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A REDUCED BASIS METHOD FOR PARABOLIC PARTIAL
DIFFERENTIAL EQUATIONS WITH PARAMETER FUNCTIONS
AND APPLICATION TO OPTION PRICING

ANTONIA MAYERHOFER AND KARSTEN URBAN

ABSTRACT. We consider the Heston model as an example of a parameterized
parabolic partial differential equation. A space-time variational formulation is
derived that allows for parameters in the coefficients (for calibration) as well
as choosing the initial condition (for option pricing) as a parameter function.
A corresponding discretization in space and time amd initial condition is in-
troduced and shown to be stable. Finally, a Reduced Basis Method (RBM) is
introduced that is able to use parameter functions also for the initial condition.
Corresponding numerical results are shown.

1. INTRODUCTION

Calibration and pricing are two standard tasks in numerical finance. Using a
PDE-model based upon the Feynman-Kac theorem (see also Proposition 2.1 below),
calibration amounts fitting unknown parameters in the partial differential equation
(PDE) to historical market data in a least-squares sense e.g. by some optimization
scheme. This usually requires solving the same PDE with many different values of
the parameters (given by the iterative optimization method). Such a problem is
also termed ‘multi-query’.

We consider the Heston model, which allows for a non-constant volatility, [20].
Having in mind that every model is wrong to a certain extend, constant volatilities
are of course a severe limitation, which has been our motivation for considering the
Heston model here. The Heston model leads to a system of parabolic diffusion-
convection-reaction PDEs with non-constant coefficients, which makes the model
also interesting from a numerical point of view.

Moreover, as we shall see below, the Heston model already contains 4 parame-
ters, i.e., calibration requires solving a 4-dimensional PDE-constrained optimization
problem. Of course, by extending the model, the number of parameters can easily
be enlarged leading to truly high-dimensional parameter spaces.

In the PDE-framework, pricing amounts solving the same kind of parabolic prob-
lem with different initial conditions determined by different payoff functions. The
payoff is usually determined by the specific design of the financial product, so that
a flexibility in the choice of the payoff function enables efficient product design.
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Both problems, calibration and pricing need to be solved rapidly, often ‘online’
e.g. in ‘real time’ as for risk management.

Such kind of rapid online multi-query problems are in the scope of Reduced Basis
Methods (RBM), that have been developed and widely investigated for parametric
PDEs, in particular of elliptic and parabolic type, see, e.g. [14, 25] and references
therein. Roughly speaking, the RBM involves an offline and an online computing
phase. In the offline phase, a detailed, but costly numerical model (sometimes called
‘truth’), is used to construct a reduced space. The construction is based upon a
reliable and effective error estimate which in addition can be evaluated efficiently.
Moreover, this error estimate allows to compute an a posteriori bound, which makes
RB-approximations certified.

Similar to [30, 31], we suggest a space-time variational formulation of the para-
bolic PDE-system. This leads to a Petrov-Galerkin method containing space and
time. Obviously, the time is added as additional dimension, but it allows for sharp
error bounds for a corresponding discretization in space and time. Moreover, simi-
lar to [30, 31] we show that a specific choice of trial and test spaces in the Petrov-
Galerkin method lead to a Crank-Nicholson scheme also for the case of varying
initial conditions. This requires also a discretization of the initial condition so
that we end up with a detailed discrete problem in space and time and intitial
condition, which is used as ‘truth’ for a RBM. It turns out that the space-time
approach transfers an initial condition parameter function into a parameter within
the PDE-coefficients.

Even though RBM have already been used in numerical finance, see e.g. [5, 16,
28], and even though the current paper is clearly only a first step, we think to the
best of our knowledge that we introduce some novel aspects: (a) We use the initial
condition of an evolution problem as a parameter within a RBM, which has not
been considered so far; (b) The initial condition is a parameter function, which
in particular means that the parameter space is infinite-dimensional. We solve
this problem by expanding the initial condition in an appropriate basis, which is
somehow similar to e.g. [17, 22]. (c¢) A space-time variational formulation is used
to treat a non-homogeneous initial condition by a two-step method, namely first
approximating the intial condition and then using this as a parameter in the right-
hand side for determining the evolution. We note, that this is not restricted to
linear problems only, see Remark 3.3 and §3.3.5 below.

The remainder of this paper is organized as follows. In Section 2, we collect
preliminaries on the Heston model and Reduced Basis Methods (RBM). Section 3
is devoted to the review of the space-time variational formulation, in particular for
parabolic parametric partial differential equations. This includes the error estimate
from [30, 31], which is the basis for the RB error estimate. Next, we introduce a
discretization. In space and time, we follow [30, 31] and use finite elements. In
addition, we introduce a discretization for the initial condition and show that we
can decompose the numerical computations into (1) a Galerkin-type problem for
the approximation of the initial condition and (2) a time-stepping scheme for the
evolution.

The next step is the introduction of a Reduced Basis Method (RBM) in particular
for parameter functions in Section 4. Again, we derive a two-step method, here for
the construction of the reduced basis. We derive stable RB trial and test spaces
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for the reduced Petrov-Galerkin scheme and show an error estimate. We present
numerical results in Section 5 and close with a summary and outlook in Section 6.

2. PRELIMINARIES

1. Calibration and pricing within the Heston Model. The Heston model
is a well-known model for option pricing allowing also a non-constant volatility of
the underlying. It was invented 1993 by Heston, [20]. The Stochastic Differential
Equations (SDEs) for the asset price S; and the volatility 14 are assumed to be

(2.1) dS; = rSedt + \/v1Sedz1 (¢), dvy = K[0 — v]dt + o/vedza(t),

where z71, 2o are Wiener processes with correlation p, r is the return rate of the asset,
k the mean reversion rate to the long term variance 6 and o is the volatility of the
volatility. In particular, the instantaneous variance v, is modeled as a CIR (Cox-
Ingersoll-Ross) process, [6]. Finally, the model implies that 21 = /1 — p2dzs+ pdza
with independent Brownian motions zo, 23.

The following partial differential equation (PDE) representation is well-known.

Proposition 2.1 (Feynman-Kac formula, [24]). Let X; be an n-dimensional Ito
diffusion, i.e., dX; = b(X;)dt + o(X;)dBy, f € C?*(R"™) be a compactly supported
payoff and q € C(R™) be lower bounded. For u(t,z) := Ele~ Jo 9X)ds f(X,)| X, = ]
it holds for x € R™ that u(0,x) = f(x) and for allt € (0,T], x € R™ that

augz 2 - % Z (o(x)o™ (2)); i, 68:; ;; Zb 8u8;x —q(x)u(t,x). O

ij=1

For applying the Feynman-Kac formula to the Heston model, we consider the
process X; := (yi, )" = (log(S;), )T, n = 2. Then, we can rewrite the two SDEs

1 (2.1) as a system
(o) (700~ 2 (02)

dX, =d (yt)
Vi

K g dZQ
= b(Xt) dt + O'(Xt) dBt
Using Proposition 2.1 then yields the PDE (in z) for the Heston model of the form
(2.2) a%u—d iv(a(t)Vu(t))+B(t)Vu(t)+y(t) u(t) = 0 for t € (0,7, u(0) = uo,

where ug is the payoff and the coefficient functions are given by

23 a=g () Wh). s0 = (L TR a0

2 \viop o KO — kv — 20

2
Truncating z € R? to some bounded domain Q C R2 and posing appropriate
(truncation) boundary conditions yields

(2.4a) %u(t,x) + A(t) u(t,z) =01in (0,7T] x Q,
(2.4b) u(t,z) =0 on [0,T] x 09,
(2.4c) u(0,2) = ug(z) on Q,

where the differential operator is given as A(t)u := —div(a(t)Vu)+ B(t) Vu+v(t)u,
)ise

ie., A(t) € L(V,V') with V := H}(Q). Tt is readily seen that A(¢
only if vy > 0 and p € (—1,1), which we will always assume.

elliptic if and
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It is well-known that the bilinear form associated to A(t), i.e., (A(t) u,v)y/xy =
a(t; u,v) reads

a(t;u,v) = /Q{g(t)Vu(a:) -Vo(z) + B(t) - Vu(x) v(z) +v(t) u(z) v(z) d.

If (@)i;(1), B,(t), ¥(t) € Lo(2), 4,5 = 1,2, and ug € Lo(Q2) =: H, then there exist
constants 0 < M,,a, < oo and 0 < A\, < oo such that for all u,v € V it holds
(2.5a) la(t;u, v)| < Maullv[vllv,

(2.5b) a(t;u,u) + Aallullfy > aqllully,

if A(t) is elliptic, see, e.g. [10, Thm. 2, p. 318]. Obviously, (2.5a) means boundedness
and (2.5b) is a Garding inequality.

Parameters. In order to calibrate the model, one has to determine the model pa-
rameters, i.e., uy1 := (p, K, 0,0) based upon market data. Moreover, in particular
for pricing, we would like to determine prices for different payoff functions, i.e., we
consider the initial value g := ug as a parameter function.

2.2. Reduced Basis Methods (RBMs). Now, we recall the main features of
Reduced Basis Methods (RBMs) for paramaterized partial differential equations
(PPDEs) that are needed here. For more details, we refer to the surveys [14, 25]
and the references therein. We assume that the variational form of the PDE is
given by

(2.6) () € X blusu(n),v) = fusv) Vo€,

where X, Y are (infinite-dimensional) Hilbert spaces, b : DxXxY — R a parametric
bilinear form and f : D x Y — R is a parametric functional, f(u;-) € Y'. The
parameter space is denoted by D. Well-posedess of (2.6) is always assumed, which
in particular means that an inf-sup-condition

(2.7) inf sup blyss w, v)

> >0
weX yey [|wl|x [|v]ly

is satisfied for all p € D.

The next step is the assumption that a stable finite discretization XV c X,

YN C Y in the sense
o NN

(2.8) inf  sup S, o) >N >0

wVexn v eyn [N lx oV [l
is available that is sufficiently fine so that the discrete Petrov-Galerkin solution
uN (1) is a sufficiently good approximation to u(yu). Hence, uN (1) is called detailed
or truth solution. We assume that u"(x) can be computed with A operations
and that this number A is too large to be acceptable for realtime or multi-query
computations, so that a reduced model is necessary.

In order to derive this reduced model, the idea is to split the computations into
an offline and an online phase. During the offline phase, one may afford to use the
detailed model in order to compute snapshots u? := uN(,ui)7 fori=1,...,N and
N < N is much smaller so that the reduced model is feasable online even if the
complexity is of the order O(N?3) since the stiffness matrix is in general densely
populated.
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The reduced solution uy () is then determined as the (Petrov-)Galerkin solution
in the space Xy := span{u’ : i = 1,..., N} with a stable reduced space Yy C YV
of dimension N:

(2.9) un(p) € Xy blpyun(p),vn) = f(pon) Yon € Y.
Stability is to be understood in a uniform inf-sup-sense, i.e.,

b .
(2.10) inf sup DUEONUN) o og g

wNEXN uyevy lwnllx lunly
with Opp independent of N as N — oo as well as of pu.

The snapshots defining the reduced space are determined by the (offline-)selection
of parameter samples Sy := {u’ : i = 1,..., N} and those samples are computed by
maximizing a computable error estimate Ay (u) w.r.t. the parameter p. This can
be done e.g. by nonlinear optimization or a greedy method w.r.t. a finite so-called
training set Z%*" C D. Such an error estimate can e.g. be derived as follows.

Proposition 2.2. Let Xy € XV and un (1) € Xy be the solution of (2.9). Defin-

ing the residual by 7y (p;0) := f(p50) = b(; un (1), 0) = b(; N (1) —un (), v) for
all v € YN, we obtain the following error estimate

(2.11) ™ () = un () [lxev < BLNHTN(:“)”(YN)’ = An(p),

where BN denotes the inf-sup-constant (2.8) of b(p;-,-) on XN x YN (possibly with
discrete norms || - ||sxv, || - |lyv ) O

The ultimate efficiency aim is to realize an online complexity that is independent
of N. The key for that realization is the assumption that bilinear form and right-
hand side functional are separable w.r.t. the parameter, i.e.,

Qs Qs
(2.12) b(piw,v) =Y () bg(w,v), ) =Y (1) fq(v),

with functions 192, 195 : D — R and parameter-independent forms b, : X x Y — R
and f; : Y — R. In the RB literature this is often —a bit misleading— called affine
decomposition.

Let {v7 : 1 < j < N} be a basis of the space Yy, then (2.9) reads

N
(2.13) uy = (uni)i=1,...n €RY: ZUNJ b(u;u',v7) = flusv?) Vj=1,...,N.
i=1

Furthermore, let u® = Zﬁle ol N be the representation of the snapshots in a

basis {¢N : n=1,...,N'} of XV and correspondingly v/ = Zle BIyN in a basis
(YN n=1,...,N}of YV. If (2.12) holds, the computation of the stiffness matrix
and the right-hand side of the reduced linear system can be split in an offline/online
fashion as follows (here only for the stiffnes matrix)

N N Qb
bz, v) = Y el B bl N = D ek Bl Y 0h (i) by )
n,n’'=1 n,n’=1 q=1
Qb N Qb

|
|

B) D ok B ba(h ) =) " 0h (1) (bg)i s,

q=1 n,n’=1 q=1
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where the terms (b,);,; are p-independent and can thus be computed offline. Online,
for a new parameter u € D, the stiffness matrix of the RB-system is obtained by

(Br(1))ij = blu; u',07) Zﬁb )iy Gj=1,...N,

which requires O(Qp N?) operations independent of A'. The same procedure can
be done for the right-hand side and also for the error estimator Ay (u) since one
can derive a separation like in (2.12) also for the residual ||rn ()| vy -

Starting from an elliptic PPDE, there are several RB methods for parabolic
problems using a usual time-stepping approach, e.g. [13, 15]. We do not follow
this path here, in particular since we aim at using the initial value as a parameter
function. Standard RB error estimates for time-stepping-based methods involve
sums of residuals of each time step, so that an initial error is possibly heavily
amplified. This is one of the reasons, why we consider a space-time variational
formulation of parabolic PPDEs that will lead us to a problem of the form (2.6),
where X, Y will be Bochner spaces, i.e. involve space and time.

3. SPACE-TIME FORMULATION OF PArRABOLIC PPDES

We now review the space-time variational formulation and its discretization.

3.1. Parabolic PPDEs. The Heston model problem yields a parameterized par-
abolic initial-boundary value problem of the following form: Let I := (0,T") be the
(open) time interval and V < H < V' be a Gelfand triple of Hilbert spaces (e.g.
V = H}(Q), H = Ly(Q) for a bounded domain Q@ C R?%). The parameters are
assumed to take the form pu = (ug, 1) € D := Dy x Dy, where Dy C H is a set
of possible initial values and D; C R” is a parameter space of finite (or infinite)
dimension. Then, given some g(u;t) € V', ¢t € I a.e., we look for u(u;t) e V,t el
a.e., such that

(313’) <a(u;t)a¢>V’XV + a(:ul;u(,u;t)ad)) = <g(,u’1;t)7¢>v’><v Vd) € ‘/7 te Ia'e'a
(3.1b) u(p;0) = po in H,

where a(p1;+,+) : V x V — R is a bounded bilinear form. Note, that a(:;-,-) and
g(+;+) are assumed to depend only on w1, not on py. As described above, g is the
initial value parameter, whereas p; contains the parameters occurring within the
coeflicients of bilinear form and right-hand side, e.g. parameters to be calibrated.
We can easily extend our findings to time-dependent bilinear forms a(y;t, -, ) as
well.

As already motivated in Section 2.2, we assume the following separability w.r.t.
the parameter py € Dy for ¢, € V and t €

Qg

(32) :U'17¢a 219 Nl [ (,25, )7 g(lu‘lvt) :Zﬁg(ﬂl)gq(t)a

q=1

where 9,99 : Dy = R, ay(-,-) : V xV — R and g4(t) € V' are given.
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3.2. Variational Form. For existence and uniqueness of a solution to (3.1) we
assume that there exist constants M,, a, > 0 and A\, € R such that for all ¢,p € V'
and all u; € Dy

(3:3) lau; ¢, 9)| < Ma[ollv[lllv (boundedness),
(34) a(pas ¥, ¥) + AallYl7r > a9l (Géarding inequality),

see (2.5). Of course, in general the constants M,, A, and «, depend on pu; —
for simplicity we consider upper respectively lower bounds that are parameter-
independent. For the space-time variational form of (3.1) we define Z := Lo(I; V)
and consider as in [29] the following trial space

(3.5) X={weZ:weZ}=Ly(I;V)nH' (L, V'),

with the norm |lw|% = |Jw|Z + [|@||Z + ||w(T)||%, w € X. The test space is
Y := Zx H and for every v = (z,h) in Y the norm is defined by ||v||3 := || 2|2+ h||%-
For w € X and v = (2,h) € Y we define

b(p;w,v) ::/I@(t),Z(t))v/xv dt*/la(m;W(t),Z(t))dtJr(W(O)vh)H
(3.6) =: b1 (p1;w, 2) + (w(0), h) &
and the right-hand side as

3.7  flwv):= /1 (g(u1st), 2()) vy dt + (po, h) g =: g1(p1; 2) + (po, h) a-

The space-time variational formulation of (3.1) is of the form (2.6), i.e.,
(3.8) find u(p) € X such that b(pq;u(p),v) = f(u;v) Yo €Y.

Due to the separability of a(u1;-,-) and g(u1;-) w.r.t. the parameter uq, we get a
corresponding separation for the bilinear form as well (v = (z, h)):

Qa

Mwmw:L@@J@WWW+XFWML%W@MMﬁ+W@ﬁm

q=1

Qb
(3.9) =0 9% (p1) by(w, v)

with Qy = Qo + 1, 95 = 9, 1 < g < Qu, 1922,, = 1 as well as b,(w,v) =
fI aqg(w(t), z(t)) dt, 1 < ¢ < Qq, and by, (w,v) := (w(0), h)H—i—fI(w(t),z(t))V/det.
The situation is slightly different for the right-hand side. Let ¥ := {4, : m € N}
be a (Riesz-)basis of H, then po = Y, - 10,m ¥m, s0 that

Qg oo
Flso) = S0 03(m) [ (aul®) 2w xvde+ 3 po W) v = (0

m=1

which is a separation w.r.t. the parameters, but with infinitely many terms. If yo has
some finite expansion (even in terms of a different set of functions or also obtained
by an approximation), we would get an obvious separation with Qf = Q4+ L, where
L denotes the number of terms in such a finite expansion of pg. We will come back
to this point later, in particular w.r.t. an efficient offline-online treatment of the
right-hand side.
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We define space-dependent quantities®
0
O

wex\foy llwlx © ozgev [19llv

M, =

and form-dependent ones (recall (2.7))
. a(p; 9, @)
P i 18, 020 28 ol Tl
as well as lower bounds for the inf-sup-constant of the bilinear form b:
min{min{1, M2} (a, — X\.0%),1}
V2max{1, (8:)~2} + M2
(T, agy Aa, My) = coer (a0, Mo + Aa?) € 72)\GT.
Vvmax{2, 1+ 2A2p*}
Proposition 3.1 ([31, Prop. 2.2, Cor. 2.7],[29, Thm. 5.1]). Let a(p1;-,-) sat-
isfy (3.3) and (3.4). Then, we obtain the inf-sup lower bound B, > BEB =
max{Bod: Biime (T)}- 0

Remark 3.2. (a) Note that 858 does not depend on time. However, this estimate
is only meaningful (i.e., positive) if ag — Ng0® > 0 which means that a(juy;-,-) is
coercive.

(b) In case of homogeneous initial conditions using

b .
By := inf inf SupM
11 €D weX ey ||w||X HU”Y

(3103“) coer = ﬁcoer(o‘av Aas Ma) =

(3.10b)  BEB (T) =

time

tlmc

(3.11) W= {w e X: w(0) =0},
the above estimate holds for the form by introduced in (3.6) with M, = 0.
(c) As an example, let us consider the heal equation, i.e., A(u1) = —A (no

parameter dependence), V = H}(Q), H = Ly(Q2). Hence, in this case, parameters
only appear in the m’ght h(md side, ie (ul, ) = al(-,-) as well as b(py;-,-) =
b(-,-) and f(u;v) = f(po;v) = [;{g( O)vrxvdt + (po, R, v = (z,h). Then,
we use ||B||3 = a(v,v), i.e. Ma =1, /\a = O aq = B =1. Asin [31, Cor. 2.5, we
have By > 1.

Remark 3.3. At least for the numerical realization, we will also consider (quadrat-
ically) nonlinear problems, even though well-posedness will not be investigated here.
In this case a(py;-,-,+) : V3 — R is a trilinear form and in (3.1a) we would have the
term a(p; u(p;t), u(p;t), @) instead. The reason for this consideration is twofold:
(1) Several financial models involve nonlinearities; (2) Our subsequent numerical
approach using the space-time variational form particularly allows the treatment of
polynomial nonlinearities, see §3.3.5 below.

3.3. Discretization. For a linear problem, one could reduce (3.1), in particular
(3.1b) to a homogeneous initial condition. However, since we aim at considering the
initial condition (also) as a parameter and also have nonlinear problems in mind,
we keep the inhomogeneous initial condition, so that we need to modify what has
been proposed in [31], see also [1, 2].

We use (also) finite elements to construct finite dimensional subspaces XV C X,
YN € Y and aim at determining an approximation u (1) € XV of the solution
u(p) € X of (3.8). The parameter N will contain dimension parameters for time,
space and initial value discretization spaces. Concerning notation, a (calligraphic)

aTypically, one can bound M, < /3.
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superscript will always denote a large (offline, ‘truth’; detailed) dimension, whereas
a reduced dimension will later be indicated with an (non-calligraphic) index. More-
over, spaces written with ‘blackboard bold’ letters (\mathbb) contain space-time
functions, whereas ‘normal’ letters are used for functions in space or time.

In order to introduce the discretization, we basically follow [29, 31] and note that

(312) X=H')®V, Y=ZxH:=1Ly(I;V)xH=(Ly(I)®V) x H.

Let 7;*})7%6 be a triangulation of the underlying space 2. For discretizing the function

space V we consider the finite subspace V< spanned by a nodal basis {¢1,...,¢7}
with respect to the triangulation 7;~p7ace.
For the finite-dimensional temporal subspaces EX C H%O}(I) = {¢p € H'(I) :

#(0) = 0} and F* C Lo(I) consider the discretization of the interval I given by
TE c={th =kAt: 0<k <K,At := %} The trial space EX is spanned by the
piecewise linear functions {o!,..., 0"} w.r.t. 7;)icme' For every 1 <k < K —1, we
choose ¥ as the hat function with nodes t*~1, t¥ and t*+! and the remaining ones
are defined by of = t’tAi_lx[tnfgt;c] and o9 := %X[o,tl] (which will be needed
later). The test space FX is chosen as span{7!,..., 7%} with respect to 7%
78 = x & is the characteristic function on I* := (=1 ¢F].

Finally, the trial (and test) space H™ C H for the initial condition is denoted by
HM = span{t1,...,Yvpm} CV C H*. We keep HM and in particular M arbitrary
here and will detail possible choices later. In particular, we also allow for the case
HM =VYJ (M = J) and discuss advantages and disadvantages of this choice.

With these preparations at hand, the discrete approximation subspaces of X and

Y are defined as ({c°) := span{c})

where

ime

(3.13a) V= (Yo HMY e (EXo V) ==QMeW?, T=K-J,
(3.13D) YV = (FF @ V7)) x HM = 7% x HMP,

Since dim(EX) = dim(F*) = K, dim(HM) = M and dim(VY) = J, we have
dim(XN) = M+ KT =N =T + M = dim(Y"). In case the discretized versions
of X and Y would have different dimensions, a least squares method has to be

used, [1]. Finally, note that W2 C W, see (3.11). We obtain a discrete variational
formulation of (3.8): Find vV (1) € XV such that

(3.14) b(pasuN (1), vN) = f(uo) VN e YN, = (o, m) €D,
which corresponds to a linear system that can be detailed as
b (pas ™ (), 25) + (N (1)) (0), M) 11 = g 25) + (po, W) i
for all vV = (2T, BM) € YN = 2T x HM.
3.3.1. Time-stepping. Similar to [31], it is not difficult to see that the above dis-

cretization is equivalent to a time-stepping scheme. In fact, we have the splitting
WV = M+t e QM e WE = XV, in particular vV (0) = ¢™(0) and wT(0) = 0.

2The reason to impose ¥, € V will also become clear a little later.
bTor the test space, we could also replace H™ by some other space, possibly also with different
dimension. Here, we want to keep this issue simple.
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In terms of the respective bases, we get the representations

M K J
N =M wt =Y g0 @) + 0D wi(o" @ ¢) e XV,

k=11i=1

(3.15)
M for the initial value as well as

(Qm)m 1,.
x and (recall NN = M + 1)

with the coefficient vectors qug =
Wz = (W) )iz1,.. 7, k=1, = (WF)k=
K J
(3.16) oV = )= (XY @ay), Z hnthm ) € YV,
=1 j=1 m=1
with the coefficient vectors zz = (2%);21,. 7,021,k = (2%)i=1, x and hy =
(hm)m=1,...,.m. With these notations, we obtain
(1)) dt

o ()Ym, T () ;) dt

+

>
&~
Il
-
-
<
Il
i

Note, that a(p1;¢m, ¢;) is well-defined since we have assumed that 1, € V. For
ka ¢ = %(516,[ +

k 2 0 and ¢ Z 1 we have (d’k,TE)Lz(I) = 5]@7[ — 5k+1g and (0 T )L2(])
dk11.e), in particular (dO,TZ)Lz(I) = —d14 and (0'07T£)L2(1) = %51713

Similar to [31], we set
RICJX/CJ — RIXI

N ® M‘s{nce + Mtlme ® Aspwce (:u‘l)

time

K —
o Mtime T

(317)  BX () :=
((dk TZ)LQ(I))IC,IZ 1,y
7 and

where the temporal matrices read NK =~ :=
((O’k,’ré)lq(]))k,z:l _k and the spatial ones are MSpacc = (s, 0j)H)i j=1,...,
Ag)acc(/il) = (a(p1; @i, ¢5))i j=1,...,7- The matrix BZ (1) was used in [31, (2.14)]
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to describe and analyze the discretization in the case of homogeneous initial condi-
tions. Then, we obtain

bi(prsu, 2 Z Z wf 25 (BT (101)) 1,0),(0.9)

k,4=11,5=1

M K T
£330 4 { (6T o) W )11 + (07 7 )y alpass s 67)

m=1/¢=1 j=1

= WIBI /Ll ZI+ Z ZQmZ { wWL?d)j) Ata(:ul;wmagbj)}

m=1 j=1
7 Mg Aty Mg 1
=w;B (Ml)ZI+QM( M)y AI/S (N1)>ZI
(3.18) = wiB*(u)zr + 4} Cy Y ()2,

Where the involved matrices M%j,Alj\//ij(,ul) € RM*7 are defined for m =
M j=1,...,T as

M, M,
(3.19) (M0 Vg o= s ) (AT (10))mg = a5 s &)1
We split the coefficient vector for the unknown ux = (qu, wr)? and set 1’-9\/ =
qm as well as uf\’[ = w%, k =1,...,K in order to formulate the time-stepping

scheme. Then, we obtain for fixed £ > 1 and any j € {1,...,n,}

by (pr; w78 @ @)
{[M%acc /1\f (Ml/y; J)TUO + at (A‘s—,{)acc(lu‘l)u/l\/' + (A1/>/; J(/u’l))Tu,(})\/h if ¢ = ]-7

At[M%uce Alt (uf\/ - uN ) + Agmce( )7(11.?\[ + 11/\7 )L-y ifl>1

(3.20) At[At M (ufy — uly ) + Al () uy 7]

)

J

where uf\flm = (uf, + uAfl). On the right-hand side we use a trapezoidal
approximation
(3.21)
i ©6;) = [lgmit)r* @ 65t vrvit = [ lolunit), 7 o) vevds
I I

At

5 @0t 4 g ), dg) vy = At (g (m));-

3.3.2. Initial value approximation. Let us now discuss the approximation uf)\/ (given
by qum) of the coefficients of the initial value u(0) = po. Since uV'(0) = ¢™(0),

qM € QMv we have UN(O) = Z%:l dm (O'O & 1/1m)(0) = szl dm wm € HM7 S0
that for AM = szl hinm € HM, we get

(uN( ) h’M Z QTH’h wm wm)H_ MMlnlthM7

m,m’=1

where hag := (hp)1<m<m and ML = (Vs Ym) B )m? ;m=1,...m. The right-hand
side of the discretization of (3.1b) for obtaining an approximation of the initial
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condition reads for the same A ¢ HM
M

(/1407hM)H = Z hm (M07wm)Ha

m=1
which is only computable if py admits a finite expression. We refer to Remark 3.5
below for possible choices.
At this point we will only assume that a discretization of Dy is given by ’D§ =
span{By, ..., B}, i.e., we consider u§ = Zle 6 Be and obtain
L M
(N()Lv W = Z Z Ng hm (Be, Ym)u = Hg:LNLMth

=1 m=1
where N&M = (B, ¥m) ) e=1,....0: m=1,.... M Ko = (1) e=1,..c-

3.3.3. Crank-Nicolson scheme. Putting everything together, we obtain the follow-
ing Crank-Nicolson scheme for computing uy = (uf, ..., uf;) (recall (3.20)):

(3.22a) (MM

init

)Tu?v = (NE’M)TNO,L,

1 _ _ _
(3.22b) EMJI“\/(qu\/ — ) + AR () uf T = g P (), k=1, K

Note, that M{\n’}t is regular, so that u?\/ = u?\/(ﬂo) is uniquely defined and the
discrete problem (3.22) is obviously well-posed.

Remark 3.4. Let us now discuss some relevant special cases.
(a) Let HM = VI M = J. In this case, we get in (3.19) that M/
and Aij\//;’j = AJ This means that we do not need to distinguish the cases

7 =M
S

space
space”

¢=1and ¢ > 1 in (3.20), i.e., we get a standard Crank-Nicolson scheme with
initial value ul,. Moreover, MM, = Mgpm (which is symmetric and positive
definite (s.p.d.)) and NSM = N&IT .= ((By, ¢j)u)1<e<c1<j<7, i-e., we obtain
uly = (MZ,c0) H(IN“) T o € RY, which can be used as initial value for the
Crank-Nicolson scheme (3.22b).

(b) If 1o can be represented as (or approzimated by) po = ppt = szl UG Um €
HM £ VI, Mo = (UG )m=1,...m, then L = M, Df = HM, NAM = MM, |

which is s.p.d., so that u}, = Mo € RM. In this case, we need to modify the first

step of the Crank-Nicolson scheme as we do not need to solve a linear system in
(3.22a).

Remark 3.5. In view of Remark 3.4 (b) above, let us describe further scenarios
for the approzimation of uy ~ u§ € D§ C H that we have in mind:

(1) If 2 = {& : £ € N} is a Riesz basis for H, then ug has an expansion
in that basis, i.e., flo = Y ycn pb&e. Then, ¢ := {&1,..., &0}, DE = span(Zr)
may be selected as the ‘most significant’ parts of the infinite expansion, e.g. by
an adaptive approximation. The above approximation is then obtained using the
corresponding expansion coefficients ug, ..., u& or approvimations of them (if they
cannot be computed exactly).

(2) Sometimes, the specific structure of possible initial values is known from
the particular application. Then, it might be realistic (as in fact for some payoff
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functions in option pricing) that g € span{By,...,Bc} = D # HM. In this
situation we can directly write g = Zle BeBy and upt is given as in (3.22a).
(8) As mentioned in Remark 3.4 (b), our approach particularly allows to choose

Dé: as HM — even though this results in an immediate smoothing of po € H, since
HMCV CH.

3.3.4. Parameter Separation. For later reference, we now detail the specific para-
meter-dependence of the discrete variational formulation. Obviously, u}, can be
computed by (3.22a) in dependency of o (or its approximation p§) in the sense
that p§ uniquely determines ul; — p1 is not required. This can be formulated as
follows. Recall from (3.13a) that X = QM @ W7, in particular

WE = {wy exV. war(0) =0} =span{o* @ ¢;: k=1,...,K,i=1,...,T},
compare (3.11). Then, (3.14) can be divided as follows:
(3:23a) ¢M(uo) € HM = (€M (o), )i = (po, ™) viM e HM,
(3.23b)  wh(pm) € WE: by(pasw” (), 27) = F(q™ (po), s 27) V2T € 27,
with the extension of the initial value ¢™ () := 0° ® éM(ug) € QM and the
modified right-hand side f(¢™ (o), p1;2%) = g1(p1;2%) — by (p1; ¢ (o), 2%). In
matrix-vector form as (3.18) the second equation (3.23b) reads

BY (1) "wr(p) = £(ufr (o), i)
= (91(115 94))i=1,...7 — (Ci/\//é’j(ul)Tug)\/(po),O, 0T

The arising coefficient vectors define functions

K J M
wh(p) =D Y wip) (oF @ ¢) € WE, ¢M(po) = D gm(po) (0° @ ¢n) € QM,

k=11=1 m=1

so that w™ (u) := ¢™ (o) + w” () € XV is the desired approximate solution.

We stress the fact that (3.23) can also be interpreted as a separation. In fact,
(3.23a) determines an approximation of the initial value ug — independent of uy,
whereas the evolution is determined in (3.23b) and — as we have seen — could be
realized for example in terms of a Crank-Nicolson scheme.

3.3.5. Nonlinear equations. Note that the above mentioned separation is not a con-
sequence of the fact that a linear parabolic problem allows one to reduce non-
homogeneous initial conditions to homogeneous ones. In fact, if a(y; -, -, -) would be
a trilinear form that induces a space-time trilinear form by (p1;-, -, -), the analogue
of (3.23b) would read

by (pns w? (), wk (1), 25) + br (p1: ¢ (o), wr (1), 25) + b1 (s wk (1), ¢ (po), 2%) =
= g(p1; 25) — by (p1; " (10), ¢ (o), 2%),

i.e., the quadratic term is supplemented by two linear terms since ¢ (1) is known
at this stage. This also shows how to extend this approach to polynomial non-
linearities. The only difference is that the parameter induced by the initial value
approximation is only in the right-hand side for a linear problem, but also appears
within the coefficients of the PDE for polynomial nonlinearities.
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3.4. Stability of the discretization. We have to show well-posedness of the
discretized system, i.e., continuity, surjectivity and an inf-sup-condition for the
linear operator induced by the bilinear form b(yy;-,-) on XV x YV, see (2.8).
Continuity and surjectivity are (more or less) readily seen.

For the case of homogeneous initial conditions, i.e. for by (u1; -, -), inf-sup-stability
was investigated in [31] under the condition that the bilinear form a(u1; -, ) satisfies
a Garding inequality (3.4), see also Proposition 3.1. However, the inf-sup-constant
may deteriorate in the presence of strong advective terms, which is the case in
the considered option pricing models. In that case one might require some sort of
(known) stabilization.

In the general case, using the splitting (3.23), we could deduce the stability of
the discrete problem (3.14) from known results for both sub-problems (initial value
approximation and Crank-Nicolson iteration). However, as Proposition 2.2 shows,
we need an explicit estimate for the discrete inf-sup-constant, which is not easily
obtained from the combination of the sub-problems.

For the special case presented in Remark 3.4 (a) (i.e., H™ = V7). the inf-sup
stability was investigated in [1, 2]. In that case and for our chosen time discretiza-
tion we only have to ensure a standard CFL condition (cf. [2, Prop. 2]) in order to
obtain inf-sup-stability and also an estimate for 4 in (2.8).

4. A REDUCED BaAsiS METHOD (RBM) FOR PARAMETER FUNCTIONS

Now, we consider a Reduced Basis (RB) approximation for the Crank-Nicolson
interpretation of the discrete space-time problem. Recall that the space-time varia-
tional formulation leads to a Petrov-Galerkin problem so that the reduced problem
takes the form (2.9), where the bilinear form b(u1;-, ) only depends on p;, whereas
the right-hand side f(u;-) depends on the full parameter u = (ug, f11)-

As already pointed out, the parameter pg is a function. We are now going to
describe a method to handle this challenge. For p := (g, 1) € Do X Dy the residual
reads

rv (s v) = f(psv) = b(p; un (p), v)
= g1(p1;2) + (o, M) i — b1 (s un(p), 2) + (un (1)(0), h)
= g1(p1;2) = ba(pa;un(p), 2) + (po — (un(p))(0), k)
=:rna(p;2) +rvo(psh),

for any v = (z,h) € YV. Recall, that we need to construct a reduced basis that
ensures a small residuum for the full parameter space D. In order to do so, we
need an efficient online computation of the error estimator Ay (u) in (2.11), which
requires a separation of the residual ry(u;v) into parts that depend only on p and
others depending only on v. This is no problem for x 1 (y; z) due to the separation
properties of g; and b;. However, the term (ug,h)y is an issue since the inner
product involves the parameter pg € Dy and would be needed to be computed
online e.g. in terms of a possibly costly quadrature.

4.1. A two-step greedy method. To construct a reduced basis, first assume
that pg is, or can at least be well approximated by, a finite sum, i.e., pug = Hoﬁ €
Dé: = span{Bi,...,B,}. Then, we would get an usual separation of the form
(o, h)g = Zzﬁzo Be(po) (Be, h) i, where the terms (By, h)y can be precomputed
offline. Constructing a basis with a standard greedy procedure would be possible
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by considering an L-dimensional parameter space containing the coefficients .
However, if £ is large, this is infeasable, also since the coefficients cannot easily be
bounded, so that we would need to work with a £-dimensional hypercube of large
‘side lengths’. Consequently, determining parameter samples for snapshots e.g. by
a greedy method might be extremely costly. Moreover, the use of D& might be a
severe restriction to possible choices of the initial value pyg.

Hence, we need an alternative and consider again the residuum. The following
estimate is immediate

() = sup Ny rya(psz) +rvopsh)
vey vlly  wevs (2l + [1AIF)2
rn.o(p;h)

= [l ()l +sup < llrva(w)llz + o — (un (1)) (0) ||
1€

hlla

: Rya(p) + Ry o(po)-

At a first glance it seems that rn 1 (and Ry,1) only depends on pq. However,
the RB solution uy(u) involves both pg and py so that both parameters enter.
As already said earlier, the approximation of the initial value (and hence Ry o),
however, depends only on .

The above form of the error estimate suggests to compute parameter samples
(and snapshots) in a two-stage-method, namely first to determine samples y) for the
initial value by maximizing Ry o(uo) w.r.t. 1o and second to consider the evolution
and compute samples 17 by maximizing Ry, 1(u/) using the before-computed snap-
shots K™ (yf). This corresponds to the separated computations already introduced
in §3.3.4. Let us now describe the two parts in detail.

We remark that even though we describe a greedy method, one could also use
a different method to determine appropriate parameter samples e.g. by using non-
linear optimization w.r.t. the error estimate, [3, 32]. The separation approach is
independent of the particular maximization strategy.

Initial value greedy. The first step is to generate a reduced basis for the initial value,
i.e., we need the solution at ¢ = 0, which only depends on the parameter function
1o € Dy, as we have seen in §3.3.4. For a given tolerance tolg > 0, we are looking
for Ny samples S = {ug, ... , 40} and corresponding snapshots {h!,..., ANo},
such that ¢* := 0® @ h* € QM and ub =q'+0¢€ xV (ie., uy = ¢ +w', w' € W,
w® =0, u}(0) = h?) is the corresponding snapshot.

Given a specific value of the parameter pg € Dy, the corresponding (detailed)
snapshot h™ () € HM is determined by

(4.1) (P (ko) ¥m) it = (poyYm), 1 <m <M,

where {t1,...,90} is the chosen basis for HM. Set u}(0) = h' := AWM (1) =

N ,
En:l Oéo,n(uo)hl.

Given h',..., h"V (where we should have N < Ny < M) computed as snapshots
corresponding to S%, a corresponding RB initial value approximation hy (o) of
o € Dy is determined by solving the linear equation system corresponding to

(4.2) (hn (110), ') i = (1o, h') m, 1<i<N,
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provided that the inner products (g, %)y can be computed online efficient (i.e.,
with complexity independent of M). Then, the error contribution reads

Ry o(po) = [lo — hv (po) ||z

One option to determine the reduced basis h',...,h™o could be as follows:
Choose/nl,...,nN € Dy, N > Ny, arbitrary, compute the Gramian M% :=
((7}”,77" )H)n —1_n and choose Uy - - ,pévo as the (orthogonalized) eigenfunc-

tions corresponding to the Ny largest eigenvalues of M. This corresponds to a
proper orthogonal decomposition (POD). If the n™ are chosen well, this approach
results in the best H-orthogonal choice. The obvious drawback is the strong de-
pendence on the choice of the n™.

For a greedy procedure, one chooses a training set M{ . C Dy and determines
parameter samples by maximizing Ry o(p0) over g € M2.. . We obtain the greedy

scheme in Algorithm 1. The most crucial part may be to find a good training set

0
train-

Algorithm 1 Initial value greedy

1: Let M2, C Do be the training set of initial values, toly > 0 a given tolerance.
2: Choose p € MO, S == {us}, compute MM (ud) as in (4.1), 29 := {AM (1)}
3: for j=1,..., Ny do
4: /,L(J;rl =arg max R;o(uo)

1o E MY, s

5. if Rjo(u)™) < tolg then No :=j, Hy, := span(ZY;, ); Stop end if
6:  Compute WM (u™") € HM as in (4.1).

i+17 = = j+1 -
7 S8Y,=80U {1}, 29, :=Eu{pM (1d ™)}, orthogonalize 20,1
8: end for

It remains to discuss the efficient computation of the error term R, o(uo) for a
given parameter pug € Dy. Note, that we obtain a set of orthonormal functions
E(}VO as an output of Algorithm 1. Hence, the RB approximation A, (to) coincides
with the H-orthogonal projection of 1o to Hpy,. This means that R, 0(to) is the
error of the best approximation of ug in Hy,. There are different possibilities to
compute this error:

(1) If po is given as formula, then an efficient quadrature may be used.

(2) If po has a finite expression (like pf above) in terms of a stable basis
{Bi1,...,Br}, one may either use an efficient quadrature or transform
hn(po) into that basis and use the coefficients of the difference.

(3) One could compute an orthonomal basis for the complement H™ © Hy;,
and approximate Ry o(to) by computing coefficients of 1y w.r.t. that com-
plement basis (e.g. in terms of wavelets).

Evolution greedy. The next step is to find a basis for the part of the solution u
in WZ, given the already determined reduced space Hy,. Given a parameter j =
(to, 1) € D and an approximation h™(u), the evolution part w?(u) € WZ is
computed as

43) b wt(p),27) = gi(ps 27) = bi(pas 0 @ B (o), 27) V2t € 27,
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For a reduced basis approximation corresponding to u = (po, p1) € D, first compute

v, (10) Z ao,n (Ko)

as above. Then, given parameter samples SN1 ={ut,....uM} € D =Dy x Dy
(to be determined e.g. by a second greedy described below) and corresponding
snapshots w’ := w?(u') € WZ, a reduced basis approximation wy, (u) € Wy, =
span{w’ : 1 <i < N;} is determined by

(4.4) by (1w, (1), 2n0) = F(us 2n,) = 91 (1 2, ) — b1 (115 0° @ v (10), 28 )

for all zy, € Zy,, where Zy;, is a stable reduced space corresponding to Wy, w.r.t.
the inner product by in the sense that

b .
(4.5) inf sup —1(u1’wN“ZN1)
wny €WNy 2y ez, W llw l2n, [z

> Br(p1) >0

independent of N; — oo, see §4.2 below. Here f; is the inf-sup constant of the
bilinear form b .

It is readily seen that the right-hand side of (4.4) admits a separation w.r.t. the
parameter In fact recalling (3.2) and (3.9) (where here, as opposed to (3.2) we set
bq, (w,v) := [, (w v xvdt), we have

flw; 2n,) = gl(ul; zny) — bi(p1; 00 @ b (1o), 2w, )

g Qv
_ Zﬂzw ga(zn,) + ZﬂZmn by(0° & hivo (110), 2,

Qv No

_Zﬁg 1) 9g(2n,) + > > U8 (1) ao.n(pio) b0 @ I, 2,

g=1n=1
Qg+NoQb 5 5
(4.6) =Y ) )
qg=1

with obvious definitions of the involved terms. Hence, we obtain an efficient
offline-online splitting both for the computation of the reduced basis approximation
wn, (1) and of the residual ry 1(p; 2) = g1(p1;2) — b1(p1;un(p), 2), where we set
un () == qn, (o) + wi, (1) = 0° ® hy, (o) + wa, (1), which means that

TNy (5 2) = g1(pa; 2) — ba(pasun (), 2)
= g1 (115 2) — b1 (p1;0° @ hvy (o), 2) — br(pa, wa, (1), 2)
= f(/ff;z) - bl(/lfl’le (,u),z),

which coincides with the residual of (4.4). Recalling that D; C R, (4.4) is a
reduced problem with a (P 4+ Np)-dimensional parameter space since Hy, is the
RB initial value space. Such a dimension might be a challenge. The error estimator
is given by

lrva(wllz _ Bya(p)
BLB B

where fi, is a lower bound of the inf-sup constant of the bilinear form b, and we
obtain a — more or less — standard greedy scheme described in Algorithm 2.

Ay, (p) =
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Algorithm 2 Evolution greedy

1: Let Mirain C D be the training set, tol; > 0 a given tolerance.
2: Choose ' € Mipain, p' := (1§, 1), St = {ul}
3: Compute the RB approximation hy, (,ué) e Sy No as in (4.2)
4: Compute w ( D e W? as in (4.3), 21 = {w!(p')}
5. for j=1,...,N\"™ do
) i+1 _
6:  pT =arg LemﬂgimA (1)
7. if Al(,uj‘*‘l) < tol; then N := j, Wy, := span(Ey, ); Stop end if

. Compute the RB approximation hy, (1) € 5%, as in (4.2)
9:  Compute w? (/1) € WZ as in (4.3)
10:  Sjy=Sju{pt}, Bl =Bl u{w (W)}
11: end for

An obvious question arises how to choose the training set My i, in Algorithm 2,
in particular the training samples for the initial value parameter. Possible choices
for the the subset of Dy include M),;, from Algorithm 1 or —-much smaller— Sg; ,
which might be a reasonable choice after performing already a greedy search for
the initial value. We will come back to this point in our numerical experiments in
Section 5.

4.2. Stable RB test spaces. It remains to construct a stable test space Zy, in
the sense of (4.5). It is well-known that it might be beneficial to construct this
space by so-called supremizers in an efficient offline-online manner, [7, 12, 26].

Let {w!,...,w™N'} be the basis of Wy, and fix y; € D;. Then, the supremizer
s"(u1) € Z*, 1 < n < Ny, is defined by the relation

by (p1; wn»ZI)
s"(p) == arg sup ——o——"
zezr 12z
In order to compute this quantity, recall that {¢; := " ® $;:1<k<K1<5<
J,i=(k,7)} is the basis of ZZ, T = K - 7, and note that

K J
k k' kK
12717 = ”ZIH%Q(I;V) = Z Z 2525 (T, 7 Loy (b5, 65 )v
k=1 j.j =1
T
= T( time ® Gspace)zz =: Z%Z 21

with the Gramian matrices G‘S{)ace = ((¢iy0j)v)ij=1,...7 for VI (wrt. the V-

inner product) and I, . = (7%, 7" ) =1, x = (At) Id € RF*K. Next, let the
expansion of w™ in terms of the full basis {wl =of®e;i=(kj),1<k<K1<
j < J} of WE be denoted by

= Zw?wn wy = (Wj')i=1,...1-

Then, setting z; := 2%, i = (k, j), we get

Y

by (s 0™, 25) = Z Wiz (3 @i, Gr) = (w3) "B (m1)zz = (22)" (B (1)) w.

i,i/=1
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The vector s™ (1) containing the expansion coefficients of s™ (1) is given by

T
s" (1) = (Z27) (B (1)) " wi,
In view of the separation of b1 (ul, ,-) w.r.t. the parameter p; (see (3.9) with bg,
replaced by bg, (w,v) := [, (w )y xvdt), we have B (1) = ZqQ:bl 0 (1) By
with parameter-independent matrlces Bq. Hence, we obtain the representation
T\ Ty\—

() = S (1) (Z7)"H(BI)Tw? and the terms 2z := (27)~1(BZ)Tw% can
be computed offline (as they are parameter-independent). Since the p;-dependent
supremizers can be build by linear combinations (with pq-dependent coefficients)
of the functions z" € ZT corresponding to the coefficient vectors zy, 1 <n < Ny,

q
1 < ¢q < @y we choose for every u; € Dy

Zn, (;U'l) = Span{sl(:u’l)v R s (/1‘1)}
as reduced test space, where s™(u1) = ZqQ:bl ?92(,“1) zg

5. NUMERICAL RESULTS

5.1. Heston Model. We consider the Heston model as described in §2.1 above.
The initial value pg corresponds to the payoff function ug, see (2.4c). For pricing
problems, one aims at rapidly changing the payoff, which is the motivation to use
the parameter function.

In order to ensure well-posedness of the PDE, we require the natural assump-
tions v; > 0 for the volatility and p € (0,1) for the correlation. Since we do not
transform the initial conditions to homogeneous ones but work in Bochner spaces
using the space-time variational approach, we do not need additional conditions for
the parameter spaces as e.g. in [21].

Just for the ease of implementation, we choose homogeneous Dirichlet conditions.
Unfortunately one has to work with a large domain 2 and with a fine discretization
to get good results for the Crank Nicolson solution in comparison to the closed form
solution of the Heston model (cf. [20]) that one can use for validation. One could
further improve the results by using e.g. the boundary conditions proposed in [33].

5.2. Initial condition parameter function. As already said earlier, we want to
use the initial condition as a parameter function. Since payoff functions are not
completely arbitrary, but have certain shapes, we introduce a model using Bernstein
polynomials that allows for a small parametric representation of the payoff func-
tions, which are usually continuous, piecewise smooth, convex and are composed of
linear functions.

5.2.1. Bernstein Polynomials. Bernstein polynomials are H!-functions, preserve
convexity and can be adapted locally, see, e.g. [27]. We briefly recall the main
properties that will be needed here. Consider an interval A = [vg,v1] C R, where
vg < v1. Any x € A has the unique representation

x = ug(x|A) vy + ug(x|A) vy,

where u;(-|A) € Py (a linear polynomial) is nonnegative on A and wug(z|A) +
up(x]A) =1 (convex combination, partition of unity). Denoting by

T, = {a: (o, 1) €7Z?: ag,on1 > 0,00+ ay :n}
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the set of all homogeneous multi-indices of length n, the a-th Bernstein-Bézier basis
polynomial of degree n is defined for a € T',, as

Bu(ela) = (1)l &) (o).
The Bézier surface for a given function f : A — R is defined by
B, f(z|A) = Z f(xo)Ba(z|A), where 2, € A s.t. u(xy]|A) = —
ael'y,

5.2.2. Payoff approximation for the Heston model. For the Heston model, we con-
sider a domain Q = Q; x Qy C R?, where Q; models the logarithmic asset price
log(S) and Q9 the volatility v. The payoff depends only on S. Divide the interval
exp(Q1) into subintervals Iy, ..., Iz—1, I, = [v,,vf], £ =1,....,L -1, v/ | = v,
for £ =2,...,L£—1, and choose A as each of these I;.

We now model the initial value pg on each I, as a Bézier surface of degree 1, i.e.,

Bipo(z|le) = po(z(1,0)) B0y (@|1e) + po(z(0,1)) Bo,1) (x| 1r)
= po(vy ) ug ([ Ie) uf (x| 1e) + pro(vy) ug ([ I) i (| 1e)
= po(vy ) uo(x|Le) + po(v)") ua (z|Le).
The approximation of pg is then defined by

L—1
ug (@) ==Y {po(v; Yuo(@|1e) + po(v] Jua (x|10)}
(=1
L-1
= po(vi)uo (1) + D pro(ve) (ua (€| Te—1) + uo (@] 12)) + po(ve)u ([ 1e 1),
=2

where we have used the fact that uo(v,” ;) = uo(v, ) and renamed v, by v as well
as vy 1= vzrfl. Since ug(ve|ly) = w1 (ves1|Ie) = 1 and wg(ver1]le) = ur(ve|ly) =0
the following equality is obvious:

T — V-1

T — Up41
——x1,_ () + ————x1,(x) =: By(x
) (@) = Bula),

so that p§(x) = Zle po(ve) Be().

5.3. Numerical results. We now present our numerical results.

uy(|Ie—1) +uo(x|ly) =

5.3.1. Data. We used the following data for our simulation:

We use the correlation as calibration parameter, i.e., uy := p € (0,1) =: Dy;
Q1 = log([1078,200]) for the asset price, Qo := (0,1] for the volatility,
detailed dimension J = 14,271;

k=0.8,0=0.6,0 =0.2 and r = 0.001;

T = 0.25 (3 months), K = 25;

HM :=VJ and N =K-J+J = J(K + 1) = 371, 046;

Knots {v1,...,vs} = In({0, 70,80, 90,100, 110,200} )for the Bézier polyno-
mials, which implies that payoff functions with specific strike price K €
{70, 80,90, 100,110} are represented exactly.

All experiments have been performed on an Intel Core i7-3770 (3.40 GHz), with
16 GB RAM and using Matlab (8.0.0.783 (R2012b)). All RB calculations were
implemented in RBmatlab, see http://www.morepas.org.



RBMS FOR PARABOLIC PDES WITH PARAMETER FUNCTIONS 21

5.3.2. Initial value reduced approximation. For determining the RB approximation
of the initial value, we used a POD method based upon the linear Bernstein poly-
nomials (in the notation of §4.1 n° := By, £ = 1,...,7 =: N) We show the decay
of the eigenvalues of the Gramian M¥ in Figure 5.1. Choosing five basis functions
hl,...,h% (ie., a RB space Hj) results in a relative error of 0.0314. We will inves-
tigate later how the choice of only 5 POD basis functions influences the reduced
solution of the whole problem. The first two orthogonal POD functions are shown
in Figure 5.2.
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0.1

FI1GURE 5.1. Eigenvalue decay for the Gramian matrix

(a) First basis function h'. (b) Second basis function h?.

FIGURE 5.2. First two POD eigenfunctions projected to V7.

For functions that can be modeled by a small number of basis functions as it is
the case for call and put options using Bézier polynomials, it might be advisable to
skip this first step and directly enter the evolution greedy using the small basis as
a part of the training set.

5.3.3. Ewolution greedy. In the second step we perform the evolution greedy in Algo-
rithm 2 to compute the RB space Wy, , where we first use Miyain := {h',..., h%} X
{zy = —05+kAs: k=0,..,11,As = &} C span{Bi,...,Br} x (—1,1) as a
training set, i.e., #Miin = 60. As in [31] we use a natural discrete space-time
norm given by

lwlf = @I, ) + 1011, o + (@G, we XY,
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where @" := (At)™! [, w(t)dt € V and w = Zle X+ @ WF € Ly(I; V). Using
this norm, the discrete problem appearing in the evolution greedy is well-posed.
Another reason for this choice is that the evolution greedy uses the same bilinear
form as was used in [31] to treat homogeneous initial conditions.

We compare the evolution greedy with the proposed error estimate Ry, ;1 with
the so called strong (evolution) greedy using the exact error (instead of the esti-
mate) which is determined using a detailed solution. Doing so, we can investigate
the performance of the error estimator. As we see in Figure 5.3 (a), the error
estimate behaves similar to the true error. An error tolerance of 103 is reached
by 28 basis functions using the estimate, whereas the strong greedy shows that 24
basis functions suffice to reach a tolerance of 107%. As expected, the error bound
overestimates the error. One reason is that (for simplicity) we use a pessimistic
lower bound of the inf-sup condition (8,5 = 0.005).

\ ]
——max, Ay () — e
——max, || wiy) - Wy () I — true error

0 5 10 15 20 25 30 - 05 0 05 1

(a) Maximum error over iterations of the (b) Error estimator and true error for p €
strong evolution greedy and using the error (-1,1)
estimate R}Vl

FIGURE 5.3. Performance of error estimators

5.3.4. Error propagation. Now, we investigate how different training sets influence
the results. First, we choose ug = h' (i.e., an exact initial condition). As we see in
Figure 5.3 (b) the error for p € [—0.5,0.5] (the part that is covered by the training
set) is below 10™* and the error estimation Rag ;1 is below 1073, For p € (—1,1) \
[—0.5,0.5] the approximation is —as expected— worse. Note that we ploted on a grid
for p with step size 0.01. Furthermore, we can see that (h', —0.5), (ht, —0.4091),
(R, —0.2273), (h',0.0455), (h',0.3182) and (h',0.5) are in the sample set for Wag.

Next, we choose a call payoff function uo(y,v) = max(exp(y) — K, 0) with strike
price K = 70 and p = 0.3. The resulting approximation error using only five
POD basis functions can clearly be seen in Figure 5.4. Obviously, the space-time
error is large on the domain (2, in particular due to the errors near the boundaries.
However, usually one has to enlarge the domain in advance due to the chosen
boundary conditions, hence one is only interested in a smaller part of .

For option pricing the absolute error, i.e., the difference of the prices, is also of
interest, because the resulting RB price is to be actually paid by the customer. As
we can see in Figure 5.5, the absolute error at the final time T is actually about
2, which is clearly too large. The reason is the POD truncation of the initial value
based upon a relative error basis.
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150-,
100

50

(a) Detailed wN at ¢t = 0. (b) Reduced upy at t = 0.

FIGURE 5.4. Detailed and reduced initial condition (u|f10-s,190]x[0.05,0.95])-

FIGURE 5.5. Absolute error N (T) — ux (T) at maturity (ulj10-3,190] % [0.05,0.95])-

As mentioned before, we can choose the training set M .i, in the evolution
greedy independend of SR,O. We compare different combinations of reduced basis
spaces in Table 5.1. For p € [—0.5,0.5] with ug = h' (so again an exact initial
condition) the true errors of the different approximations are shown in Figure 6(b).
We can see, that for the exact initial value all RB approximations are evenly good.
In contrast, by looking at the last column of Table 5.1, we note that if we choose a
poor initial value approximation resp. a poor training set for Dy, the RB approx-
imation is not acceptable. In particular for PDEs with zero right-hand side and
a linear operator (as we have for option pricing), we can show that for every new
parameter fi, where the function part fig lies in the span of the training set ML, .
we get A}Vl (1) < tol;. That explains why we do not get a larger N; resp. a better
RB approximation by extending M . in Scenario 2 in comparison to Scenario 1.
Of course, in this situation, this is also explained by Gronwall’s lemma.

6. SUMMARY AND OUTLOOK

We have introduced a Reduced Basis space-time variational approach for para-
metric parabolic partial differential equations having coefficient parameters and a
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TABLE 5.1. Comparison of different sets for Hy, and the training
set of the evolution greedy (Mivain = MO, X ML, ML, as

before, tol; = 1073, u(y,v) = (max(e¥ — K,0),0.3) and with
u|[10*3,190]><[0.05,0.95])'

Scenario ‘ Hpy, ‘ Mtorain ‘ # Mirain ‘ N ‘ ||UN(H) —un (p)llx
1 span{ht, ... WO} [ {ud, ..., ud} 60 28 9.1994
2 span{ht, ... K%} | {ud, .., pul} 84 29 9.1994
3 span{hl,... A7} | {ud, ..., ud} 60 28 7.9801
4 span{hl, ... A7} | {pd, ..., pul} 84 40 1.7162e — 04

——Scenario1+3 ——Scenario 1
——Scenario 2 ——Scenario 2
107 LN —— Scenario 4 10° —— Scenario 3
—Scenario 4

0 5 10 15 20 25 30 35 40 -05 o 0.5

(a) Maximum errors over iterations using the (b) True errors for p € [—0.5,0.5].
error estimate levl .

FIGURE 5.6. Comparison of the different scenarios presented in
Table 5.1.

variable initial condition. Feasibility and efficiency have been demonstrated. Ob-
viously, a whole variety of further questions arises, just to mention some of them

that we aim to consider in the near future:

e Extension of the Bernstein representation of the initial condition to an adaptive

wavelet approximation.

e In [4], an alternative space-time variational formulation has been considered

which transfers the essential initial condition to a natural one.

e In case of a basket of options, the dimension of the problem of course grows,
which calls for a specific treatment e.g. by the Hierarchical Tucker format as e.g.

in [9, 23]. More general, the choice of trial and test spaces within the (offline)
phase can be further investigated and possibly optimized.

e For calibration purposes, all model parameters have to be taken into account.

This type of high dimensionality needs particular treatment as e.g. in [8], [18]
or [19]. Moreover, numerical stabilization techniques have to be investigated.

e Extensions to other financial models, American options, etc.
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