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A REDUCED BASIS METHOD FOR PARABOLIC PARTIAL

DIFFERENTIAL EQUATIONS WITH PARAMETER FUNCTIONS

AND APPLICATION TO OPTION PRICING

ANTONIA MAYERHOFER AND KARSTEN URBAN

Abstract. We consider the Heston model as an example of a parameterized
parabolic partial differential equation. A space-time variational formulation is

derived that allows for parameters in the coefficients (for calibration) as well

as choosing the initial condition (for option pricing) as a parameter function.
A corresponding discretization in space and time amd initial condition is in-

troduced and shown to be stable. Finally, a Reduced Basis Method (RBM) is

introduced that is able to use parameter functions also for the initial condition.
Corresponding numerical results are shown.

1. Introduction

Calibration and pricing are two standard tasks in numerical finance. Using a
PDE-model based upon the Feynman-Kac theorem (see also Proposition 2.1 below),
calibration amounts fitting unknown parameters in the partial differential equation
(PDE) to historical market data in a least-squares sense e.g. by some optimization
scheme. This usually requires solving the same PDE with many different values of
the parameters (given by the iterative optimization method). Such a problem is
also termed ‘multi-query’.

We consider the Heston model, which allows for a non-constant volatility, [20].
Having in mind that every model is wrong to a certain extend, constant volatilities
are of course a severe limitation, which has been our motivation for considering the
Heston model here. The Heston model leads to a system of parabolic diffusion-
convection-reaction PDEs with non-constant coefficients, which makes the model
also interesting from a numerical point of view.

Moreover, as we shall see below, the Heston model already contains 4 parame-
ters, i.e., calibration requires solving a 4-dimensional PDE-constrained optimization
problem. Of course, by extending the model, the number of parameters can easily
be enlarged leading to truly high-dimensional parameter spaces.

In the PDE-framework, pricing amounts solving the same kind of parabolic prob-
lem with different initial conditions determined by different payoff functions. The
payoff is usually determined by the specific design of the financial product, so that
a flexibility in the choice of the payoff function enables efficient product design.

Date: August 12, 2014.

2010 Mathematics Subject Classification. 35K85,49J40,65M15,91B25, 91G80.
Key words and phrases. Option pricing, parabolic problems, reduced basis method, error

estimates.
The authors have been supported by the Deutsche Forschungsgemeinschaft (DFG) under GrK

1100. We are grateful to Robert Stelzer for helpful discussions and comments.

1



2 ANTONIA MAYERHOFER AND KARSTEN URBAN

Both problems, calibration and pricing need to be solved rapidly, often ‘online’
e.g. in ‘real time’ as for risk management.

Such kind of rapid online multi-query problems are in the scope of Reduced Basis
Methods (RBM), that have been developed and widely investigated for parametric
PDEs, in particular of elliptic and parabolic type, see, e.g. [14, 25] and references
therein. Roughly speaking, the RBM involves an offline and an online computing
phase. In the offline phase, a detailed, but costly numerical model (sometimes called
‘truth’), is used to construct a reduced space. The construction is based upon a
reliable and effective error estimate which in addition can be evaluated efficiently.
Moreover, this error estimate allows to compute an a posteriori bound, which makes
RB-approximations certified.

Similar to [30, 31], we suggest a space-time variational formulation of the para-
bolic PDE-system. This leads to a Petrov-Galerkin method containing space and
time. Obviously, the time is added as additional dimension, but it allows for sharp
error bounds for a corresponding discretization in space and time. Moreover, simi-
lar to [30, 31] we show that a specific choice of trial and test spaces in the Petrov-
Galerkin method lead to a Crank-Nicholson scheme also for the case of varying
initial conditions. This requires also a discretization of the initial condition so
that we end up with a detailed discrete problem in space and time and intitial
condition, which is used as ‘truth’ for a RBM. It turns out that the space-time
approach transfers an initial condition parameter function into a parameter within
the PDE-coefficients.

Even though RBM have already been used in numerical finance, see e.g. [5, 16,
28], and even though the current paper is clearly only a first step, we think to the
best of our knowledge that we introduce some novel aspects: (a) We use the initial
condition of an evolution problem as a parameter within a RBM, which has not
been considered so far; (b) The initial condition is a parameter function, which
in particular means that the parameter space is infinite-dimensional. We solve
this problem by expanding the initial condition in an appropriate basis, which is
somehow similar to e.g. [17, 22]. (c) A space-time variational formulation is used
to treat a non-homogeneous initial condition by a two-step method, namely first
approximating the intial condition and then using this as a parameter in the right-
hand side for determining the evolution. We note, that this is not restricted to
linear problems only, see Remark 3.3 and §3.3.5 below.

The remainder of this paper is organized as follows. In Section 2, we collect
preliminaries on the Heston model and Reduced Basis Methods (RBM). Section 3
is devoted to the review of the space-time variational formulation, in particular for
parabolic parametric partial differential equations. This includes the error estimate
from [30, 31], which is the basis for the RB error estimate. Next, we introduce a
discretization. In space and time, we follow [30, 31] and use finite elements. In
addition, we introduce a discretization for the initial condition and show that we
can decompose the numerical computations into (1) a Galerkin-type problem for
the approximation of the initial condition and (2) a time-stepping scheme for the
evolution.

The next step is the introduction of a Reduced Basis Method (RBM) in particular
for parameter functions in Section 4. Again, we derive a two-step method, here for
the construction of the reduced basis. We derive stable RB trial and test spaces
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for the reduced Petrov-Galerkin scheme and show an error estimate. We present
numerical results in Section 5 and close with a summary and outlook in Section 6.

2. Preliminaries

2.1. Calibration and pricing within the Heston Model. The Heston model
is a well-known model for option pricing allowing also a non-constant volatility of
the underlying. It was invented 1993 by Heston, [20]. The Stochastic Differential
Equations (SDEs) for the asset price St and the volatility νt are assumed to be

dSt = rStdt+
√
νtStdz1(t), dνt = κ[θ − νt]dt+ σ

√
νtdz2(t),(2.1)

where z1, z2 are Wiener processes with correlation ρ, r is the return rate of the asset,
κ the mean reversion rate to the long term variance θ and σ is the volatility of the
volatility. In particular, the instantaneous variance νt is modeled as a CIR (Cox-

Ingersoll-Ross) process, [6]. Finally, the model implies that z1 =
√

1− ρ2dz3 +ρdz2

with independent Brownian motions z2, z3.
The following partial differential equation (PDE) representation is well-known.

Proposition 2.1 (Feynman-Kac formula, [24]). Let Xt be an n-dimensional Itô
diffusion, i.e., dXt = b(Xt)dt + σ(Xt)dBt, f ∈ C2(Rn) be a compactly supported

payoff and q ∈ C(Rn) be lower bounded. For u(t, x) := E[e−
∫ t
0
q(Xs)dsf(Xt)|Xt = x]

it holds for x ∈ Rn that u(0, x) = f(x) and for all t ∈ (0, T ], x ∈ Rn that

∂u(t, x)

∂t
=

1

2

n∑
i,j=1

(σ(x)σT (x))i,j
∂2u(t, x)

∂xi∂xj
+

n∑
i=1

bi(x)
∂u(t, x)

∂xi
− q(x)u(t, x). �

For applying the Feynman-Kac formula to the Heston model, we consider the
process Xt := (yt, νt)

T = (log(St), νt)
T , n = 2. Then, we can rewrite the two SDEs

in (2.1) as a system

dXt = d

(
yt
νt

)
=

(
r − 1

2νt
κ[θ − νt]

)
dt+

(√
νt
√

1− ρ2
√
νtρ

0 σ
√
νt

)(
dz3

dz2

)
=: b(Xt) dt+ σ(Xt) dBt.

Using Proposition 2.1 then yields the PDE (in x) for the Heston model of the form

(2.2)
∂u(t)

∂t
−div(α(t)∇u(t))+β(t)∇u(t)+γ(t)u(t) = 0 for t ∈ (0, T ], u(0) = u0,

where u0 is the payoff and the coefficient functions are given by

(2.3) α(t) :=
1

2

(
νt νtσρ
νtσρ νtσ

2

)
, β(t) := −

(
r − 1

2νt −
1
2σρ

κθ − κνt − 1
2σ

2

)
, γ(t) := r.

Truncating x ∈ R2 to some bounded domain Ω ⊂ R2 and posing appropriate
(truncation) boundary conditions yields

d

dt
u(t, x) +A(t)u(t, x) = 0 in (0, T ]× Ω,(2.4a)

u(t, x) = 0 on [0, T ]× ∂Ω,(2.4b)

u(0, x) = u0(x) on Ω,(2.4c)

where the differential operator is given as A(t)u := −div(α(t)∇u)+β(t)∇u+γ(t)u,

i.e., A(t) ∈ L(V, V ′) with V := H1
0 (Ω). It is readily seen that A(t) is elliptic if and

only if νt > 0 and ρ ∈ (−1, 1), which we will always assume.



4 ANTONIA MAYERHOFER AND KARSTEN URBAN

It is well-known that the bilinear form associated to A(t), i.e., 〈A(t)u, v〉V ′×V =
a(t;u, v) reads

a(t;u, v) :=

∫
Ω

{α(t)∇u(x) · ∇v(x) + β(t) · ∇u(x) v(x) + γ(t)u(x) v(x)}dx.

If (α)ij(t), βi(t), γ(t) ∈ L∞(Ω), i, j = 1, 2, and u0 ∈ L2(Ω) =: H, then there exist

constants 0 < Ma, αa <∞ and 0 ≤ λa <∞ such that for all u, v ∈ V it holds

|a(t;u, v)| ≤Ma‖u‖V ‖v‖V ,(2.5a)

a(t;u, u) + λa‖u‖2H ≥ αa‖u‖2V ,(2.5b)

ifA(t) is elliptic, see, e.g. [10, Thm. 2, p. 318]. Obviously, (2.5a) means boundedness
and (2.5b) is a G̊arding inequality.

Parameters. In order to calibrate the model, one has to determine the model pa-
rameters, i.e., µ1 := (ρ, κ, θ, σ) based upon market data. Moreover, in particular
for pricing, we would like to determine prices for different payoff functions, i.e., we
consider the initial value µ0 := u0 as a parameter function.

2.2. Reduced Basis Methods (RBMs). Now, we recall the main features of
Reduced Basis Methods (RBMs) for paramaterized partial differential equations
(PPDEs) that are needed here. For more details, we refer to the surveys [14, 25]
and the references therein. We assume that the variational form of the PDE is
given by

(2.6) u(µ) ∈ X : b(µ;u(µ), v) = f(µ; v) ∀v ∈ Y,

where X, Y are (infinite-dimensional) Hilbert spaces, b : D×X×Y→ R a parametric
bilinear form and f : D × Y → R is a parametric functional, f(µ; ·) ∈ Y′. The
parameter space is denoted by D. Well-posedess of (2.6) is always assumed, which
in particular means that an inf-sup-condition

(2.7) inf
w∈X

sup
v∈Y

b(µ;w, v)

‖w‖X ‖v‖Y
≥ βb > 0

is satisfied for all µ ∈ D.
The next step is the assumption that a stable finite discretization XN ⊂ X,

YN ⊂ Y in the sense

(2.8) inf
wN∈XN

sup
vN∈YN

b(µ;wN , vN )

‖wN ‖X ‖vN ‖Y
≥ βN > 0

is available that is sufficiently fine so that the discrete Petrov-Galerkin solution
uN (µ) is a sufficiently good approximation to u(µ). Hence, uN (µ) is called detailed
or truth solution. We assume that uN (µ) can be computed with N operations
and that this number N is too large to be acceptable for realtime or multi-query
computations, so that a reduced model is necessary.

In order to derive this reduced model, the idea is to split the computations into
an offline and an online phase. During the offline phase, one may afford to use the
detailed model in order to compute snapshots ui := uN (µi), for i = 1, . . . , N and
N � N is much smaller so that the reduced model is feasable online even if the
complexity is of the order O(N3) since the stiffness matrix is in general densely
populated.
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The reduced solution uN (µ) is then determined as the (Petrov-)Galerkin solution
in the space XN := span{ui : i = 1, . . . , N} with a stable reduced space YN ⊂ YN
of dimension N :

(2.9) uN (µ) ∈ XN : b(µ;uN (µ), vN ) = f(µ; vN ) ∀vN ∈ YN .
Stability is to be understood in a uniform inf-sup-sense, i.e.,

(2.10) inf
wN∈XN

sup
vN∈YN

b(µ;wN , vN )

‖wN‖X ‖vN‖Y
≥ βLB > 0,

with βLB independent of N as N →∞ as well as of µ.
The snapshots defining the reduced space are determined by the (offline-)selection

of parameter samples SN := {µi : i = 1, . . . , N} and those samples are computed by
maximizing a computable error estimate ∆N (µ) w.r.t. the parameter µ. This can
be done e.g. by nonlinear optimization or a greedy method w.r.t. a finite so-called
training set Ξtrain ⊂ D. Such an error estimate can e.g. be derived as follows.

Proposition 2.2. Let XN ⊂ XN and uN (µ) ∈ XN be the solution of (2.9). Defin-
ing the residual by rN (µ; v) := f(µ; v)− b(µ;uN (µ), v) = b(µ;uN (µ)−uN (µ), v) for
all v ∈ YN , we obtain the following error estimate

(2.11) ‖uN (µ)− uN (µ)‖XN ≤
1

βN
‖rN (µ)‖(YN )′ =: ∆N (µ),

where βN denotes the inf-sup-constant (2.8) of b(µ; ·, ·) on XN ×YN (possibly with
discrete norms ‖ · ‖XN , ‖ · ‖YN ). �

The ultimate efficiency aim is to realize an online complexity that is independent
of N . The key for that realization is the assumption that bilinear form and right-
hand side functional are separable w.r.t. the parameter, i.e.,

(2.12) b(µ;w, v) =

Qb∑
q=1

ϑbq(µ) bq(w, v), f(µ; v) =

Qf∑
q=1

ϑfq (µ)fq(v),

with functions ϑbq, ϑ
f
q : D → R and parameter-independent forms bq : X × Y → R

and fq : Y → R. In the RB literature this is often –a bit misleading– called affine
decomposition.

Let {vj : 1 ≤ j ≤ N} be a basis of the space YN , then (2.9) reads

(2.13) uN = (uN,i)i=1,...,N ∈ RN :

N∑
i=1

uN,i b(µ;ui, vj) = f(µ; vj) ∀j = 1, . . . , N.

Furthermore, let ui =
∑N
n=1 α

i
nϕ
N
n be the representation of the snapshots in a

basis {ϕNn : n = 1, . . . ,N} of XN and correspondingly vj =
∑N
n=1 β

j
nψ
N
n in a basis

{ψNn : n = 1, . . . ,N} of YN . If (2.12) holds, the computation of the stiffness matrix
and the right-hand side of the reduced linear system can be split in an offline/online
fashion as follows (here only for the stiffnes matrix)

b(µ;ui, vj) =

N∑
n,n′=1

αinβ
j
n′ b(µ;ϕNn , ψ

N
n′ ) =

N∑
n,n′=1

αinβ
j
n′

Qb∑
q=1

ϑbq(µ) bq(ϕ
N
n , ψ

N
n′ )

=

Qb∑
q=1

ϑbq(µ)

N∑
n,n′=1

αinβ
j
n′ bq(ϕ

N
n , ψ

N
n′ ) =:

Qb∑
q=1

ϑbq(µ)(bq)i,j ,
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where the terms (bq)i,j are µ-independent and can thus be computed offline. Online,
for a new parameter µ ∈ D, the stiffness matrix of the RB-system is obtained by

(BN (µ))i,j = b(µ;ui, vj) =

Qb∑
q=1

ϑbq(µ)(Bq)i,j , i, j = 1, . . . N,

which requires O(QbN
2) operations independent of N . The same procedure can

be done for the right-hand side and also for the error estimator ∆N (µ) since one
can derive a separation like in (2.12) also for the residual ‖rN (µ)‖(YN )′ .

Starting from an elliptic PPDE, there are several RB methods for parabolic
problems using a usual time-stepping approach, e.g. [13, 15]. We do not follow
this path here, in particular since we aim at using the initial value as a parameter
function. Standard RB error estimates for time-stepping-based methods involve
sums of residuals of each time step, so that an initial error is possibly heavily
amplified. This is one of the reasons, why we consider a space-time variational
formulation of parabolic PPDEs that will lead us to a problem of the form (2.6),
where X, Y will be Bochner spaces, i.e. involve space and time.

3. Space-Time Formulation of Parabolic PPDEs

We now review the space-time variational formulation and its discretization.

3.1. Parabolic PPDEs. The Heston model problem yields a parameterized par-
abolic initial-boundary value problem of the following form: Let I := (0, T ) be the
(open) time interval and V ↪→ H ↪→ V ′ be a Gelfand triple of Hilbert spaces (e.g.
V = H1

0 (Ω), H = L2(Ω) for a bounded domain Ω ⊂ Rd). The parameters are
assumed to take the form µ = (µ0, µ1) ∈ D := D0 × D1, where D0 ⊂ H is a set
of possible initial values and D1 ⊂ RP is a parameter space of finite (or infinite)
dimension. Then, given some g(µ; t) ∈ V ′, t ∈ I a.e., we look for u(µ; t) ∈ V , t ∈ I
a.e., such that

〈u̇(µ; t), φ〉V ′×V + a(µ1;u(µ; t), φ) = 〈g(µ1; t), φ〉V ′×V ∀φ ∈ V, t ∈ I a.e.,(3.1a)

u(µ; 0) = µ0 inH,(3.1b)

where a(µ1; ·, ·) : V × V → R is a bounded bilinear form. Note, that a(·; ·, ·) and
g(·; ·) are assumed to depend only on µ1, not on µ0. As described above, µ0 is the
initial value parameter, whereas µ1 contains the parameters occurring within the
coefficients of bilinear form and right-hand side, e.g. parameters to be calibrated.
We can easily extend our findings to time-dependent bilinear forms a(µ; t, ·, ·) as
well.

As already motivated in Section 2.2, we assume the following separability w.r.t.
the parameter µ1 ∈ D1 for φ, ψ ∈ V and t ∈ I

(3.2) a(µ1;φ, ϕ) =

Qa∑
q=1

ϑaq (µ1) aq(φ, ϕ), g(µ1; t) =

Qg∑
q=1

ϑgq(µ1) gq(t),

where ϑaq , ϑ
g
q : D1 → R, aq(·, ·) : V × V → R and gq(t) ∈ V ′ are given.
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3.2. Variational Form. For existence and uniqueness of a solution to (3.1) we
assume that there exist constants Ma, αa > 0 and λa ∈ R such that for all φ, ψ ∈ V
and all µ1 ∈ D1

|a(µ1;φ, ψ)| ≤Ma‖φ‖V ‖ψ‖V (boundedness),(3.3)

a(µ1;ψ,ψ) + λa‖ψ‖2H ≥ αa‖ψ‖2V (G̊arding inequality),(3.4)

see (2.5). Of course, in general the constants Ma, λa and αa depend on µ1 –
for simplicity we consider upper respectively lower bounds that are parameter-
independent. For the space-time variational form of (3.1) we define Z := L2(I;V )
and consider as in [29] the following trial space

X := {w ∈ Z : ẇ ∈ Z′} = L2(I;V ) ∩H1(I;V ′),(3.5)

with the norm ‖w‖2X := ‖w‖2Z + ‖ẇ‖2Z′ + ‖w(T )‖2H , w ∈ X. The test space is
Y := Z×H and for every v = (z, h) in Y the norm is defined by ‖v‖2Y := ‖z‖2Z+‖h‖2H .
For w ∈ X and v = (z, h) ∈ Y we define

b(µ1;w, v) :=

∫
I

〈ẇ(t), z(t)〉V ′×V dt+

∫
I

a(µ1;w(t), z(t))dt+ (w(0), h)H

=: b1(µ1;w, z) + (w(0), h)H(3.6)

and the right-hand side as

(3.7) f(µ; v) :=

∫
I

〈g(µ1; t), z(t)〉V ′×V dt+ (µ0, h)H =: g1(µ1; z) + (µ0, h)H .

The space-time variational formulation of (3.1) is of the form (2.6), i.e.,

(3.8) find u(µ) ∈ X such that b(µ1;u(µ), v) = f(µ; v) ∀v ∈ Y.

Due to the separability of a(µ1; ·, ·) and g(µ1; ·) w.r.t. the parameter µ1, we get a
corresponding separation for the bilinear form as well (v = (z, h)):

b(µ1;w, v) =

∫
I

〈ẇ(t), z(t)〉V ′×V dt+

Qa∑
q=1

ϑaq (µ1)

∫
I

aq(w(t), z(t)) dt+ (w(0), h)H

=:

Qb∑
q=1

ϑbq(µ1) bq(w, v)(3.9)

with Qb = Qa + 1, ϑbq = ϑaq , 1 ≤ q ≤ Qa, ϑbQb ≡ 1 as well as bq(w, v) =∫
I
aq(w(t), z(t)) dt, 1 ≤ q ≤ Qa, and bQb

(w, v) := (w(0), h)H +
∫
I
〈ẇ(t), z(t)〉V ′×V dt.

The situation is slightly different for the right-hand side. Let Ψ := {ψm : m ∈ N}
be a (Riesz-)basis of H, then µ0 =

∑
m∈N µ0,m ψm, so that

f(µ; v) =

Qg∑
q=1

ϑgq(µ1)

∫
I

〈gq(t), z(t)〉V ′×V dt+

∞∑
m=1

µ0,m (ψm, h)H , v = (z, h),

which is a separation w.r.t. the parameters, but with infinitely many terms. If µ0 has
some finite expansion (even in terms of a different set of functions or also obtained
by an approximation), we would get an obvious separation with Qf = Qg+L, where
L denotes the number of terms in such a finite expansion of µ0. We will come back
to this point later, in particular w.r.t. an efficient offline-online treatment of the
right-hand side.
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We define space-dependent quantitiesa

Me := sup
w∈X\{0}

‖w(0)‖H
‖w‖X

, % := sup
06=φ∈V

‖φ‖H
‖φ‖V

and form-dependent ones (recall (2.7))

β∗a := inf
µ1∈D1

inf
φ∈V

sup
ψ∈V

a(µ1;ψ, φ)

‖φ‖V ‖ψ‖V
, βb := inf

µ1∈D1

inf
w∈X

sup
v∈Y

b(µ1;w, v)

‖w‖X ‖v‖Y
,

as well as lower bounds for the inf-sup-constant of the bilinear form b:

βLB
coer = βLB

coer(αa, λa,Ma) :=
min{min{1,M−2

a }(αa − λa%2), 1}√
2 max{1, (β∗a)−2}+M2

e

,(3.10a)

βLB
time(T ) = βLB

time(T, αa, λa,Ma) :=
βLB

coer(αa, 0,Ma + λa%
2) e−2λaT√

max{2, 1 + 2λ2
a%

4}
.(3.10b)

Proposition 3.1 ([31, Prop. 2.2, Cor. 2.7],[29, Thm. 5.1]). Let a(µ1; ·, ·) sat-
isfy (3.3) and (3.4). Then, we obtain the inf-sup lower bound βb ≥ βLB

b :=
max{βLB

coer, β
LB
time(T )}. �

Remark 3.2. (a) Note that βLB
coer does not depend on time. However, this estimate

is only meaningful (i.e., positive) if αa − λa%2 > 0 which means that a(µ1; ·, ·) is
coercive.

(b) In case of homogeneous initial conditions using

(3.11) W := {w ∈ X : w(0) = 0},
the above estimate holds for the form b1 introduced in (3.6) with Me = 0.

(c) As an example, let us consider the heat equation, i.e., A(µ1) ≡ −∆ (no
parameter dependence), V = H1

0 (Ω), H = L2(Ω). Hence, in this case, parameters
only appear in the right-hand side, i.e., a(µ1; ·, ·) ≡ a(·, ·) as well as b(µ1; ·, ·) ≡
b(·, ·) and f(µ; v) = f(µ0; v) =

∫
I
〈g(t), z(t)〉V ′×V dt + (µ0, h)H , v = (z, h). Then,

we use ‖φ‖2V = a(v, v), i.e., Ma = 1, λa = 0, αa = β∗a = 1. As in [31, Cor. 2.5], we
have βb ≥ 1.

Remark 3.3. At least for the numerical realization, we will also consider (quadrat-
ically) nonlinear problems, even though well-posedness will not be investigated here.
In this case a(µ1; ·, ·, ·) : V 3 → R is a trilinear form and in (3.1a) we would have the
term a(µ1;u(µ; t), u(µ; t), φ) instead. The reason for this consideration is twofold:
(1) Several financial models involve nonlinearities; (2) Our subsequent numerical
approach using the space-time variational form particularly allows the treatment of
polynomial nonlinearities, see §3.3.5 below.

3.3. Discretization. For a linear problem, one could reduce (3.1), in particular
(3.1b) to a homogeneous initial condition. However, since we aim at considering the
initial condition (also) as a parameter and also have nonlinear problems in mind,
we keep the inhomogeneous initial condition, so that we need to modify what has
been proposed in [31], see also [1, 2].

We use (also) finite elements to construct finite dimensional subspaces XN ⊂ X,
YN ⊂ Y and aim at determining an approximation uN (µ) ∈ XN of the solution
u(µ) ∈ X of (3.8). The parameter N will contain dimension parameters for time,
space and initial value discretization spaces. Concerning notation, a (calligraphic)

aTypically, one can bound Me ≤
√

3.
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superscript will always denote a large (offline, ‘truth’, detailed) dimension, whereas
a reduced dimension will later be indicated with an (non-calligraphic) index. More-
over, spaces written with ‘blackboard bold’ letters (\mathbb) contain space-time
functions, whereas ‘normal’ letters are used for functions in space or time.

In order to introduce the discretization, we basically follow [29, 31] and note that

(3.12) X = H1(I)⊗ V, Y = Z×H := L2(I;V )×H = (L2(I)⊗ V )×H.

Let T Jspace be a triangulation of the underlying space Ω. For discretizing the function

space V we consider the finite subspace V J spanned by a nodal basis {φ1, . . . , φJ }
with respect to the triangulation T Jspace.

For the finite-dimensional temporal subspaces EK ⊂ H1
{0}(I) := {φ ∈ H1(I) :

φ(0) = 0} and FK ⊂ L2(I) consider the discretization of the interval I given by
T Ktime := {tk = k∆t : 0 ≤ k ≤ K,∆t := T

K}. The trial space EK is spanned by the

piecewise linear functions {σ1, . . . , σK} w.r.t. T Ktime. For every 1 ≤ k ≤ K − 1, we
choose σk as the hat function with nodes tk−1, tk and tk+1 and the remaining ones

are defined by σK := t−tK−1

∆t χ[tK−1,tK] and σ0 := t1−t
∆t χ[0,t1] (which will be needed

later). The test space FK is chosen as span{τ1, . . . , τK} with respect to T Ktime where
τk ≡ χIk is the characteristic function on Ik := (tk−1, tk].

Finally, the trial (and test) space HM ⊂ H for the initial condition is denoted by
HM := span{ψ1, . . . , ψM} ⊂ V ⊂ Ha. We keep HM and in particularM arbitrary
here and will detail possible choices later. In particular, we also allow for the case
HM = V J (M = J ) and discuss advantages and disadvantages of this choice.

With these preparations at hand, the discrete approximation subspaces of X and
Y are defined as (〈σ0〉 := span{σ0})

XN := (〈σ0〉 ⊗HM)⊕ (EK ⊗ V J ) =: QM ⊕WI , I = K · J ,(3.13a)

YN := (FK ⊗ V J )×HM =: ZI ×HMb.(3.13b)

Since dim(EK) = dim(FK) = K, dim(HM) = M and dim(V J ) = J , we have
dim(XN ) =M+KJ =: N = I +M = dim(YN ). In case the discretized versions
of X and Y would have different dimensions, a least squares method has to be
used, [1]. Finally, note that WI ⊂ W, see (3.11). We obtain a discrete variational
formulation of (3.8): Find uN (µ) ∈ XN such that

(3.14) b(µ1;uN (µ), vN ) = f(µ; vN ) ∀vN ∈ YN , µ = (µ0, µ1) ∈ D,

which corresponds to a linear system that can be detailed as

b1(µ1;uN (µ), zI) + ((uN (µ))(0), hM)H = g(µ1; zI) + (µ0, h
M)H

for all vN = (zI , hM) ∈ YN = ZI ×HM.

3.3.1. Time-stepping. Similar to [31], it is not difficult to see that the above dis-
cretization is equivalent to a time-stepping scheme. In fact, we have the splitting
uN = qM + wI ∈ QM ⊕WI = XN , in particular uN (0) = qM(0) and wI(0) = 0.

aThe reason to impose ψ` ∈ V will also become clear a little later.
bFor the test space, we could also replace HM by some other space, possibly also with different

dimension. Here, we want to keep this issue simple.
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In terms of the respective bases, we get the representations

uN := qM + wI =

M∑
m=1

qm(σ0 ⊗ ψm) +

K∑
k=1

J∑
i=1

wki (σk ⊗ φi) ∈ XN ,(3.15)

with the coefficient vectors qM := (qm)m=1,...,M for the initial value as well as
wI := (wki )i=1,...,J , k=1,...,K =: (wk

I)k=1,...,K and (recall N =M+ I)

vN = (zI , hM) =
( K∑
`=1

J∑
j=1

z`j(τ
` ⊗ φj),

M∑
m=1

hmψm

)
∈ YN ,(3.16)

with the coefficient vectors zI := (z`j)j=1,...,J , `=1,...,K = (z`I)`=1,...,K and hM :=
(hm)m=1,...,M. With these notations, we obtain

b1(µ1;uN , zI) =

∫
I

〈u̇N (t), zI(t)〉V ′×V + a(µ1;uN (t), zI(t)) dt

=

M∑
m=1

K∑
`=1

J∑
j=1

qmz
`
j

∫
I

〈σ̇0(t)ψm, τ
`(t)φj〉V ′×V + a(µ1;σ0(t)ψm, τ

`(t)φj) dt

+

K∑
k=1

K∑
`=1

J∑
i,j=1

wki z
`
j

∫
I

〈σ̇k(t)φi, τ
`(t)φj〉V ′×V + a(µ1;σk(t)φi, τ

`(t)φj) dt

=

M∑
m=1

K∑
`=1

J∑
j=1

qmz
`
j

{
(σ̇0, τ `)L2(I)(ψm, φj)H + (σ0, τ `)L2(I)a(µ1;ψm, φj)

}

+

K∑
k,`=1

J∑
i,j=1

wki z
`
j

{
(σ̇k, τ `)L2(I)(φi, φj)H + (σk, τ `)L2(I)a(µ1;φi, φj)

}
.

Note, that a(µ1;ψm, φj) is well-defined since we have assumed that ψm ∈ V . For

k ≥ 0 and ` ≥ 1 we have (σ̇k, τ `)L2(I) = δk,` − δk+1,` and (σk, τ `)L2(I) = ∆t
2 (δk,` +

δk+1,`), in particular (σ̇0, τ `)L2(I) = −δ1,` and (σ0, τ `)L2(I) = ∆t
2 δ1,`.

Similar to [31], we set

(3.17) BI(µ1) := NKtime ⊗MJspace + MKtime ⊗AJspace(µ1) ∈ RKJ×KJ = RI×I ,

where the temporal matrices read NKtime := ((σ̇k, τ `)L2(I))k,`=1,...,K, MKtime :=

((σk, τ `)L2(I))k,`=1,...,K and the spatial ones are MJspace := ((φi, φj)H)i,j=1,...,J and

AJspace(µ1) = (a(µ1;φi, φj))i,j=1,...,J . The matrix BI(µ1) was used in [31, (2.14)]
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to describe and analyze the discretization in the case of homogeneous initial condi-
tions. Then, we obtain

b1(µ1;uN , zI) =

K∑
k,`=1

J∑
i,j=1

wki z
`
j(B

I(µ1))(k,i),(`,j)

+

M∑
m=1

K∑
`=1

J∑
j=1

qmz
`
j

{
(σ̇0, τ `)L2(I)(ψm, φj)H + (σ0, τ `)L2(I)a(µ1;ψm, φj)

}

= wT
IB
I(µ1)zI +

M∑
m=1

J∑
j=1

qmz
1
j

{
(−(ψm, φj)H +

∆t

2
a(µ1;ψm, φj)

}
= wT

IB
I(µ1)zI + qTM

(
−MM,J

i/s +
∆t

2
AM,J

i/s (µ1)
)
z1
I

=: wT
IB
I(µ1)zI + qTMCM,J

i/s (µ1)z1
I ,(3.18)

where the involved matrices MM,J
i/s ,AM,J

i/s (µ1) ∈ RM×J are defined for m =

1, . . . ,M, j = 1, . . . ,J as

(3.19) (MM,J
i/s )m,j := (ψm, φj)H , (AM,J

i/s (µ1))m,j := a(µ1;ψm, φj)H .

We split the coefficient vector for the unknown uN = (qM,wI)T and set u0
N :=

qM as well as ukN := wk
I , k = 1, . . . ,K in order to formulate the time-stepping

scheme. Then, we obtain for fixed ` ≥ 1 and any j ∈ {1, . . . , nh}

b1(µ1;uN , τ ` ⊗ φj) =

=

{
[MJspaceu

1
N − (MM,J

i/s )Tu0
N + ∆t

2

(
AJspace(µ1)u1

N + (AM,J
i/s (µ1))Tu0

N ]j if ` = 1,

∆t
[
MJspace

1
∆t (u

`
N − u`−1

N ) + AJspace(µ1) 1
2 (u`N + u`−1

N )
]
j
, if ` > 1

=: ∆t
[ 1

∆t
M`
N (u`N − u`−1

N ) + A`
N (µ1)u

`−1/2
N

]
j
,(3.20)

where u
`−1/2
N := 1

2 (u`N + u`−1
N ). On the right-hand side we use a trapezoidal

approximation

g(µ1; τ ` ⊗ φj) =

∫
I

〈g(µ1; t), τ ` ⊗ φj(t, ·)〉V ′×V dt =

∫
I

〈g(µ1; t), τ `(t)φj〉V ′×V dt

(3.21)

≈ ∆t

2
〈g(µ1; t`−1) + g(µ1; t`), φj〉V ′×V =: ∆t (g

`−1/2
N (µ1))j .

3.3.2. Initial value approximation. Let us now discuss the approximation u0
N (given

by qM) of the coefficients of the initial value u(0) = µ0. Since uN (0) = qM(0),

qM ∈ QM, we have uN (0) =
∑M
m=1 qm (σ0 ⊗ ψm)(0) =

∑M
m=1 qm ψm ∈ HM, so

that for hM =
∑M
m=1 hmψm ∈ HM, we get

(uN (0), hM)H =

M∑
m,m′=1

qm′hm(ψm′ , ψm)H = qTMMMinithM,

where hM := (hm)1≤m≤M and MMinit := ((ψm′ , ψm)H)m′,m=1,...,M. The right-hand
side of the discretization of (3.1b) for obtaining an approximation of the initial
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condition reads for the same hM ∈ HM

(µ0, h
M)H =

M∑
m=1

hm (µ0, ψm)H ,

which is only computable if µ0 admits a finite expression. We refer to Remark 3.5
below for possible choices.

At this point we will only assume that a discretization of D0 is given by DL0 =

span{B1, . . . , BL}, i.e., we consider µL0 =
∑L
`=1 µ

`
0B` and obtain

(µL0 , h
M)H =

L∑
`=1

M∑
m=1

µ`0 hm (B`, ψm)H = µT0,LN
L,MhM,

where NL,M := ((B`, ψm)H)`=1,...,L;m=1,...,M, µ0,L = (µ`0)`=1,...,L.

3.3.3. Crank-Nicolson scheme. Putting everything together, we obtain the follow-
ing Crank-Nicolson scheme for computing uN = (u0

N , . . . ,u
K
N ) (recall (3.20)):

(MMinit)
Tu0
N = (NL,M)Tµ0,L,(3.22a)

1

∆t
Mk
N (ukN − uk−1

N ) + Ak
N (µ1)u

k−1/2
N = g

k−1/2
N (µ1), k = 1, . . . ,K.(3.22b)

Note, that MMinit is regular, so that u0
N = u0

N (µ0) is uniquely defined and the
discrete problem (3.22) is obviously well-posed.

Remark 3.4. Let us now discuss some relevant special cases.

(a) Let HM = V J , M = J . In this case, we get in (3.19) that MM,J
i/s ≡MJspace

and AM,J
i/s ≡ AJspace. This means that we do not need to distinguish the cases

` = 1 and ` > 1 in (3.20), i.e., we get a standard Crank-Nicolson scheme with
initial value u0

N . Moreover, MMinit = MJspace (which is symmetric and positive

definite (s.p.d.)) and NL,M = NL,J := ((B`, φj)H)1≤`≤L;1≤j≤J , i.e., we obtain
u0
N = (MJspace)−1(NL,J )Tµ0,L ∈ RJ , which can be used as initial value for the

Crank-Nicolson scheme (3.22b).

(b) If µ0 can be represented as (or approximated by) µ0 = µM0 =
∑M
m=1 µ

m
0 ψm ∈

HM 6= V J , µ0,M = (µm0 )m=1,...,M, then L = M, DL0 = HM, NL,M = MMinit,

which is s.p.d., so that u0
N = µ0,M ∈ RM. In this case, we need to modify the first

step of the Crank-Nicolson scheme as we do not need to solve a linear system in
(3.22a).

Remark 3.5. In view of Remark 3.4 (b) above, let us describe further scenarios
for the approximation of µ0 ≈ µL0 ∈ DL0 ⊂ H that we have in mind:

(1) If Ξ = {ξ` : ` ∈ N} is a Riesz basis for H, then µ0 has an expansion
in that basis, i.e., µ0 =

∑
`∈N µ

`
0ξ`. Then, ΞL := {ξ1, . . . , ξL}, DL0 := span(ΞL)

may be selected as the ‘most significant’ parts of the infinite expansion, e.g. by
an adaptive approximation. The above approximation is then obtained using the
corresponding expansion coefficients µ1

0, . . . , µ
L
0 or approximations of them (if they

cannot be computed exactly).
(2) Sometimes, the specific structure of possible initial values is known from

the particular application. Then, it might be realistic (as in fact for some payoff
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functions in option pricing) that µ0 ∈ span{B1, . . . , BL} = DL0 6= HM. In this

situation we can directly write µ0 =
∑L
`=1 β`B` and uM0 is given as in (3.22a).

(3) As mentioned in Remark 3.4 (b), our approach particularly allows to choose
DL0 as HM – even though this results in an immediate smoothing of µ0 ∈ H, since
HM ⊂ V ( H.

3.3.4. Parameter Separation. For later reference, we now detail the specific para-
meter-dependence of the discrete variational formulation. Obviously, u0

N can be
computed by (3.22a) in dependency of µ0 (or its approximation µL0 ) in the sense
that µL0 uniquely determines u0

N — µ1 is not required. This can be formulated as
follows. Recall from (3.13a) that XN = QM ⊕WI , in particular

WI = {wN ∈ XN : wN (0) = 0} = span{σk ⊗ φi : k = 1, . . . ,K, i = 1, . . . ,J },

compare (3.11). Then, (3.14) can be divided as follows:

ξM(µ0) ∈ HM : (ξM(µ0), hM)H = (µ0, h
M)H ∀hM ∈ HM,(3.23a)

wI(µ) ∈WI : b1(µ1;wI(µ), zI) = f̆(qM(µ0), µ1; zI) ∀zI ∈ ZI ,(3.23b)

with the extension of the initial value qM(µ0) := σ0 ⊗ ξM(µ0) ∈ QM and the

modified right-hand side f̆(qM(µ0), µ1; zI) := g1(µ1; zI) − b1(µ1; qM(µ0), zI). In
matrix-vector form as (3.18) the second equation (3.23b) reads

BI(µ1)TwI(µ) = f̆(u0
N (µ0), µ1)

:= (g1(µ1;φi))i=1,...,J − (CM,J
i/s (µ1)Tu0

N (µ0), 0, . . . , 0)T .

The arising coefficient vectors define functions

wI(µ) =

K∑
k=1

J∑
i=1

wki (µ) (σk ⊗ φi) ∈WI , qM(µ0) =

M∑
m=1

qm(µ0) (σ0 ⊗ ψm) ∈ QM,

so that uN (µ) := qM(µ0) + wI(µ) ∈ XN is the desired approximate solution.
We stress the fact that (3.23) can also be interpreted as a separation. In fact,

(3.23a) determines an approximation of the initial value µ0 – independent of µ1,
whereas the evolution is determined in (3.23b) and – as we have seen – could be
realized for example in terms of a Crank-Nicolson scheme.

3.3.5. Nonlinear equations. Note that the above mentioned separation is not a con-
sequence of the fact that a linear parabolic problem allows one to reduce non-
homogeneous initial conditions to homogeneous ones. In fact, if a(µ; ·, ·, ·) would be
a trilinear form that induces a space-time trilinear form b1(µ1; ·, ·, ·), the analogue
of (3.23b) would read

b1(µ1;wI(µ), wI(µ), zI) + b1(µ1; qM(µ0), wI(µ), zI) + b1(µ1;wI(µ), qM(µ0), zI) =

= g(µ1; zI)− b1(µ1; qM(µ0), qM(µ0), zI),

i.e., the quadratic term is supplemented by two linear terms since qM(µ0) is known
at this stage. This also shows how to extend this approach to polynomial non-
linearities. The only difference is that the parameter induced by the initial value
approximation is only in the right-hand side for a linear problem, but also appears
within the coefficients of the PDE for polynomial nonlinearities.
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3.4. Stability of the discretization. We have to show well-posedness of the
discretized system, i.e., continuity, surjectivity and an inf-sup-condition for the
linear operator induced by the bilinear form b(µ1; ·, ·) on XN × YN , see (2.8).
Continuity and surjectivity are (more or less) readily seen.

For the case of homogeneous initial conditions, i.e. for b1(µ1; ·, ·), inf-sup-stability
was investigated in [31] under the condition that the bilinear form a(µ1; ·, ·) satisfies
a G̊arding inequality (3.4), see also Proposition 3.1. However, the inf-sup-constant
may deteriorate in the presence of strong advective terms, which is the case in
the considered option pricing models. In that case one might require some sort of
(known) stabilization.

In the general case, using the splitting (3.23), we could deduce the stability of
the discrete problem (3.14) from known results for both sub-problems (initial value
approximation and Crank-Nicolson iteration). However, as Proposition 2.2 shows,
we need an explicit estimate for the discrete inf-sup-constant, which is not easily
obtained from the combination of the sub-problems.

For the special case presented in Remark 3.4 (a) (i.e., HM = V J ), the inf-sup
stability was investigated in [1, 2]. In that case and for our chosen time discretiza-
tion we only have to ensure a standard CFL condition (cf. [2, Prop. 2]) in order to
obtain inf-sup-stability and also an estimate for βN in (2.8).

4. A Reduced Basis Method (RBM) for Parameter Functions

Now, we consider a Reduced Basis (RB) approximation for the Crank-Nicolson
interpretation of the discrete space-time problem. Recall that the space-time varia-
tional formulation leads to a Petrov-Galerkin problem so that the reduced problem
takes the form (2.9), where the bilinear form b(µ1; ·, ·) only depends on µ1, whereas
the right-hand side f(µ; ·) depends on the full parameter µ = (µ0, µ1).

As already pointed out, the parameter µ0 is a function. We are now going to
describe a method to handle this challenge. For µ := (µ0, µ1) ∈ D0×D1 the residual
reads

rN (µ; v) = f(µ; v)− b(µ;uN (µ), v)

= g1(µ1; z) + (µ0, h)H − b1(µ1;uN (µ), z) + (uN (µ)(0), h)H

= g1(µ1; z)− b1(µ1;uN (µ), z) + (µ0 − (uN (µ))(0), h)H

=: rN,1(µ; z) + rN,0(µ;h),

for any v = (z, h) ∈ YN . Recall, that we need to construct a reduced basis that
ensures a small residuum for the full parameter space D. In order to do so, we
need an efficient online computation of the error estimator ∆N (µ) in (2.11), which
requires a separation of the residual rN (µ; v) into parts that depend only on µ and
others depending only on v. This is no problem for rN,1(µ; z) due to the separation
properties of g1 and b1. However, the term (µ0, h)H is an issue since the inner
product involves the parameter µ0 ∈ D0 and would be needed to be computed
online e.g. in terms of a possibly costly quadrature.

4.1. A two-step greedy method. To construct a reduced basis, first assume
that µ0 is, or can at least be well approximated by, a finite sum, i.e., µ0 ≈ µL0 ∈
DL0 = span{B1, . . . , BL}. Then, we would get an usual separation of the form

(µ0, h)H =
∑L
`=0 β`(µ0) (B`, h)H , where the terms (B`, h)H can be precomputed

offline. Constructing a basis with a standard greedy procedure would be possible
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by considering an L-dimensional parameter space containing the coefficients β`.
However, if L is large, this is infeasable, also since the coefficients cannot easily be
bounded, so that we would need to work with a L-dimensional hypercube of large
‘side lengths’. Consequently, determining parameter samples for snapshots e.g. by
a greedy method might be extremely costly. Moreover, the use of DL0 might be a
severe restriction to possible choices of the initial value µ0.

Hence, we need an alternative and consider again the residuum. The following
estimate is immediate

‖rN (µ)‖Y′ = sup
v∈Y

rN (µ; v)

‖v‖Y
= sup

(z,h)∈YN

rN,1(µ; z) + rN,0(µ;h)

(‖z‖2Z + ‖h‖2H)1/2

= ‖rN,1(µ)‖Z′ + sup
h∈H

rN,0(µ;h)

‖h‖H
≤ ‖rN,1(µ)‖Z′ + ‖µ0 − (uN (µ))(0)‖H

=: RN,1(µ) +RN,0(µ0).

At a first glance it seems that rN,1 (and RN,1) only depends on µ1. However,
the RB solution uN (µ) involves both µ0 and µ1 so that both parameters enter.
As already said earlier, the approximation of the initial value (and hence RN,0),
however, depends only on µ0.

The above form of the error estimate suggests to compute parameter samples
(and snapshots) in a two-stage-method, namely first to determine samples µi0 for the
initial value by maximizing RN,0(µ0) w.r.t. µ0 and second to consider the evolution
and compute samples µj by maximizing RN,1(µj) using the before-computed snap-
shots hM(µi0). This corresponds to the separated computations already introduced
in §3.3.4. Let us now describe the two parts in detail.

We remark that even though we describe a greedy method, one could also use
a different method to determine appropriate parameter samples e.g. by using non-
linear optimization w.r.t. the error estimate, [3, 32]. The separation approach is
independent of the particular maximization strategy.

Initial value greedy. The first step is to generate a reduced basis for the initial value,
i.e., we need the solution at t = 0, which only depends on the parameter function
µ0 ∈ D0, as we have seen in §3.3.4. For a given tolerance tol0 > 0, we are looking
for N0 samples S0

N0
:= {µ1

0, . . . , µ
N0
0 } and corresponding snapshots {h1, . . . , hN0},

such that qi := σ0 ⊗ hi ∈ QM and ui0 := qi + 0 ∈ XN (i.e., ui0 := qi +wi, wi ∈WI ,
wi ≡ 0, ui0(0) = hi) is the corresponding snapshot.

Given a specific value of the parameter µ0 ∈ D0, the corresponding (detailed)
snapshot hM(µ0) ∈ HM is determined by

(4.1) (hM(µ0), ψm)H = (µ0, ψm)H , 1 ≤ m ≤M,

where {ψ1, . . . , ψM} is the chosen basis for HM. Set ui0(0) = hi := hM(µi0) =∑N
n=1 α0,n(µ0)hi.
Given h1, . . . , hN (where we should have N ≤ N0 �M) computed as snapshots

corresponding to S0
N , a corresponding RB initial value approximation hN (µ0) of

µ0 ∈ D0 is determined by solving the linear equation system corresponding to

(4.2) (hN (µ0), hi)H = (µ0, h
i)H , 1 ≤ i ≤ N,
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provided that the inner products (µ0, h
i)H can be computed online efficient (i.e.,

with complexity independent of M). Then, the error contribution reads

RN,0(µ0) = ‖µ0 − hN (µ0)‖H .

One option to determine the reduced basis h1, . . . , hN0 could be as follows:

Choose η1, . . . , ηÑ ∈ D0, Ñ > N0, arbitrary, compute the Gramian MÑ
H :=(

(ηn, ηn
′
)H
)
n,n′=1,...,Ñ

and choose µ1
0, . . . , µ

N0
0 as the (orthogonalized) eigenfunc-

tions corresponding to the N0 largest eigenvalues of MÑ
H . This corresponds to a

proper orthogonal decomposition (POD). If the ηn are chosen well, this approach
results in the best H-orthogonal choice. The obvious drawback is the strong de-
pendence on the choice of the ηn.

For a greedy procedure, one chooses a training set M0
train ⊂ D0 and determines

parameter samples by maximizing RN,0(µ0) over µ0 ∈M0
train. We obtain the greedy

scheme in Algorithm 1. The most crucial part may be to find a good training set
M0

train.

Algorithm 1 Initial value greedy

1: Let M0
train ⊂ D0 be the training set of initial values, tol0 > 0 a given tolerance.

2: Choose µ1
0 ∈M0

train, S0
1 := {µ1

0}, compute hM(µ1
0) as in (4.1), Ξ0

1 := {hM(µ1
0)}

3: for j = 1, . . . , Nmax
0 do

4: µj+1
0 = arg max

µ0∈M0
train

Rj,0(µ0)

5: if Rj,0(µj+1
0 ) < tol0 then N0 := j, HN0

:= span(Ξ0
N0

); Stop end if

6: Compute hM(µj+1
0 ) ∈ HM as in (4.1).

7: S0
j+1 := S0

j ∪ {µ
j+1
0 }, Ξ0

j+1 := Ξ0
j ∪ {hM(µj+1

0 )}, orthogonalize Ξ0
j+1.

8: end for

It remains to discuss the efficient computation of the error term Rj,0(µ0) for a
given parameter µ0 ∈ D0. Note, that we obtain a set of orthonormal functions
Ξ0
N0

as an output of Algorithm 1. Hence, the RB approximation hN0
(µ0) coincides

with the H-orthogonal projection of µ0 to HN0
. This means that RN0,0(µ0) is the

error of the best approximation of µ0 in HN0
. There are different possibilities to

compute this error:
(1) If µ0 is given as formula, then an efficient quadrature may be used.
(2) If µ0 has a finite expression (like µL0 above) in terms of a stable basis
{B1, . . . , BL}, one may either use an efficient quadrature or transform
hN (µ0) into that basis and use the coefficients of the difference.

(3) One could compute an orthonomal basis for the complement HM 	 HN0

and approximate RN,0(µ0) by computing coefficients of µ0 w.r.t. that com-
plement basis (e.g. in terms of wavelets).

Evolution greedy. The next step is to find a basis for the part of the solution u
in WI , given the already determined reduced space HN0 . Given a parameter µ =
(µ0, µ1) ∈ D and an approximation hM(µ0), the evolution part wI(µ) ∈ WI is
computed as

(4.3) b1(µ1;wI(µ), zI) = g1(µ1; zI)− b1(µ1;σ0 ⊗ hM(µ0), zI) ∀zI ∈ ZI .
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For a reduced basis approximation corresponding to µ = (µ0, µ1) ∈ D, first compute

hN0
(µ0) =

N0∑
n=1

α0,n(µ0)hn

as above. Then, given parameter samples S1
N1

= {µ1, . . . , µN1} ∈ D = D0 × D1

(to be determined e.g. by a second greedy described below) and corresponding
snapshots wi := wI(µi) ∈ WI , a reduced basis approximation wN1

(µ) ∈ WN1
=

span{wi : 1 ≤ i ≤ N1} is determined by

(4.4) b1(µ1;wN1
(µ), zN1

) = f̆(µ; zN1
) := g1(µ1; zN1

)− b1(µ1;σ0 ⊗ hN0
(µ0), zN1

),

for all zN1
∈ ZN1

, where ZN1
is a stable reduced space corresponding to WN1

w.r.t.
the inner product b1 in the sense that

(4.5) inf
wN1
∈WN1

sup
zN1
∈ZN1

b1(µ1;wN1
, zN1

)

‖wN1
‖W ‖zN1

‖Z
≥ β1(µ1) > 0

independent of N1 → ∞, see §4.2 below. Here β1 is the inf-sup constant of the
bilinear form b1.

It is readily seen that the right-hand side of (4.4) admits a separation w.r.t. the
parameter. In fact, recalling (3.2) and (3.9) (where here, as opposed to (3.2) we set
bQb

(w, v) :=
∫
I
〈ẇ(t), z(t)〉V ′×V dt), we have

f̆(µ; zN1) := g1(µ1; zN1)− b1(µ1;σ0 ⊗ hN0(µ0), zN1)

=

Qg∑
q=1

ϑgq(µ1) gq(zN1) +

Qb∑
q=1

ϑbq(µ1) bq(σ
0 ⊗ hN0(µ0), zN1)

=

Qg∑
q=1

ϑgq(µ1) gq(zN1) +

Qb∑
q=1

N0∑
n=1

ϑbq(µ1)α0,n(µ0) bq(σ
0 ⊗ hn, zN1)

=:

Qg+N0Qb∑
q=1

ϑf̆q (µ) f̆(zN1)(4.6)

with obvious definitions of the involved terms. Hence, we obtain an efficient
offline-online splitting both for the computation of the reduced basis approximation
wN1(µ) and of the residual rN,1(µ; z) = g1(µ1; z) − b1(µ1;uN (µ), z), where we set
uN (µ) := qN0

(µ0) + wN1
(µ) = σ0 ⊗ hN0

(µ0) + wN1
(µ), which means that

rN1,1(µ; z) = g1(µ1; z)− b1(µ1;uN (µ), z)

= g1(µ1; z)− b1(µ1;σ0 ⊗ hN0
(µ0), z)− b1(µ1, wN1

(µ), z)

= f̆(µ; z)− b1(µ1, wN1
(µ), z),

which coincides with the residual of (4.4). Recalling that D1 ⊂ RP , (4.4) is a
reduced problem with a (P + N0)-dimensional parameter space since HN0 is the
RB initial value space. Such a dimension might be a challenge. The error estimator
is given by

∆1
N1

(µ) :=
‖rN,1(µ)‖Z′

βLB
=
RN,1(µ)

βLB
,

where βLB is a lower bound of the inf-sup constant of the bilinear form b, and we
obtain a – more or less – standard greedy scheme described in Algorithm 2.
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Algorithm 2 Evolution greedy

1: Let Mtrain ⊂ D be the training set, tol1 > 0 a given tolerance.
2: Choose µ1 ∈Mtrain, µ1 := (µ1

0, µ
1
1), S1

1 := {µ1}
3: Compute the RB approximation hN0

(µ1
0) ∈ S0

N0
as in (4.2)

4: Compute wI(µ1) ∈WI as in (4.3), Ξ1
1 = {wI(µ1)}

5: for j = 1, . . . , Nmax
1 do

6: µj+1 = arg max
µ∈Mtrain

∆1
j (µ)

7: if ∆1
j (µ

j+1) < tol1 then N1 := j, WN1
:= span(Ξ1

N1
); Stop end if

8: Compute the RB approximation hN0(µj+1
0 ) ∈ S0

N0
as in (4.2)

9: Compute wI(µj+1) ∈WI as in (4.3)
10: S1

j+1 := S1
j ∪ {µj+1}, Ξ1

j+1 := Ξ1
j ∪ {wI(µj+1)}

11: end for

An obvious question arises how to choose the training set Mtrain in Algorithm 2,
in particular the training samples for the initial value parameter. Possible choices
for the the subset of D0 include M0

train from Algorithm 1 or –much smaller– S0
N0

,
which might be a reasonable choice after performing already a greedy search for
the initial value. We will come back to this point in our numerical experiments in
Section 5.

4.2. Stable RB test spaces. It remains to construct a stable test space ZN1
in

the sense of (4.5). It is well-known that it might be beneficial to construct this
space by so-called supremizers in an efficient offline-online manner, [7, 12, 26].

Let {w1, . . . , wN1} be the basis of WN1 and fix µ1 ∈ D1. Then, the supremizer
sn(µ1) ∈ ZI , 1 ≤ n ≤ N1, is defined by the relation

sn(µ1) := arg sup
zI∈ZI

b1(µ1;wn, zI)

‖zI‖Z
.

In order to compute this quantity, recall that {ζi := τk ⊗ φj : 1 ≤ k ≤ K, 1 ≤ j ≤
J , i = (k, j)} is the basis of ZI , I = K · J , and note that

‖zI‖2Z = ‖zI‖2L2(I;V ) =

K∑
k,k′=1

J∑
j,j′=1

zkj z
k′

j′ (τk, τk
′
)L2(I) (φj , φj′)V

= zTI (IKtime ⊗G
J
space)zI =: zTIZ

IzI

with the Gramian matrices GJspace = ((φi, φj)V )i,j=1,...,J for V J (w.r.t. the V -

inner product) and IKtime = ((τk, τk
′
)k,k′=1,...,K = (∆t) Id ∈ RK×K. Next, let the

expansion of wn in terms of the full basis {$i := σk⊗φj : i = (k, j), 1 ≤ k ≤ K, 1 ≤
j ≤ J} of WI be denoted by

wn =

I∑
i=1

ωni $i, ωnI := (ωni )i=1,...,I .

Then, setting zi := zkj , i = (k, j), we get

b1(µ1;wn, zI) =

I∑
i,i′=1

ωni zi′b1(µ1;$i, ζi′) = (ωnI)TBI(µ1)zI = (zI)T (BI(µ1))TωnI .
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The vector sn(µ1) containing the expansion coefficients of sn(µ1) is given by

sn(µ1) = (ZI)−1(BI(µ1))Twn
I ,

In view of the separation of b1(µ1; ·, ·) w.r.t. the parameter µ1 (see (3.9) with bQb

replaced by bQb
(w, v) :=

∫
I
〈ẇ(t), z(t)〉V ′×V dt), we have BI(µ1) =

∑Qb

q=1 ϑ
b
q(µ1)BIq

with parameter-independent matrices BIq . Hence, we obtain the representation

sn(µ1) =
∑Qb

q=1 ϑ
b
q(µ1)(ZI)−1(BIq )Twn

I and the terms znq := (ZI)−1(BIq )Twn
I can

be computed offline (as they are parameter-independent). Since the µ1-dependent
supremizers can be build by linear combinations (with µ1-dependent coefficients)
of the functions znq ∈ ZI corresponding to the coefficient vectors znq , 1 ≤ n ≤ N1,
1 ≤ q ≤ Qb we choose for every µ1 ∈ D1

ZN1
(µ1) := span{s1(µ1), . . . , sN1(µ1)}

as reduced test space, where sn(µ1) =
∑Qb

q=1 ϑ
b
q(µ1) znq .

5. Numerical results

5.1. Heston Model. We consider the Heston model as described in §2.1 above.
The initial value µ0 corresponds to the payoff function u0, see (2.4c). For pricing
problems, one aims at rapidly changing the payoff, which is the motivation to use
the parameter function.

In order to ensure well-posedness of the PDE, we require the natural assump-
tions νt > 0 for the volatility and ρ ∈ (0, 1) for the correlation. Since we do not
transform the initial conditions to homogeneous ones but work in Bochner spaces
using the space-time variational approach, we do not need additional conditions for
the parameter spaces as e.g. in [21].

Just for the ease of implementation, we choose homogeneous Dirichlet conditions.
Unfortunately one has to work with a large domain Ω and with a fine discretization
to get good results for the Crank Nicolson solution in comparison to the closed form
solution of the Heston model (cf. [20]) that one can use for validation. One could
further improve the results by using e.g. the boundary conditions proposed in [33].

5.2. Initial condition parameter function. As already said earlier, we want to
use the initial condition as a parameter function. Since payoff functions are not
completely arbitrary, but have certain shapes, we introduce a model using Bernstein
polynomials that allows for a small parametric representation of the payoff func-
tions, which are usually continuous, piecewise smooth, convex and are composed of
linear functions.

5.2.1. Bernstein Polynomials. Bernstein polynomials are H1-functions, preserve
convexity and can be adapted locally, see, e.g. [27]. We briefly recall the main
properties that will be needed here. Consider an interval ∆ = [v0, v1] ⊂ R, where
v0 < v1. Any x ∈ ∆ has the unique representation

x = u0(x|∆) v0 + u1(x|∆) v1,

where uj(·|∆) ∈ P1 (a linear polynomial) is nonnegative on ∆ and u0(x|∆) +
u1(x|∆) = 1 (convex combination, partition of unity). Denoting by

Γn :=
{
α = (α0, α1) ∈ Z2 : α0, α1 ≥ 0, α0 + α1 = n

}
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the set of all homogeneous multi-indices of length n, the α-th Bernstein-Bézier basis
polynomial of degree n is defined for α ∈ Γn as

Bα(x|∆) :=

(
n
α

)
uα0

0 (x|∆)uα1
1 (x|∆).

The Bézier surface for a given function f : ∆→ R is defined by

Bnf(x|∆) =
∑
α∈Γn

f(xα)Bα(x|∆), where xα ∈ ∆ s.t. u(xα|∆) =
α

n
.

5.2.2. Payoff approximation for the Heston model. For the Heston model, we con-
sider a domain Ω = Ω1 × Ω2 ⊂ R2, where Ω1 models the logarithmic asset price
log(S) and Ω2 the volatility ν. The payoff depends only on S. Divide the interval
exp(Ω1) into subintervals I1, . . . , IL−1, I` = [v−` , v

+
` ], ` = 1, . . . ,L − 1, v+

`−1 = v−`
for ` = 2, . . . ,L − 1, and choose ∆ as each of these I`.

We now model the initial value µ0 on each I` as a Bézier surface of degree 1, i.e.,

B1µ0(x|I`) = µ0(x(1,0))B(1,0)(x|I`) + µ0(x(0,1))B(0,1)(x|I`)
= µ0(v−` )u1

0(x|I`)u0
1(x|I`) + µ0(v+

` )u0
0(x|I`)u1

1(x|I`)
= µ0(v−` )u0(x|I`) + µ0(v+

` )u1(x|I`).
The approximation of µ0 is then defined by

µL0 (x) :=

L−1∑
`=1

{µ0(v−` )u0(x|I`) + µ0(v+
` )u1(x|I`)}

= µ0(v1)u0(x|I1) +

L−1∑
`=2

µ0(v`)(u1(x|I`−1) + u0(x|I`)) + µ0(vL)u1(x|IL−1),

where we have used the fact that µ0(v+
`−1) = µ0(v−` ) and renamed v−` by v` as well

as vL := v+
L−1. Since u0(v`|I`) = u1(v`+1|I`) = 1 and u0(v`+1|I`) = u1(v`|I`) = 0

the following equality is obvious:

u1(x|I`−1) + u0(x|I`) =
x− v`−1

v` − v`−1
χI`−1

(x) +
x− v`+1

v` − v`+1
χI`(x) =: B`(x),

so that µL0 (x) =
∑L
`=1 µ0(v`)B`(x).

5.3. Numerical results. We now present our numerical results.

5.3.1. Data. We used the following data for our simulation:
• We use the correlation as calibration parameter, i.e., µ1 := ρ ∈ (0, 1) =: D1;
• Ω1 := log([10−8, 200]) for the asset price, Ω2 := (0, 1] for the volatility,

detailed dimension J = 14, 271;
• κ = 0.8, σ = 0.6, θ = 0.2 and r ≡ 0.001;
• T = 0.25 (3 months), K = 25;
• HM := V J and N = K · J + J = J (K + 1) = 371, 046;
• Knots {v1, . . . , v8} = ln({0, 70, 80, 90, 100, 110, 200})for the Bézier polyno-

mials, which implies that payoff functions with specific strike price K ∈
{70, 80, 90, 100, 110} are represented exactly.

All experiments have been performed on an Intel Core i7-3770 (3.40 GHz), with
16 GB RAM and using Matlab (8.0.0.783 (R2012b)). All RB calculations were
implemented in RBmatlab, see http://www.morepas.org.
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5.3.2. Initial value reduced approximation. For determining the RB approximation
of the initial value, we used a POD method based upon the linear Bernstein poly-
nomials (in the notation of §4.1 η` := B`, ` = 1, . . . , 7 =: Ñ). We show the decay

of the eigenvalues of the Gramian MÑ
H in Figure 5.1. Choosing five basis functions

h1, . . . , h5 (i.e., a RB space H5) results in a relative error of 0.0314. We will inves-
tigate later how the choice of only 5 POD basis functions influences the reduced
solution of the whole problem. The first two orthogonal POD functions are shown
in Figure 5.2.

Figure 5.1. Eigenvalue decay for the Gramian matrix

(a) First basis function h1. (b) Second basis function h2.

Figure 5.2. First two POD eigenfunctions projected to V J .

For functions that can be modeled by a small number of basis functions as it is
the case for call and put options using Bézier polynomials, it might be advisable to
skip this first step and directly enter the evolution greedy using the small basis as
a part of the training set.

5.3.3. Evolution greedy. In the second step we perform the evolution greedy in Algo-
rithm 2 to compute the RB space WN1 , where we first use Mtrain := {h1, . . . , h5}×
{xk = −0.5 + k∆s : k = 0, . . . , 11,∆s = 1

11} ⊂ span{B1, . . . , B7} × (−1, 1) as a
training set, i.e., #Mtrain = 60. As in [31] we use a natural discrete space-time
norm given by

‖w‖2X̄ := ‖w̄‖2L2(I;V ) + ‖ẇ‖2L2(I;V ′) + ‖w(T )‖2H , w ∈ XN ,
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where w̄k := (∆t)−1
∫
Ik
w(t) dt ∈ V and w̄ :=

∑K
k=1 χIk ⊗ w̄k ∈ L2(I;V ). Using

this norm, the discrete problem appearing in the evolution greedy is well-posed.
Another reason for this choice is that the evolution greedy uses the same bilinear
form as was used in [31] to treat homogeneous initial conditions.

We compare the evolution greedy with the proposed error estimate RN1,1 with
the so called strong (evolution) greedy using the exact error (instead of the esti-
mate) which is determined using a detailed solution. Doing so, we can investigate
the performance of the error estimator. As we see in Figure 5.3 (a), the error
estimate behaves similar to the true error. An error tolerance of 10−3 is reached
by 28 basis functions using the estimate, whereas the strong greedy shows that 24
basis functions suffice to reach a tolerance of 10−4. As expected, the error bound
overestimates the error. One reason is that (for simplicity) we use a pessimistic
lower bound of the inf-sup condition (βLB = 0.005).

(a) Maximum error over iterations of the
strong evolution greedy and using the error

estimate R1
N1

(b) Error estimator and true error for ρ ∈
(−1, 1)

Figure 5.3. Performance of error estimators

5.3.4. Error propagation. Now, we investigate how different training sets influence
the results. First, we choose u0 = h1 (i.e., an exact initial condition). As we see in
Figure 5.3 (b) the error for ρ ∈ [−0.5, 0.5] (the part that is covered by the training
set) is below 10−4 and the error estimation R28,1 is below 10−3. For ρ ∈ (−1, 1) \
[−0.5, 0.5] the approximation is –as expected– worse. Note that we ploted on a grid
for ρ with step size 0.01. Furthermore, we can see that (h1,−0.5), (h1,−0.4091),
(h1,−0.2273), (h1, 0.0455), (h1, 0.3182) and (h1, 0.5) are in the sample set for W28.

Next, we choose a call payoff function µ0(y, ν) = max(exp(y)−K, 0) with strike
price K = 70 and ρ = 0.3. The resulting approximation error using only five
POD basis functions can clearly be seen in Figure 5.4. Obviously, the space-time
error is large on the domain Ω, in particular due to the errors near the boundaries.
However, usually one has to enlarge the domain in advance due to the chosen
boundary conditions, hence one is only interested in a smaller part of Ω.

For option pricing the absolute error, i.e., the difference of the prices, is also of
interest, because the resulting RB price is to be actually paid by the customer. As
we can see in Figure 5.5, the absolute error at the final time T is actually about
2, which is clearly too large. The reason is the POD truncation of the initial value
based upon a relative error basis.



RBMS FOR PARABOLIC PDES WITH PARAMETER FUNCTIONS 23

(a) Detailed uN at t = 0. (b) Reduced uN at t = 0.

Figure 5.4. Detailed and reduced initial condition (u|[10−8,190]×[0.05,0.95]).

Figure 5.5. Absolute error uN (T )− uN (T ) at maturity (u|[10−8,190]×[0.05,0.95]).

As mentioned before, we can choose the training set Mtrain in the evolution
greedy independend of S0

N0
. We compare different combinations of reduced basis

spaces in Table 5.1. For ρ ∈ [−0.5, 0.5] with u0 = h1 (so again an exact initial
condition) the true errors of the different approximations are shown in Figure 6(b).
We can see, that for the exact initial value all RB approximations are evenly good.
In contrast, by looking at the last column of Table 5.1, we note that if we choose a
poor initial value approximation resp. a poor training set for D0, the RB approx-
imation is not acceptable. In particular for PDEs with zero right-hand side and
a linear operator (as we have for option pricing), we can show that for every new
parameter µ̄, where the function part µ̄0 lies in the span of the training set M1

train,
we get ∆1

N1
(µ̄) < tol1. That explains why we do not get a larger N1 resp. a better

RB approximation by extending M1
train in Scenario 2 in comparison to Scenario 1.

Of course, in this situation, this is also explained by Gronwall’s lemma.

6. Summary and outlook

We have introduced a Reduced Basis space-time variational approach for para-
metric parabolic partial differential equations having coefficient parameters and a
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Table 5.1. Comparison of different sets for HN0
and the training

set of the evolution greedy (Mtrain = M0
train ×M1

train, M1
train as

before, tol1 = 10−3, µ(y, ν) = (max(ey − K, 0), 0.3) and with
u|[10−8,190]×[0.05,0.95]).

Scenario HN0
M0

train #Mtrain N1 ‖uN (µ)− uN (µ)‖X̄
1 span{h1, . . . , h5} {µ1

0, . . . , µ
5
0} 60 28 9.1994

2 span{h1, . . . , h5} {µ1
0, . . . , µ

7
0} 84 29 9.1994

3 span{h1, . . . , h7} {µ1
0, . . . , µ

5
0} 60 28 7.9801

4 span{h1, . . . , h7} {µ1
0, . . . , µ

7
0} 84 40 1.7162e− 04

(a) Maximum errors over iterations using the

error estimate R1
N1

.

(b) True errors for ρ ∈ [−0.5, 0.5].

Figure 5.6. Comparison of the different scenarios presented in
Table 5.1.

variable initial condition. Feasibility and efficiency have been demonstrated. Ob-
viously, a whole variety of further questions arises, just to mention some of them
that we aim to consider in the near future:

• Extension of the Bernstein representation of the initial condition to an adaptive
wavelet approximation.

• In [4], an alternative space-time variational formulation has been considered
which transfers the essential initial condition to a natural one.

• In case of a basket of options, the dimension of the problem of course grows,
which calls for a specific treatment e.g. by the Hierarchical Tucker format as e.g.
in [9, 23]. More general, the choice of trial and test spaces within the (offline)
phase can be further investigated and possibly optimized.

• For calibration purposes, all model parameters have to be taken into account.
This type of high dimensionality needs particular treatment as e.g. in [8], [18]
or [19]. Moreover, numerical stabilization techniques have to be investigated.

• Extensions to other financial models, American options, etc.
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