outward normal of the tetrahedron TL, nTR the one of TR.
In this context, we recall the so-called “dG magic formula”, cf. [20, eq. (3.1)],
(3.3)∑

T∈Th

〈nT × u,v〉∂T =
∑

F∈FI
h

〈JuK, {{v}}〉F −
∑

F∈FI
h

〈{{u}}, JvK〉F +
∑

F∈FB
h

〈n× u,v〉F

for u, v ∈
{
f ∈ L2(Ω;C3)

∣∣f |T ∈ C0(T,C3) ∀T ∈ Th
}
and abbreviate:

〈·, ·〉Fh
:=

∑

F∈Fh

〈·, ·〉F , 〈·, ·〉FB
h
:=

∑

F∈FB
h

〈·, ·〉F , 〈·, ·〉FI
h
:=

∑

F∈FI
h

〈·, ·〉F ,

〈·, ·〉FΣ
h
:=

∑

F∈FΣ
h

〈·, ·〉F , 〈·, ·〉FΓ
h
:=

∑

F∈FΓ
h

〈·, ·〉F , 〈·, ·〉FI∪Γ
h

:=
∑

F∈FI
h
∪FΓ

h

〈·, ·〉F .
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Following the steps mentioned above, we multiply (3.1a) with the complex conjugate
of a test function vh in the finite dimensional space

(3.4) Vh :=
{
ψ ∈ L2(Ω;C3)

∣∣ψ|T ∈ P1(T ;C)3 ∀T ∈ Th
}
,

where P1(T ;C) denotes the space of affine-linear complex-valued functions on T .
Assuming that qh and Eh are also in Vh, integrating over Ω leads to

(3.5) (∇h × qh,vh)Ω − ω2(εEh,vh)Ω − iω(σEh,vh)Ω = iω
√
ε0(Ja,vh)Ω.

Here,∇h× denotes the elementwise curl operator, i.e., (∇h×qh,vh)Ω :=
∑

T∈Th
(∇×

qh,vh)T , which is well-defined for functions in Vh. By using integration by parts
on each element T ∈ Th, substituting qh with its numerical flux q∗h in the integrals
over the elemental boundaries and applying the dG formula (3.3), we obtain

(∇h × qh,vh)Ω =
∑

T∈Th

(∇× qh,vh)T =
∑

T∈Th

[(qh,∇× vh)T + 〈nT × qh,vh〉∂T ]

= (qh,∇h × vh)Ω +
∑

T∈Th

〈nT × q∗h,vh〉∂T

= (qh,∇h × vh)Ω+
∑

F∈FI
h

[〈Jq∗hK, {{vh}}〉F−〈{{q∗h}}, JvhK〉F ] +
∑

F∈FB
h

〈n× q∗h,vh〉F .(3.6)

Now we adopt a similar procedure to the second equation (3.1b). Therefore, let
φh ∈

{
f ∈ L2(Ω;C3)

∣∣f |T ∈ C0(T ;C3) ∩H1(T,C3) ∀T ∈ Th
}
. Then,

(µqh,φh)Ω = (∇h ×Eh,φh)Ω =
∑

T∈Th

(∇×Eh,φh)T

=
∑

T∈Th

[(Eh,∇× φh)T + 〈nT ×Eh,φh〉∂T ]

=
∑

T∈Th

[(Eh,∇× φh)T + 〈nT ×E∗

h,φh〉∂T ]

=
∑

T∈Th

[(∇×Eh,φh)T + 〈nT × (E∗
h −Eh),φh〉∂T ]

= (∇h ×Eh,φh)Ω +
∑

F∈FI
h

[〈JE∗
h −EhK, {{φh}}〉F − 〈{{E∗

h −Eh}}, JφhK〉F ]

+
∑

F∈FB
h

〈n× (E∗
h −Eh),φh〉F .(3.7)

The Sobolev embedding µ−1 ∈ W 1,∞(Ω;R) →֒ C0,1(Ω̄;R) ⊂ C0(Ω̄;R), cf. [1, Lem.
4.28], shows that µ−1ψh ∈ C0(T ;C3) ∩ H1(T ;C3) for each element T ∈ Th and
every function ψh ∈ Vh. Hence, the following expressions are all well-defined,

(qh,ψh)Ω = (µqh, µ
−1ψh)Ω

= (∇h ×Eh, µ
−1ψh)Ω +

∑

F∈FI
h

〈JE∗
h −EhK, {{µ−1ψh}}〉F

−
∑

F∈FI
h

〈{{E∗
h −Eh}}, Jµ−1ψhK〉F +

∑

F∈FB
h

〈n× (E∗
h −Eh), µ

−1ψh〉F ,
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where we used (3.7). Inserting this into (3.6) and the result into (3.5) yields

iω
√
ε0(Ja,vh)Ω = (µ−1∇h ×Eh,∇h × vh)Ω − ω2(εEh,vh)Ω − iω(σEh,vh)Ω

+ 〈JE∗
h −EhK, {{µ−1∇h × vh}}〉FI

h
− 〈{{E∗

h −Eh}}, Jµ−1∇h × vhK〉FI
h

+ 〈n× (E∗
h −Eh), µ

−1∇h × vh〉FB
h

+ 〈Jq∗hK, {{vh}}〉FI
h
− 〈{{q∗h}}, JvhK〉FI

h
− 〈q∗h,n× vh〉FB

h
.(3.8)

As fluxes E∗
h and q∗h we choose interior penalty fluxes similar to the ones in [21]:

E∗
h :=






{{Eh}} on F ∈ FI
h ,

0 on F ∈ FΓ
h ,

Eh on F ∈ FΣ
h ,

q∗h :=

{
{{µ−1∇h ×Eh}} − τ h−1

F JEhK on F ∈ FI
h ,

µ−1∇h ×Eh − τ h−1
F (n×Eh) on F ∈ FΓ

h ,

where τ > 0 is a constant penalty parameter. From the tangential component of

the flux q∗h on Σ we require n×q∗h := −µ−1
0 g− iωλ

√
ε0µ

−1
0 (Eh)T . Inserting these

fluxes into (3.8), using the definition (2.8) of f and observing that J{{u}}K = 0,
JJuKK = 0, {{{{u}}}} = {{u}}, {{JuK}} = JuK, leads to the following equation

f(vh; ω) = (µ−1∇h ×Eh,∇h × vh)Ω − ω2(εEh,vh)Ω − iω(σEh,vh)Ω

− 〈JEhK, {{µ−1∇h × vh}}〉FI∪Γ
h

− 〈{{µ−1∇h ×Eh}}, JvhK〉FI∪Γ
h

+ 〈τh−1JEhK, JvhK〉FI∪Γ
h

− iωλ

√
ε0µ

−1
0 〈(Eh)T , (vh)T 〉Σ

=: ah(Eh,vh; ω, τ).(3.9)

Then for given ω, τ > 0 the discrete problem reads: Find Eh ∈ Vh such that

(3.10) ah(Eh,vh; ω, τ) = f(vh; ω) ∀vh ∈ Vh.

Remark 3.1. Since Vh 6⊂ H(curl,Ω) and since we use a sesquilinear form ah
different from ae in (2.7), existence and uniqueness of a solution Eh to (3.10) are
not obvious. We will return to this later on.

Theorem 3.2 (Consistency). The formulation (3.10) is consistent, i.e., if E is the
analytical solution to (2.1a)–(2.1c), then E also satisfies ah(E,vh; ω, τ) = f(vh; ω)
for all vh ∈ Vh.

Proof. The proof follows the standard method to show consistency of discrete dG
variational formulations that is mentioned, e.g., in [30] for other fluxes. Since,
however, we were not able to find a proof in the literature for the fluxes chosen
above, we state it here completely.

If E is a solution of (2.1a)–(2.1c), then the following tangential jumps vanish,
Jµ−1∇×EK = 0 on FI

h , JEK = 0 on FI
h ∪FΓ

h , since E and µ−1∇×E are functions
in H(curl,Ω) and n×E = 0 on Γ1, . . . ,ΓM−1. This fact together with the identity

(µ−1∇×E,∇h × vh)Ω = (∇× (µ−1∇×E),vh)Ω − 〈Jµ−1∇×EK, {{vh}}〉FI
h

+ 〈{{µ−1∇×E}}, JvhK〉FI
h
− 〈n× (µ−1∇×E),vh〉FB

h

leads to the desired consistency:

ah(E,vh; ω, τ) = (∇× (µ−1∇×E),vh)Ω −
=0︷ ︸︸ ︷

〈Jµ−1∇×EK, {{vh}}〉FI
h

+ 〈{{µ−1∇×E}}, JvhK〉FI
h
− 〈n× (µ−1∇×E),vh〉FΓ

h
− 〈n× (µ−1∇×E),vh〉FΣ

h

− ((ω2ε+ iωσ)E,vh)Ω − iωλ

√
ε0µ

−1
0 〈ET , (vh)T 〉Σ − 〈{{µ−1∇×E}}, JvhK〉FI∪Γ

h
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− 〈JEK, {{µ−1∇h × vh}}〉FI∪Γ
h︸ ︷︷ ︸

=0

+ 〈τh−1JEK, JvhK〉FI∪Γ
h︸ ︷︷ ︸

=0

= (∇× (µ−1∇×E)− (ω2ε+ iωσ)E,vh)Ω − 〈n× (µ−1∇×E), (vh)T 〉Σ

− iωλ

√
ε0µ

−1
0 〈ET , (vh)T 〉Σ

= iω
√
ε0(Ja,vh)Ω + µ−1

0 〈g, (vh)T 〉Σ = f(vh; ω)

for all vh ∈ Vh, since 〈n× (µ−1∇×E),vh〉FΣ
h
= 〈n× (µ−1∇×E), (vh)T 〉Σ. �

3.2. Continuity and coercivity. The next step is to show coercivity of ah on Vh

and boundedness of an extension ãh to a vector space containing both, Vh and X ,
with respect to an energy norm on this space. Later on, these results will be the

basis for an a priori error analysis. First, let us define the space Ṽh that relates the
spaces Vh in (3.4) and X in (2.6):

Ṽh := Vh +X =
{
v ∈ L2(Ω;C3)

∣∣∃wh ∈ Vh, ∃u ∈ X : v = wh + u
}
.

Note that the sum of the two vector spaces Vh andX is not direct since {0} 6= Vh∩X .

On Ṽh we introduce the following dG-norm:

(3.11) ‖v‖2DG := ‖v‖2L2(Ω)3 + ‖∇h × v‖2L2(Ω)3 + ‖vT ‖2L2(Σ)3 + ‖h− 1
2 JvK‖2FI∪Γ

h

for all v ∈ Ṽh, where h is the function which has been defined in (3.2) and

(3.12) ‖w‖2FI∪Γ
h

:=
∑

F∈FI
h
∪FΓ

h

‖w‖2L2(F )3 , w ∈ L2
(
FI

h ∪ FΓ
h ;C

3
)
.

The following inverse inequality will be essential for the analysis of the dG scheme.

Lemma 3.3 (Inverse inequality). There exists a constant Cinv > 0, independent of
the mesh size h, such that for every vh ∈ Vh

(3.13) hT ‖vh‖2L2(∂T )3 ≤ Cinv ‖vh‖2L2(T )3 ∀T ∈ Th.
Proof. According to [31, Theorem 4] with polynomial degree p = 1, for vh ∈ Vh

and T ∈ Th it holds ‖vh‖2L2(∂T )3 ≤ 8
3

surface area(T )
volume(T ) ‖vh‖2L2(T )3 . This implies (3.13)

since on shape-regular meshes, there exists a constant C > 0, independent of the

element T , such that surface area(T )
volume(T ) ≤ C h−1

T for all T ∈ Th. �

Lemma 3.4. For every vh ∈ Vh it holds

(3.14) ‖h 1
2 {{vh}}‖2FI∪Γ

h
≤ Cinv ‖vh‖2L2(Ω)3 ,

with ‖ · ‖FI∪Γ
h

as in (3.12) and the constant Cinv in (3.13) of Lemma 3.3.

Proof. Let vh ∈ Vh. Then we can estimate as follows

‖h 1
2 {{vh}}‖2FI∪Γ

h

=
∑

F∈FI
h

hF

4

∥∥vh|TL + vh|TR

∥∥2
L2(F )3

+
∑

F∈FΓ
h

hF ‖vh‖2L2(F )3

≤ 1

4

∑

F∈FI
h

hF

(
‖vh|TL‖L2(F )3 + ‖vh|TR‖L2(F )3

)2
+
∑

F∈FΓ
h

hF ‖vh‖2L2(F )3

≤ 1

2

∑

F∈FI
h

hF

(
‖vh|TL‖2L2(F )3 + ‖vh|TR‖2L2(F )3

)
+
∑

F∈FΓ
h

hF ‖vh‖2L2(F )3
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≤ 1

2

∑

F∈FI
h

(
hTL‖vh|TL‖2L2(F )3 + hTR‖vh|TR‖2L2(F )3

)
+
∑

F∈FB
h

hF ‖vh‖2L2(F )3

≤
∑

T∈Th

∑

F∈Fh

F∈∂T

hT ‖vh|T ‖2L2(F )3 =
∑

T∈Th

hT ‖vh|T ‖2L2(∂T )3 ≤ Cinv

∑

T∈Th

‖vh|T ‖2L2(T )3

where we used the inverse inequality (3.13) in the last step. This proves the lemma
since the last term equals Cinv ‖vh‖2L2(Ω)3 . �

In order to extend ah to Ṽh× Ṽh, we need the following definition, [27, Sect. 3.5].

Definition 3.5. Let Assumption 2.1 a) on µ be satisfied. For u ∈ Ṽh we define
the lifting operator Lµ(u) ∈ Vh via

(3.15) (Lµ(u), µ
−1vh)Ω = 〈JuK, {{µ−1vh}}〉FI∪Γ

h
∀vh ∈ Vh.

Remark 3.6. For u ∈ Ṽh existence and uniqueness of Lµ(u) ∈ Vh satisfying (3.15)
follow from the complex-valued Riesz representation theorem, cf. [24, Thm. 2.30]:
For µ as in Assumption 2.1 a) the form (·, µ−1·)Ω = (µ−1·, ·)Ω is an inner product

on L2(Ω;C3). Vh ⊂ L2(Ω;C3) is a closed subspace and for every u ∈ Ṽh, the
mapping ℓµu(vh) := 〈{{µ−1vh}}, JuK〉FI∪Γ

h
, vh ∈ Vh, is a bounded linear functional

on Vh: Indeed, inequality (3.14) from above yields

|ℓµu(vh)| ≤ ‖h 1
2 {{µ−1vh}}‖FI∪Γ

h
‖h− 1

2 JuK‖FI∪Γ
h

≤ µ−1
− ‖h 1

2 {{vh}}‖FI∪Γ
h

‖u‖DG

≤
(
µ−1
−
√
Cinv ‖u‖DG

)
‖vh‖L2(Ω)3 .

Now we introduce the extended form ãh(·, ·; ω, τ) : Ṽh × Ṽh → C for ω, τ > 0 as

ãh(u,v; ω, τ) := (µ−1∇h × u,∇h × v)Ω − ω2(εu,v)Ω − iω(σu,v)Ω

− (Lµ(u), µ
−1∇h × v)Ω − (µ−1∇h × u,Lµ(v))Ω

+ 〈τh−1JuK, JvK〉FI∪Γ
h

− iωλ

√
ε0µ

−1
0 〈uT ,vT 〉Σ.(3.16)

Remark 3.7. Note that on Vh × Vh the sesquilinear form ãh(·, ·; ω, τ) in (3.16)
equals ah(·, ·; ω, τ) in (3.9).

Theorem 3.8 (Continuity). Let Assumption 2.1 be satisfied. Then for all ω, τ > 0
there is a constant γ = γ(µ, ε, σ, λ, ω, τ) > 0 with |ãh(u,v; ω, τ)| ≤ γ ‖u‖DG‖v‖DG

for all u,v ∈ Ṽh, i.e., ah is bounded on Ṽh × Ṽh w.r.t. the dG-norm in (3.11).

To prove Theorem 3.8 we will need the µ−1-orthogonal L2-projection onto Vh.

Definition 3.9. Let Assumption 2.1 a) on µ be satisfied. For u ∈ L2(Ω;C3) the
projection Πµu ∈ Vh is defined as the following Riesz representative:

(3.17) (µ−1Πµu,vh)Ω = (µ−1u,vh)Ω ∀vh ∈ Vh.

Note that Πµ satisfies the stability estimate

(3.18) ‖Πµu‖L2(Ω)3 ≤ µ+

µ−
‖u‖L2(Ω)3 ∀u ∈ L2(Ω;C3),

since it is readily seen that µ−1
+ ‖Πµu‖2L2(Ω)3 ≤ (µ−1Πµu,Πµu)Ω = (µ−1u,Πµu)Ω

≤ µ−1
− ‖u‖L2(Ω)3‖Πµu‖L2(Ω)3 .



MAXWELL’S EQUATIONS WITH IMPEDANCE BOUNDARY CONDITIONS 11

Proof of Theorem 3.8. Fix ω, τ > 0 and let u, v ∈ Ṽh. The properties (2.2), (2.3),
(2.4) of µ, ε and σ lead to
∣∣ah(u,v; ω, τ)

∣∣ =
∣∣∣(µ−1∇h × u,∇h × v)Ω − ω2(εu,v)Ω − iω(σu,v)Ω

− (Lµ(u), µ
−1∇h × v)Ω − (µ−1∇h × u,Lµ(v))Ω

+ 〈τh−1JuK, JvK〉FI∪Γ
h

− iωλ

√
ε0µ

−1
0 〈uT ,vT 〉Σ

∣∣∣

≤ µ−1
− ‖∇h × u‖L2(Ω)3‖∇h × v‖L2(Ω)3 +

(
ω2ε+ + ωσ+

)
‖u‖L2(Ω)3‖v‖L2(Ω)3

+ ‖µ−1Lµ(u)‖L2(Ω)3‖∇h × v‖L2(Ω)3 + ‖∇h × u‖L2(Ω)3‖µ−1Lµ(v)‖L2(Ω)3

+ τ ‖h− 1
2 JuK‖FI∪Γ

h
‖h− 1

2 JvK‖FI∪Γ
h

+ ωλ

√
ε0µ

−1
0 ‖uT ‖L2(Σ)3‖vT ‖L2(Σ)3

≤
(
µ−1
− + ω2ε+ + ωσ+ + 2µ+µ

−2
−
√
Cinv + τ + ωλ

√
ε0µ

−1
0

)
‖u‖DG ‖v‖DG

because we can estimate as follows (since Lµ(u) ∈ Vh and Πµw ∈ Vh)

‖µ−1Lµ(u)‖L2(Ω)3 = sup
w∈L2(Ω)3

(µ−1Lµ(u),w)Ω
‖w‖L2(Ω)3

= sup
w∈L2(Ω)3

(Lµ(u), µ
−1Πµw)Ω

‖w‖L2(Ω)3

= sup
w∈L2(Ω)3

〈JuK, {{µ−1Πµw}}〉FI∪Γ
h

‖w‖L2(Ω)3
≤ ‖h− 1

2 JuK‖FI∪Γ
h

sup
w∈L2(Ω)3

‖h 1
2µ−1{{Πµw}}‖FI∪Γ

h

‖w‖L2(Ω)3

≤ µ−1
−
√
Cinv ‖u‖DG sup

w∈L2(Ω)3

‖Πµw‖L2(Ω)3

‖w‖L2(Ω)3
≤ µ+µ

−2
−
√
Cinv‖u‖DG.

In this calculation we used the definitions (3.15) and (3.17) of the operators Lµ and
Πµ as well as the estimates (3.14) and (3.18). This proves the assertion. �

Theorem 3.10 (Coercivity). Let Assumption 2.1 be satisfied. Then there exists a
penalty parameter τ∗ > 0 such that for all τ > τ∗, and ω > 0 there is a constant
α = α(µ, ε, σ, λ, ω, τ) > 0 with |ah(vh,vh; ω, τ)| ≥ α ‖vh‖2DG for all vh ∈ Vh.

Proof. Fix ω > 0 and let vh ∈ Vh. Then,
∣∣ah(vh,vh; ω, τ)

∣∣ =
∣∣(µ−1∇h × vh,∇h × vh)Ω − ω2(εvh,vh)Ω − iω(σvh,vh)Ω

− 〈JvhK, {{µ−1∇h × vh}}〉FI∪Γ
h

− 〈{{µ−1∇h × vh}}, JvhK〉FI∪Γ
h

+ 〈τh−1JvhK, JvhK〉FI∪Γ
h

− iωλ

√
ε0µ

−1
0 ‖(vh)T ‖2L2(Σ)3

∣∣.

First, we use the inverse triangle inequality and Hölder’s inequality to obtain
∣∣ah(vh,vh; ω, τ)

∣∣ ≥
∣∣(µ−1∇h × vh,∇h × vh)Ω − ω2(εvh,vh)Ω

+ τ‖h− 1
2 JvhK‖2FI∪Γ

h
− iω(σvh,vh)Ω − iωλ

√
ε0µ

−1
0 ‖(vh)T ‖2L2(Σ)3

∣∣

− 2 ‖h− 1
2 JvhK‖FI∪Γ

h
‖h 1

2µ−1{{∇h × vh}}‖FI∪Γ
h

.

The definition of the absolute value of complex numbers yields

=

([
(µ−1∇h × vh,∇h × vh)Ω − ω2(εvh,vh)Ω + τ‖h− 1

2 JvhK‖2FI∪Γ
h

]2

+
[
ω2(σvh,vh)

2
Ω + 2ω2λ

√
ε0µ

−1
0 (σvh,vh)Ω ‖(vh)T ‖2L2(Σ)3
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+ ω2λ2ε0µ
−1
0 ‖(vh)T ‖4L2(Σ)3

]) 1
2

− 2 ‖h− 1
2 JvhK‖FI∪Γ

h
‖h 1

2µ−1{{∇h × vh}}‖FI∪Γ
h

.

Now we use property (2.2) of µ

≥
([

(µ−1∇h × vh,∇h × vh)Ω + τ‖h− 1
2 JvhK‖2FI∪Γ

h

]2

− 2ω2(εvh,vh)Ω

[
(µ−1∇h × vh,∇h × vh)Ω + τ‖h− 1

2 JvhK‖2FI∪Γ
h

]

+ ω4(εvh,vh)
2
Ω + ω2(σvh,vh)

2
Ω + ω2λ2ε0µ

−1
0 ‖(vh)T ‖4L2(Σ)3

) 1
2

− 2µ−1
− ‖h− 1

2 JvhK‖FI∪Γ
h

‖h 1
2 {{∇h × vh}}‖FI∪Γ

h

as well as
√
x+ y ≥ 1√

2
(
√
x +

√
y) for x, y ≥ 0 and we apply Young’s inequality

twice, for a ∈ (0, 1), δ > 0

≥ 1√
2

(
(1− a)

[
(µ−1∇h × vh,∇h × vh)Ω + τ‖h− 1

2 JvhK‖2FI∪Γ
h

]2

−
(
a−1 − 1

)
ω4(εvh,vh)

2
Ω + ω2(σvh,vh)

2
Ω

) 1
2

+
ωλ
√
ε0µ

−1
0√

2
‖(vh)T ‖2L2(Σ)3

− δ−1‖h− 1
2 JvhK‖2FI∪Γ

h
− δµ−2

− ‖h 1
2 {{∇h × vh}}‖2FI∪Γ

h
.

We note that
(
a−1 − 1

)
> 0 for a ∈ (0, 1) and use the properties (2.3) and (2.4) of

ε and σ in Assumption 2.1 as well as the inverse inequality (3.14):

≥ 1√
2

(
(1− a)

[
(µ−1∇h × vh,∇h × vh)Ω + τ‖h− 1

2 JvhK‖2FI∪Γ
h

]2

+ ω2
(
σ2
− −

(
a−1 − 1

)
ω2ε2+

)
‖vh‖4L2(Ω)3

) 1
2

+
ωλ

√
ε0√

2µ0
‖(vh)T ‖2L2(Σ)3

− δ−1‖h− 1
2 JvhK‖2FI∪Γ

h

− δCinvµ
−2
− ‖∇h × vh‖2L2(Ω)3 .

Once again
√
x+ y ≥ 1√

2
(
√
x+

√
y) together with the boundedness (2.2) of µ gives

≥ 1

2

(√
1− a

[
µ−1
+ ‖∇h × vh‖2L2(Ω)3 + τ‖h− 1

2 JvhK‖2FI∪Γ
h

]

+ ω
(
σ2
− −

(
a−1 − 1

)
ω2ε2+

) 1
2 ‖vh‖2L2(Ω)3

)
+

ωλ
√
ε0√

2µ0
‖(vh)T ‖2L2(Σ)3

− δ−1‖h− 1
2 JvhK‖2FI∪Γ

h
− δCinvµ

−2
− ‖∇h × vh‖2L2(Ω)3

= ‖∇h × vh‖2L2(Ω)3

(√
1− a

2µ+
− δCinvµ

−2
−

)

+ ‖vh‖2L2(Ω)3
ω
(
σ2
− −

(
a−1 − 1

)
ω2ε2+

) 1
2

2
+ ‖(vh)T ‖2L2(Σ)3

ωλ
√
ε0√

2µ0

+ ‖h− 1
2 JvhK‖2FI∪Γ

h

(
τ
√
1− a

2
− δ−1

)
.
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We may choose 1 > a >
ω2ε2+

ω2ε2
+
+σ2

−
, e.g., a =

ω2ε2++
σ2
−

2
ω2ε2

+
+σ2

−
and obtain

= ‖∇h × vh‖2L2(Ω)3

(
1

2µ+

(
σ2
−

2(ω2ε2+ + σ2
−)

) 1
2

− δCinvµ
−2
−

)

+ ‖vh‖2L2(Ω)3
ω

2

(
σ2
− − σ2

−
2ω2ε2+ + σ2

−
ω2ε2+

) 1
2

+ ‖(vh)T ‖2L2(Σ)3
ωλ

√
ε0√

2µ0

+ ‖h−1JvhK‖2FI∪Γ
h

(
τ

2

(
σ2
−

2(ω2ε2+ + σ2
−)

) 1
2

− δ−1

)

= ‖∇h × vh‖2L2(Ω)3



 σ−

2µ+

√
2(ω2ε2+ + σ2

−)
− δCinvµ

−2
−





+ ‖vh‖2L2(Ω)3
ω

2

(
ω2ε2+σ

2
− + σ4

−
2ω2ε2+ + σ2

−

) 1
2

+ ‖(vh)T ‖2L2(Σ)3
ωλ

√
ε0√

2µ0

+ ‖h−1JvhK‖2FI∪Γ
h



 τσ−

2
√
2(ω2ε2+ + σ2

−)
− δ−1



 .

Choose 0 < δ <
µ2
−σ−

2Cinvµ+

√
2(ω2ε2

+
+σ2

−)
. δ =

µ2
−σ−

4Cinvµ+

√
2(ω2ε2

+
+σ2

−)
yields

= ‖∇h × vh‖2L2(Ω)3
σ−

4µ+

√
2(ω2ε2+ + σ2

−)

+ ‖vh‖2L2(Ω)3
ω

2

(
ω2ε2+σ

2
− + σ4

−
2ω2ε2+ + σ2

−

) 1
2

+ ‖(vh)T ‖2L2(Σ)3
ωλ

√
ε0√

2µ0

+ ‖h−1JvhK‖2FI∪Γ
h



 τσ−

2
√
2(ω2ε2+ + σ2

−)
−

4Cinvµ+

√
2(ω2ε2+ + σ2

−)

µ2
−σ−



 .

Now set τ∗ :=
2
√

2(ω2ε2
+
+σ2

−)

σ−

4Cinvµ+

√
2(ω2ε2

+
+σ2

−)

µ2
−σ−

and choose the penalty parameter

τ > τ∗, e.g., τ =
2
√

2(ω2ε2
+
+σ2

−)

σ−

(
4Cinvµ+

√
2(ω2ε2

+
+σ2

−)

µ2
−σ−

+
ωλ

√
ε0√

2µ0

)
. Then,

≥ min





σ−

4µ+

√
2(ω2ε2+ + σ2

−)
,
ω

2

(
ω2ε2+σ

2
− + σ4

−
2ω2ε2+ + σ2

−

) 1
2

,
ωλ

√
ε0√

2µ0




 ‖vh‖2DG,

and everything is proven. �

Corollary 3.11 (Existence and uniqueness ofEh). Let Assumption 2.1 be satisfied.
Then for every frequency ω > 0, and τ > τ∗ there exists a unique function Eh ∈ Vh

solving (3.10), i.e., ah(Eh,vh; ω, τ) = f(vh; ω) for all vh ∈ Vh.

Proof. Since Vh is finite dimensional, it is a Hilbert space w.r.t. the inner product

(uh,vh)DG := (uh,vh)Ω + (∇h × uh,∇h × vh)Ω
+ 〈(uh)T , (vh)T 〉Σ + 〈h−1JuhK, JvhK〉FI∪Γ

h
, uh,vh ∈ Vh.
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Due to Theorem 3.8 and Theorem 3.10, the form ah(·, ·; ω, τ) is bounded and co-

ercive w.r.t. the induced norm ‖ · ‖DG =
√
(·, ·)DG in (3.11) for any ω > 0, and

τ > τ∗ so that by Lax-Milgram there exists a unique function Eh ∈ Vh satisfying
(3.10). �

3.3. Error in the energy norm. For the error analysis we will need some prop-
erties of the projection Πµ which has been introduced in Definition 3.9. In order to
derive them we introduce the L2-orthogonal projection Πh onto the space Vh. For
w ∈ L2(Ω;C3) the projection Πhw ∈ Vh satisfies

(3.19) (Πhw,vh)Ω = (w,vh)Ω ∀vh ∈ Vh.

Lemma 3.12. For a node a in the mesh Th define ∆a as the set of all tetrahedra
sharing this vertex. Then there exists a constant C > 0, independent of T and hT ,
such that for any v ∈ L2(Ω;C3) with v|∆a

∈ Ht(∆a;C
3), t ∈

(
1
2 , 1
]
, any T ∈ Th

and any vertex a of T the projection Πh in (3.19) satisfies

(3.20) ‖v −Πhv‖2L2(T )3 + hT ‖v − Πhv‖2L2(∂T )3 ≤ Ch2t
T ‖v‖2Ht(∆a)3

.

Proof. In two dimensions, this theorem follows from the properties of the interpo-
lation operator in [11, Thm. 1] or [5, Thm. 2.1 and Rem. 4]. As mentioned in [17,
Sect. A.3], the proof can be directly adopted to the case of higher dimensions. �

The estimate (3.20) for the L2-orthogonal projection Πh on Vh provides us now
also with an error bound for the µ−1-orthogonal projection Πµ in Definition 3.9.

Lemma 3.13. There exists a constant C = C(µ) > 0, independent of T and hT ,
such that for any v ∈ L2(Ω;C3) with v|∆a

∈ Ht(∆a;C
3), t ∈

(
1
2 , 1
]
, any T ∈ Th

and any vertex a of T the projection Πµ in (3.17) satisfies

(3.21) ‖v −Πµv‖2L2(T )3 + hT ‖v − Πµv‖2L2(∂T )3 ≤ Ch2t
T ‖v‖2Ht(∆a)3

.

Proof. Let T ∈ Th, a be a vertex of T and v ∈ Ht(∆a;C
3) for some t ∈

(
1
2

]
.

µ−1
+ ‖Πhv −Πµv‖2L2(T )3 ≤ (µ−1(Πhv −Πµv),Πhv −Πµv)T

= (µ−1Πhv,Πhv −Πµv)T − (µ−1v,Πhv −Πµv)T

= (µ−1(Πhv − v),Πhv −Πµv)T ≤ µ−1
− ‖Πhv − v‖L2(T )3‖Πhv −Πµv‖L2(T )3

and, therefore,

‖Πhv −Πµv‖L2(T )3 ≤ µ+

µ−
‖Πhv − v‖L2(T )3 , as well as(3.22)

‖v −Πµv‖L2(T )3 ≤ ‖v −Πhv‖L2(T )3 + ‖Πhv −Πµv‖L2(T )3

≤
(
1 +

µ+

µ−

)
‖v −Πhv‖L2(T )3 ≤

(
1 +

µ+

µ−

)
Cht

T ‖v‖Ht(∆a)3

for any corner a of T ∈ Th by Lemma 3.12. For the L2-norm on ∂T we may use
the inverse inequality (3.13), (3.20) for Πh and (3.22). Thus,

hT ‖v −Πµv‖2L2(∂T )3 ≤ hT

(
‖v −Πhv‖L2(∂T )3 + ‖Πhv −Πµv‖L2(∂T )3

)2

≤ 2hT ‖v −Πhv‖2L2(∂T )3 + 2hT ‖Πhv −Πµv‖2L2(∂T )3

≤ 2hT ‖v −Πhv‖2L2(∂T )3 + 2Cinv‖Πhv −Πµv‖2L2(T )3

≤ 2hT ‖v −Πhv‖2L2(∂T )3 + 2Cinv
µ2
+

µ2
−
‖v −Πhv‖2L2(T )3
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≤ C
(
hT ‖v −Πhv‖2L2(∂T )3 + ‖v −Πhv‖2L2(T )3

)
≤ Ch2t

T ‖v‖2Ht(∆a)3
,

so that the lemma is proven. �

For ω, τ > 0 we define the residual for vh ∈ Vh by

rh(vh; ω, τ) := ãh(E,vh; ω, τ)− f(vh; ω) = ãh(E −Eh,vh; ω, τ),

where E denotes the exact solution of (2.1a)–(2.1c) and Eh the dG approximation
as a solution of (3.10). We are able to estimate the absolute value of the residual
rh as follows.

Proposition 3.14. Let Assumption 2.1 be satisfied, and E be the unique exact
solution to (2.1a)–(2.1c) for a frequency ω > 0 with ∇×E ∈ Ht(Ω;C3) for some
t ∈
(
1
2 , 1
]
. Then, for τ > 0, the residual can be expressed as

(3.23) rh(vh; ω, τ) = 〈{{µ−1(∇×E −Πµ(∇×E))}}, JvhK〉FI∪Γ
h

∀vh ∈ Vh.

In addition, the following estimate holds

|rh(vh; ω, τ)| ≤ Cht‖vh‖DG‖∇×E‖Ht(Ω)3 ∀vh ∈ Vh.

Proof. In order to derive representation (3.23), let ω, τ > 0, and vh ∈ Vh.

rh(vh; ω, τ) = ãh(E,vh; ω, τ)− f(vh; ω)

= (µ−1∇×E,∇h × vh)Ω − ω2(εE,vh)Ω − iω(σE,vh)Ω

− (µ−1∇×E,Lµ(vh))Ω − iωλ

√
ε0µ

−1
0 〈ET , (vh)T 〉Σ

− (Lµ(E), µ−1∇h × vh)Ω + 〈τh−1JEK, JvhK〉FI∪Γ
h

− f(vh; ω).

The first two expressions in the last line vanish since JEK = 0 on FI∪Γ
h and, hence,

Lµ(E) = 0. Applying integration by parts for the integral (µ−1∇ × E,∇ × vh)T
on every element T ∈ Th and afterwards the dG formula (3.3) yields

= (∇× (µ−1∇×E),vh)Ω − ((ω2ε+ iωσ)E,vh)Ω − (µ−1Πµ(∇×E),Lµ(vh))Ω

−
∑

T∈Th

〈nT × (µ−1∇×E),vh〉∂T − iωλ

√
ε0µ

−1
0 〈ET , (vh)T 〉Σ − µ−1

0 〈g, (vh)T 〉Σ

− iω
√
ε0 (Ja,vh)Ω

= −〈Jµ−1∇×EK, {{vh}}〉FI
h
+ 〈{{µ−1∇×E}}, JvhK〉FI

h
+ 〈µ−1∇×E,n× vh〉FΓ

h

− 〈n× (µ−1∇×E),vh〉FΣ
h
− 〈{{µ−1Πµ(∇×E)}}, JvhK〉FI∪Γ

h
− µ−1

0 〈g, (vh)T 〉Σ

− iωλ

√
ε0µ

−1
0 〈ET , (vh)T 〉Σ

= 〈{{µ−1∇×E − µ−1Πµ(∇×E)}}, JvhK〉FI∪Γ
h

− 〈n× (µ−1∇×E)

+ iωλ

√
ε0µ

−1
0 ET + µ−1

0 g, (vh)T 〉Σ = 〈{{µ−1(∇×E − Πµ(∇×E))}}, JvhK〉FI∪Γ
h

,

since Jµ−1∇×EK = 0 on FI
h , 〈n× (µ−1∇×E),vh〉FΣ

h
= 〈n× (µ−1∇×E), (vh)T 〉Σ

and E satisfies (2.1c). Using this representation, we can estimate as follows

|rh(vh; ω, τ)| =
∣∣〈{{µ−1(∇×E −Πµ(∇×E))}}, JvhK〉FI∪Γ

h

∣∣

≤ ‖h− 1
2 JvhK‖FI∪Γ

h
‖h 1

2µ−1{{∇×E −Πµ(∇×E)}}‖FI∪Γ
h



16 KRISTIN KIRCHNER, KARSTEN URBAN, AND OLIVER ZEEB

≤ µ−1
− ‖vh‖DG

(
∑

F∈Fh

hF ‖{{∇×E −Πµ(∇×E)}}‖2L2(F )3

) 1
2

≤ C ‖vh‖DG

(
∑

T∈Th

hT ‖∇×E −Πµ(∇×E)‖2L2(∂T )3

) 1
2

≤ Cht ‖vh‖DG‖∇×E‖Ht(Ω)3 ,

where we used estimate (3.21) for Πµ in the last step. �

Next, we refer to an error estimate for the Nédélec interpolant with respect to
the ‖ · ‖X -norm for the case p = 1, i.e., for piecewise affine functions.

Lemma 3.15 (Nédélec interpolant). Let v ∈ Ht(Ω;C3) with ∇ × v ∈ Ht(Ω;C3)
and vT ∈ Ht

‖(Σ)
3 ∩H(curlΣ,Σ) for some t ∈

(
1
2 , 1
]
, where

Ht
‖(Σ)

3 :=
{
w ∈ L2

t (Σ;C
3) | ∃ ξ ∈ Ht+ 1

2 (Ω;C3) : w = γT (ξ) = (n× ξ|Σ)× n
}

and H(curlΣ,Σ) :=
{
w ∈ L2

t (Σ;C
3) | ∇Σ ×w ∈ L2(Σ;C)

}
, where ∇Σ× denotes the

surface curl operator on the surface Σ, cf. [7, Prop. 3.6]. Then there exists a function
ΠNv ∈ Wh ∩X, where Wh :=

{
v ∈ H(curl,Ω) |v|T ∈ R1(T ) ∀T ∈ Th

}
⊂ Vh and

R1(T ) :=
{
v : T → C3 | ∃a, b ∈ C3 : v(x) = a+ b× x ∀x ∈ T

}
satisfying

‖v −ΠNv‖X =
[
‖v −ΠNv‖2H(curl,Ω) + ‖(v −ΠNv)T ‖2L2(Σ)3

] 1
2

≤ Cht
[
‖v‖Ht(Ω)3 + ‖∇× v‖Ht(Ω)3 + ‖vT ‖Ht

‖
(Σ)3 + ‖∇Σ × (vT )‖L2(Σ)

]
,

where ‖w‖Ht
‖
(Σ)3 := inf

ξ∈Ht+ 1
2 (Ω)3

{
‖ξ‖

Ht+ 1
2 (Ω)3

∣∣ γT (ξ) = w
}
.

Proof. See [16, Lem. 5.2] and [8, Lem. 15]. �

Proposition 3.16 (Partition of the error). Let Assumption 2.1 be satisfied, and E
solve (2.1a)–(2.1c) for ω > 0. If Eh is the dG approximation in (3.10) for τ > τ∗,
then there exists a constant C > 0, independent of h, such that

‖E −Eh‖DG ≤ C

[
inf

vh∈Vh

‖E − vh‖DG + sup
wh∈Vh\{0}

|rh(wh; ω, τ)|
‖wh‖DG

]
.

Proof. Let vh ∈ Vh. Then, ‖E−Eh‖DG ≤ ‖E− vh‖DG + ‖vh−Eh‖DG, and using
coercivity and continuity of ah and ãh, respectively,

α ‖vh −Eh‖2DG ≤ |ah(vh −Eh,vh −Eh; ω, τ)| = |ãh(vh −Eh,vh −Eh; ω, τ)|
≤ |ãh(vh −E,vh −Eh; ω, τ)|+ |ãh(E −Eh,vh −Eh; ω, τ)|
≤ γ ‖vh −E‖DG‖vh −Eh‖DG + |rh(vh −Eh; ω, τ)| ,

which implies

‖vh −Eh‖DG ≤ C

[
‖vh −E‖DG +

|rh(vh −Eh; ω, τ)|
‖vh −Eh‖DG

]

≤ C

[
‖vh −E‖DG + sup

wh∈Vh

|rh(wh; ω, τ)|
‖wh‖DG

]
.

The assertion follows now by taking the infimum over vh in Vh. �
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Theorem 3.17 (Error in the energy norm). Let Assumption 2.1 be satisfied and
assume that the solution E of (2.1a)–(2.1c) for ω > 0 satisfies E ∈ Ht(Ω;C3) with
∇×E ∈ Ht(Ω;C3) and ET ∈ Ht

‖(Σ)
3 ∩H(curlΣ,Σ) on Σ for some t ∈

(
1
2 , 1
]
. Let

Eh ∈ Vh be the corresponding dG approximation solving (3.10) for τ > τ∗. Then
there exists a constant, independent of h, such that

‖E −Eh‖DG ≤ Cht
[
‖E‖Ht(Ω)3 + ‖∇×E‖Ht(Ω)3

+ ‖ET ‖Ht
‖
(Σ)3 + ‖∇Σ × (ET )‖L2(Σ)

]
.(3.24)

Proof. This result follows from Proposition 3.14, Lemma 3.15 and Proposition 3.16:

‖E −Eh‖DG ≤ C

[
inf

vh∈Vh

‖E − vh‖DG + sup
wh∈Vh

|rh(wh; ω, τ)|
‖wh‖DG

]

≤ C

[
inf

vh∈Vh

‖E − vh‖DG + ht ‖∇×E‖Ht(Ω)3

]

≤ C
[
‖E −ΠNE‖DG + ht ‖∇×E‖Ht(Ω)3

]

≤ Cht
[
‖E‖Ht(Ω)3 + ‖∇×E‖Ht(Ω)3 + ‖ET ‖Ht

‖
(Σ)3 + ‖∇Σ × (ET )‖L2(Σ)

]
,

which proves the theorem. �

4. Reduced Basis Method

The aim of this section is to present an approach which allows to investigate elec-
tromagnetic wave propagation by computing reliable approximations of the electric
field density E as a solution to the model problem presented in Section 2 for many
different values of the frequency ω – a so-called multi-query problem – in a reason-
able time.

Our starting point hereby is the dG formulation (3.10). In the context of the
Reduced Basis Method (RBM) the detailed, i.e., high dimensional approximation
Eh to the exact solution E of (2.5) is called truth approximation. The key to set up
the formulation for a lower dimensional reduced basis approximation is the idea that
the sets of all possible truth approximations MN := {Eh(ω) solves (3.10) |ω ∈ D}
lie on a low-dimensional manifold in Vh, [29]. Instead of computing the –expensive–
truth approximations Eh(ω) for all frequencies ω in a given parameter domain D,
the RBM amounts to finding a suitable approximation space XN ⊂ Vh of MN

with lower dimension N := dim(XN ) ≪ dim(Vh) =: N = Nh and then computing
–cheap– approximations EN (ω) ∈ XN . This is done using snapshots, i.e., truth
approximations for N different values of the parameter, cf. [29],

XN := span {Eh(ω) solves (3.10) |ω ∈ SN} , SN := {ω1, . . . , ωN} ⊂ D.

Afterwards one computes the Galerkin approximation in XN , i.e.,b

ah(EN (ω),vN ; ω) = f(vN ; ω) ∀vN ∈ XN .

The spacesXN are called reduced basis spaces, a standard procedure to construct
them is the Greedy algorithm, see [6, 29]. This algorithm builds up the space XN

iteratively, enriching it with one new basis function in each iteration. The particular
choice of the basis function is based upon an error indicator, the algorithm therefore
depends on efficiently computable a posteriori error bounds ‖Eh(ω)−EN (ω)‖DG ≤

bTo shorten notation we omit τ since it is chosen constant in our numerical experiments.
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∆N (ω). The Greedy procedure then maximizes the efficiently computable ∆N w.r.t.
an appropriate training set Ξtrain ⊂ D to define the snapshots.

The key to these efficiently evaluable error bounds as well as the efficiency of the
calculation of the RBM solution EN (ω) is an affine dependency of ah and f w.r.t.
the parameter ω, i.e., they must be of the following form:

ah(uh,vh; ω) =

Qa∑

q=1

Θa
q(ω)a

q
h(uh,vh), f(vh; ω) =

Qf∑

q=1

Θf
q (ω)f

q(vh)

for all uh,vh ∈ Vh and all ω ∈ D with parameter-dependent functions Θa
q(ω),

Θf
q (ω) : D → R, as well as sesquilinear forms aqh(·, ·) and antilinear forms fq(·)

which are independent of the parameter ω.
The online-efficiency is obtained via precomputing the values aqh(ξi, ξj), i, j ∈
{1, . . . , N}, q ∈ {1, . . . , Qa} and f q(ξi), i ∈ {1, . . . , N}, q ∈ {1, . . . , Qf} in a
precedent, possibly time-consuming offline phase, where {ξ1, . . . , ξN} denotes a ba-
sis of the RB space XN . The mentioned error estimator ∆N (ω) can, e.g., be based
upon the dual norm of the RB residual rN (·; ω) = f(·; ω)− ah(EN , ·; ω) : Vh → C

and the coercivity constant α(ω) of ah(·, ·; ω). It takes the following form, cf. [29]:

∆N (ω) =
‖rN (·; ω)‖DG∗

α(ω)
=

1

α(ω)
sup

vh∈Vh

rN (vh; ω)

‖vh‖DG
.

For ω ∈ D, the dual norm of rN (·; ω) can be evaluated via the dG-norm of its Riesz
representative vrN (ω) ∈ Vh which satisfies ‖vrN (ω)‖DG = ‖rN (·; ω)‖DG∗ . Based
upon the affine decomposition of ah and f , also the norm of the Riesz represen-
tative vrN (ω) is offline-online-decomposable (e.g. [10, 18, 29]) and can therefore
be evaluated efficiently in the online phase. The coercivity constant α(ω) can be
computed by an eigenvalue problem or it can be approximated via the Successive
Constraint Method (SCM), [22].

5. Numerical results

In this section we present results of some numerical experiments for the inves-
tigated problem being treated with the RBM. As already mentioned, one crucial
ingredient of the RBM is the affine decomposition of ah and f w.r.t. the parameter.
For our dG formulation (3.10), this affine form is readily given by:

Θa
1(ω) :≡ 1, a1(uh,vh) := (µ−1∇h × uh,∇h × vh)Ω − 〈JuhK, {{µ−1∇h × vh}}〉FI∪Γ

h

− 〈{{µ−1∇h × uh}}, JvhK〉FI∪Γ
h

+ 〈τh−1JuhK, JvhK〉FI∪Γ
h

,

Θa
2(ω) := ω2, a2(uh,vh) := −(εuh,vh)Ω,

Θa
3(ω) := ω, a3(uh,vh) := −i(σuh,vh)Ω − iλ

√
ε0µ

−1
0 〈(uh)T , (vh)T 〉Σ,

Θf
1(ω) := ω, f1(vh) := i

√
ε0(Ja,vh)Ω,

Θf
2(ω) :≡ 1, f2(vh) := 〈µ−1

0 g, (vh)T 〉Σ,
and, therefore, Qa = 3, Qf = 2.
The models we use for our numerical tests were created using COMSOL Mul-

tiphysics 4.2a. Details of the implementation are given in Appendix A. All RB
calculations were implemented in RBmatlab, see http://www.morepas.org.

http://www.morepas.org
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Figure 2. Geometry

As geometry we use a 3d-Block of side length 1 where we cut out two smaller
blocks, each of side length 1/4. One of the smaller blocks is placed parallel to
the large block, one is rotated by 45 degrees about the z-axis, see Figure 2. The
two interior blocks are supposed to be perfectly conducting (2.1b), whereas an
impedance boundary condition (2.1c) is imposed on the exterior boundary of the
block. We implemented two versions of the model: Model 1 has constant coefficients
µ ≡ µ0 = 4π · 10−7, ε ≡ ε0 = 8.854 · 10−12, and σ ≡ 0.01. In Model 2 the
coefficients are given by µ(x) = µ0(1 + ‖x− (0.5, 0.5, 0.5)T‖), ε(x) = ε0(1 + ‖x‖),
and σ(x) = 0.01(1 + 0.5 x2

1). Referring to [21], we chose τ = 1000/µ0 for both
models. With these two models we performed a Greedy sampling with a parameter
domain D = [1, 50] GHz which was discretized into 97 equidistant sampling points
to obtain Ξtrain.

Note also that we are dealing with complex-valued degrees of freedom (DOFs),
which has to be taken into account, when choosing a solver. Since the MATLAB
backslash-solver (at least for finer discretizations) was not capable of an efficient
numerical solution, we used MUMPS [2, 3], which allows us to use about 300,000
DOFs on an iMac, 3.2 GHz Intel Core i3 with 8GB RAM.

In absence of an analytic solution to (2.1a)–(2.1c), we investigate ‖E⋆ −Eh‖DG

for decreasing mesh size h in order to validate our code w.r.t. (3.24). We start with
h = 1 and refine the mesh uniformly until we end up at a mesh size of h = 1/16.
Thus, we obtain conforming meshes. The solution E1/16 consisted of 1,413,120
DOFs and was used as reference solution E⋆, whose computation took about 7
hours. The h-convergence results are shown in Table 1.

Model 1 Model 2
h # DOFs ω1 = 1 ω2 = 10 ω1 = 1 ω2 = 10
1 345 1.4637 2.5759 1.1366 4.3942
1/2 2,760 0.9465 0.6149 0.7506 1.1621
1/4 22,080 0.5653 0.2853 0.4521 0.7041
1/8 176,640 0.2886 0.1357 0.2286 0.2679

Table 1. h-convergence: ‖E⋆ −Eh‖DG for different h
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(b) Model 2

Figure 3. Real error and error estimator during the Greedy algorithm

For the Greedy algorithm we used different mesh sizes that are pre-defined by
COMSOL. The number of DOFs vary from 7,818 to 290,673. In Figure 3 we show
the convergence of the error during the Greedy algorithm when using the real error
(strong Greedy) as well as the error estimator as error indicator. There are several
versions of the SCM for complex-valued problems, e.g. [10, 18, 19]. As proposed in
[26], we instead obtained the coercivity constant via an interpolation method based
on precalculated values of α(ω).

We observe an exponential decay of the error. As expected, the decay is faster
for Model 1 than for Model 2 which is the more sophisticated one. For Model
1 the reduced linear systems became unstable when creating reduced bases with
more than 50 basis functions. At this point, the error measured in the dG-norm
‖ · ‖DG was below 10−4. For Model 2 the bases became unstable for N > 73 where
the maximum error over the sampling set was at about 10−3. The offline phase
took between 3 minutes for the coarse meshes and 18 hours for the finer meshes.
In Table 2 we show the online times needed for performing a detailed respectively
reduced simulation. The online speedup factors vary from 112 to 75,859. One
can also observe that for both models the error decays slightly faster for the finer
discretized versions. This means that the physics of the problem can be represented
better with a finer mesh and can therefore also be reproduced better with a reduced
solution.

In order to verify the robustness of our RB approach, we finally investigate the
dependency over the whole frequency range. In Figure 4, we show the error and
error estimator over the whole parameter domain for the two models with 92,481
DOFs and reduced bases with dimension N=20 (Model 1) resp. N=40 (Model 2).
As desired, the error estimator resembles the behavior of the true error and both
stay in an acceptable range, which shows the robustness of our dG discretization
as well as of the RBM.

Appendix A. Description of the COMSOL model

In this section we provide details about the COMSOL model which we used for
our numerical experiments. We use the Weak Form PDE from Mathematics →
PDE interfaces and define three Dependent variables E1, E2, and E3. For reasons
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(a) Model 1, N=20
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(b) Model 2, N=40

Figure 4. Error and error estimator for Model 1 with basis length
N=20 (left) and Model 2 with basis length N=40 (right)

Model 1 (N = 50) Model 2 (N = 73)
# DOFs 290,673 92,481 47,598 7,818 290,673 92,481 47,598 7,818
tdetailed[sec] 158.767 14.872 4.923 0.258 157.087 14.710 4.831 0.270
treduced[sec] 0.002 0.002 0.001 0.001 0.002 0.002 0.002 0.002
speedup 67,449 9,487 3,648 219 75,859 7,280 2,534 112

Table 2. Runtimes

of compactness we only show the first entry here when dealing with vectors or mul-
tiple similar expressions.

Table 3 shows the weak expressions (1), (2) and (3) defined by the weak form
PDE node on the whole domain. The jump and average terms that are valid on
mesh boundaries are given in Table 4. The boundary conditions on the two interior
blocks are given in Table 5 whereas the exterior boundary condition is given in
Table 6. We present the Parameters and Variables which we defined in Table 7,
respectively, Table 8. A physics-controlled mesh was used, the Element size varied
from coarser to finer. In all cases we used Discontiuous Lagrange as shape function
type.

Weak

Form

Value

weak (1) 1/mu *rotE1*rotv1 - omega*omega*epsilon *E1*test(E1)
-i*omega*sigma*E1*test(E1)- i*omega*sqrt(epsilon0)*Ja1*test(E1)

weak (2),(3) accordingly
Table 3. Weak Form PDE, defined on the whole domain
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Weak Contributions

on Mesh Boundaries

Value

Weak expression (1) -jumpE1 * 1/mu * avrotv1 -1/mu *avrotE1 *jumpv1
+tau/h*jumpE1*jumpv1

Weak expression (2),(3) accordingly
Table 4. Weak Contributions on Mesh Boundaries, defined on
the whole domain.

Weak Contribution Value

Weak expression (1) -(ny*E3-nz*E2)*1/mu*rotv1
-1/mu*rotE1*(ny*test(E3)-nz*test(E2))
+tau/h*(ny*E3-nz*E2)*(ny*test(E3)-nz*test(E2))

Weak expression (2),(3) accordingly
Table 5. Weak Contributions on Interior Block Boundaries, de-
fined on the two interior blocks

Weak Contribution Value

Weak expression (4) - (g1*vT1+g2*vT2+g3*vT3) / mu0
Weak expression (5) -i*omega*lambda *sqrt(epsilon0/mu0) * ( ET1*vT1

+ ET2*vT2 + ET3*vT3 )
Table 6. Exterior Boundary Conditions, defined on the outer boundary

Global Parameters Expression Description

omega 1*1e9 frequency, ω ∈ [1 · 1e9, 50 · 1e9]
epsilon0 8.854*1e-12 electric permittivity in vacuum
Ja1 1,00E+004 electric current density, first entry
Ja2 1,00E+004 electric current density, second entry
Ja3 1,00E+004 electric current density, third entry
mu0 4*pi*1e-7 magnetic permeability in vacuum
tau 1000/mu0 penalty parameter for dG formulation
lambda 1 λ > 0, intensity of impedance
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Variables Expression Description

rotE1 E3y-E2z ∇h × E, first entry
rotv1 test(E3y)-test(E2z) ∇h × v, first entry
jumpE1 dny*down(E3)-dnz*down(E2)

+uny*up(E3)-unz*up(E2)
[[E]] on FI

h , first entry

jumpv1 dny*test(down(E3))-dnz*test(down(E2))
+uny*test(up(E3))-unz*test(up(E2))

[[v]] on FI
h , first entry

avrotE1 0.5*(up(E3y)-up(E2z)
+down(E3y)-down(E2z))

{{∇h × E}}, first entry

avrotv1 0.5*(test(up(E3y))-test(up(E2z))
+test(down(E3y))-test(down(E2z)))

{{∇h × v}}, first entry

ET1 nz*E1*nz-nx*E3*nz
-nx*E2*ny+ny*E1*ny

ET , first entry

vT1 nz*test(E1)*nz-nx*test(E3)*nz
-nx*test(E2)*ny+ny*test(E1)*ny

vT , first entry

mu mu0*(1+distance midpoint) magnetic permeability
sigma 0.01*(1+0.5*xˆ2) electric conductivity
epsilon epsilon0*(1+distance 000) electric permittivity
distance
midpoint

sqrt((0.5-x)ˆ2 + (0.5-y)ˆ2 + (0.5-z)ˆ2) ‖x− (12 ,
1
2 ,

1
2 )

T ‖

distance 000 sqrt(xˆ2+yˆ2+zˆ2) ‖x‖
g1, g2, g3 t1x, t1y, t1z g ∈ L2

t (Σ)
3
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