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Abstract

Estimation of pregnancy outcome probabilities from observational cohorts is complicated by the fact that the data are
left-truncated as women usually become aware of their pregnancy several weeks after conception. Moreover, the data are
subject to competing risks. Indeed a pregnancy may end in a live-birth, an induced abortion or a spontaneous abortion.
Thus the use of survival techniques, in particular, the Aalen-Johansen estimator of the cumulative incidence function, is
advocated to estimate pregnancy outcome probabilities. However, due to left-truncation, the number of individuals at risk
might be small at the beginning of the time interval, possibly leading to unstable estimates propagating to the whole time
span. It turned out in simulations that the usual asymptotic approximation for forming point-wise confidence intervals
may become highly liberal with coverage probabilities as low as 60%. To this end, we investigate the use of more involved
procedures for the construction of confidence intervals in simulation studies and provide insightful solutions. The results
are applied to a study on the effect of coumarin derivatives’ use during pregnancy on the risk of spontaneous abortion.
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1 Introduction
Prenatal development is the most vulnerable phase in human life. Drug toxicities but also insufficiently treated maternal
conditions may result in life-long handicaps of the newborn. Besides birth defects, spontaneous abortions and miscarriages
— usually defined in epidemiological studies as pregnancy losses up to 20 or 22 weeks of gestational age (Slama et al.,
2014) — are the most frequent adverse pregnancy outcome and are estimated to occur in around 15% of all clinically
recognized pregnancies (Borrell and Stergiotou, 2013). Lupattelli et al. (2014) estimate that 80% of pregnant women use
at least one drug to treat an acute or chronic condition. The role of Teratology Information Services (TIS) is to advise
pregnant women and policy makers about the risk of adverse drug reactions in pregnancy. This counselling aims at both
reducing the rate of elective terminations based on irrationally overestimated drug risks and at proposing better and safer
medical treatment in case of a maternal disease. Even if the percentage of preventable pregnancy losses might be low,
better care can have a huge public health impact. As an example, if 15% of pregnancy losses were preventable, then
90,000 families per year in the United States would spare themselves such grief (Hogue, 2016). Additionally to their
counselling role, TIS collect data of outstanding value. These are prospectively collected and, contrary to registry and
prescription data, contain information on spontaneous abortion and precise timing of drug exposure (Grzeskowiak et al.,
2012).

Pregnant women usually contact a TIS once the pregnancy is recognized and are followed until at least the planned
delivery date. A consequence of this sampling is that the data are left-truncated. Indeed, the natural time-scale is time
since conception (or last menstrual period) but the women enter the study at different times after conception. Thus simple
binomial proportions are biased and survival techniques should be used (Meister and Schaefer, 2008; Allignol et al.,
2010; Andersen et al., 2012; Slama et al., 2014). Besides, observations are subject to competing risks as pregnancy
may end in a spontaneous abortion, induced abortion or a live-birth. Meister and Schaefer (2008) advocate the use of
the cumulative incidence function estimated via the Aalen-Johansen estimator for quantifying, say, the probability of
spontaneous abortion. However, and contrary to standard survival situations with only right-censoring, delayed study
entries may lead to early random time intervals with small risk sets. Observed events during such intervals may lead
to unstable estimates which propagate over the whole time span. Friedrich et al. (2017) proposed a stabilized Aalen-
Johansen estimator for such situations but found out in simulations that some scenarios led to coverage probabilities as low
as 60% using the usual asymptotic approximation. Alternatively, Efron (1979) suggested the bootstrap for constructing
confidence intervals with improved small sample behaviour. Akritas (1986) and Lo and Singh (1986) generalized the
classical bootstrap approach to simple survival models with right censoring. An alternative procedure described in Lin
et al. (1993) is the Wild bootstrap(Beyersmann et al., 2013; Dobler and Pauly, 2014; Dobler et al., 2017). In this approach,
random multipliers with expectation zero and variance one are used for calculating critical values for inference. In this
paper, we analyse variants of both bootstrap procedures with respect to their ability to enhance the under coverage of the
usual confidence intervals.

This article is structured as follows: In Section 2 we introduce the underlying competing risks model and the Aalen-
Johansen estimator. Classical and modified bootstrap-based confidence intervals for the probabilities of interest are de-
scribed in Section 3. Simulation results are outlined in Section 4. In Section 5 the presented bootstrap methods are applied
to the real data set of a pregnancy outcome studySchaefer et al. (2006); Meister and Schaefer (2008). Finally, a discussion
closes the paper in Section 6.

the results are discussed in Section 6.

2 Competing Risks Multi-State Model and Non-parametric Estimation
Consider a competing risk process (Xptq, t ě 0) with a finite number of states Xptq P t0, 1, . . . ku, k ě 2. In this model
besides the initial state 0, with P pXp0q “ 0q “ 1, there exists k absorbing states representing the competing risks. For
ease of presentation however, we assume two competing states in the sequel. The event time T is defined as

T “ inftt ą 0 | Xptq ‰ 0u. (1)

The type of event is then given by XpT q P t1, 2u and the instantaneous risk of their occurrences are described by the
cause specific hazards

α0jptq “ lim
∆tÑ0

P pt ď T ă t`∆t,XpT q “ j | T ě tq

∆t
, j “ 1, 2, (2)

which we assume to exist. We further assume that
şτ

0
α0jpuqdu ă 8, for a terminal time τ ă 8.

Another important quantity in the competing risk setting is the cumulative incidence function (CIF), that describes the
probability of a 0 Ñ j transition on the interval r0, ts:

P0jptq “ P pT ď t,XpT q “ jq “

ż t

0

P pT ą u´qα0jpuqdu, j “ 1, 2, (3)

for t ă τ , and where P pT ą tq is the survival probability.
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Since pregnancy outcome study data are usually only subject to left truncation, we assume a left truncated model
without right censoring as in Keiding and Gill (1990). The left-truncation times L are assumed to be independent of
(T,XpT q).

left-truncation arises if study entry happens after time origin 0. In pregnancy studies, the time since conception (or
last menstrual period) would be considered as the natural time scale, but most women become aware of their pregnancy
some time after conception, women who experience an event before clinical detection never enter the study.

We now consider independent replications pTi, Li, XipTiqq, 1 ď i ď n, of the competing risks process corresponding
to n individuals. For each event type j P t1, 2u we then define the individual event and at-risk processes as

N0j,iptq “ 1pLi ă Ti ď t,XipTiq “ jq (4)
Yiptq “ 1pLi ă t ď Tiq. (5)

By summation of (4) and (5) over all individuals 1 ď i ď n we obtain Y ptq, the number of individuals at risk in the initial
state just before t, and N0jptq the number of observed type j events on the interval r0, ts. As described in Andersen et al.
(1993) the counting process N0jptq has intensity Y ptqα0jptq and

M0jptq “ N0jptq ´

ż t

0

Y puqα0jpuqdu, j “ 1, 2 (6)

is a martingale. From this it follows that the Aalen-Johansen estimator of the cumulative incidence function

P̂0jptq “

ż t

0

P̂ pT ą u´qdN0jpuq

Y puq
, j “ 1, 2, (7)

is asymptotically normal (Andersen et al., 1993). Here P̂ pT ą uq denotes the Kaplan-Meier estimator of the survival
probability. The complementary weighted log-minus-log transformed 100p1 ´ αq%-confidence intervals based on the
central limit theorem were considered as in Beyersmann et al. (2012):

1´ p1´ P̂0jptqq
exp

´

z1´α
2
¨

σ̂AJ ptq

p1´P̂0jptqq¨logp1´P̂0jptqq

¯

. (8)

Here σ̂2
AJptq is a consistent Greenwood-type variance estimator as defined in Equation (6) of Allignol et al. (2010) and

z1´α is the (1´ α)-quantile of the standard normal distribution.

3 Bootstrap
It turned out that the asymptotic confidence intervals given in (8) may lead to extremely low coverage probabilities in case
of left-truncation(Friedrich et al., 2017, and Section 5). Since this is clearly apparent in our pregnancy outcome study we
investigated several resampling approaches and their potential to enhance the coverage.

3.1 Efron’s Bootstrap
Efron’s (1979, 1981) bootstrap method is based on drawing n times with replacement from the data. In our competing risks
setting, data is given by the trajectories of the n independent competing risks processes Xi, i “ 1 . . . , n, or equivalently
by the pairs pLi, Ti, XipTiqq. Thus, denoting a bootstrap sample thereof as pL˚i , T

˚
i , X

˚
i pT

˚
i qq, i “ 1, . . . , n, we can

calculate bootstrap versions of the individual event and risk process given in (4) - (5), say N˚0j,i and Y ˚i , by replacing
pLi, Ti, XipTiqq with their bootstrap counterpart. From this, bootstrap versions of the Kaplan-Meier, say P̂˚pT ą uq, and
the Aalen-Johansen estimator

P̂˚0jptq “

ż t

0

P̂˚pT ą u´qdN˚0jpuq

Y ˚puq
, j “ 1, 2 (9)

are calculated. Roughly speaking, it then follows from theory on the bootstrap (Akritas, 1986; van der Vaart and Wellner,
1996; Gill and Johansen, 1990; Lo and Singh, 1986; Dobler, 2016) that the distributions ofWn “

?
npP̂0jptq´P0jptqq and

W˚
n “

?
npP̂˚0jptq´ P̂0jptqq asymptotically coincide. From this several bootstrap confidence intervals can be constructed

that are correct for large sample sizes. Here, the two most common approaches in applied statistics are either based
on the percentile method or a bootstrap plug-in variance estimator. In both cases the bootstrap algorithm is repeated
a large number, say B, of times to obtain bootstrapped Aalen-Johansen estimates P̂˚,pbq0j ptq, b “ 1, . . . , B. Let c˚pαq
be the p1 ´ αq-quantile thereof, then pc˚pα{2q, c˚p1 ´ α{2qq is the bootstrap percentile confidence interval for P0jptq.
For the other we calculate the empirical variance of the bootstrapped Aalen-Johansen estimates as σ̂˚2

AJptq “ pB ´

1q´1
řB
b“1pP̂

˚,pbq
0j ptq´ 1

B

řB
c“1 P̂

˚,pcq
0j ptqq2 and obtain a confidence interval based on bootstrapped variances by replacing

σ̂AJptq in (8) with σ̂˚AJptq.
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Although these two bootstrap techniques are correct for n Ñ 8 and usually improve the small sample performance
of pure asymptotic methods, our simulation results from Section 4 did not show a clear advantage in case of heavy
left-truncation. We therefore considered other bootstrap techniques that (at least heuristically) should mirror the Aalen-
Johansen process much better. To motivate them recall that the construction of (8) is based on central limit theorems for
the weighted and transformed Aalen-Johansen estimator Hn “

?
ngptqtΨpP̂0jptqq ´ΨpP0jptqqu, where

gptq “ logp1´ P̂0jptqq ¨ p1´ P̂0jp0, tqq{σ̂AJptq and Ψptq “ logp´ logp1´ xqq. (10)

By the delta method, Hn is asymptotically equivalent to Ĥn “
?
ngptqΨ1pP0jptqqWnptq and thus, asymptotically stan-

dard normal leading to the asymptotic confidence interval (8). Now, a bootstrap version of the latter is given by

Ĥ˚n “
?
ng˚ptqΨ1pP̂0jptqqW

˚
n ptq, (11)

where g˚ptq “ logp1´ P̂˚0jp0, tqq ¨ p1´ P̂
˚
0jp0, tqq{pσ

˚
AJptq. Denoting by q˚1´α2 the (conditional) p1´ α

2 q-quantile of Ĥ˚n
a bootstrap version of the transformed confidence interval (8) of asymptotic level p1 ´ αq is obtained by replacing z1´α2
with q˚1´α2 in (8).

Note, that we also considered a similar bootstrap approximation of Hn and even investigated versions of both with
weight function g instead of g˚ (results not shown here). All of them considerably improved the coverage probability of
the previous approaches but the confidence intervals based on Ĥ˚n performed the best and are solely reported for clarity.

3.2 Wild Bootstrap
Another common resampling strategy is given by the wild bootstrap. For right-censored competing risks data it was first
proposed by Lin et al. (1993) and later generalized by other authors (Beyersmann et al., 2013; Dobler and Pauly, 2014;
Dobler et al., 2017); also allowing for left-truncated observations. Due to its computational efficiency it is often the
resampling method of choice for complex time to event situations. To introduce it in the present context recall (Ander-
sen et al., 1993; Beyersmann et al., 2013), that the normalized Aalen-Johansen estimator Wn possesses the martingale
representation

Wnptq “
1
?
n

n
ÿ

i“1

#

ż t

0

S2puq
1
nY puq

dM01;ipuq `

ż t

0

P01p0, uq
1
nY puq

dM02;ipuq

´P0jp0, tq

ż t

0

dM01;ipuq ` dM02;ipuq
1
nY puq

+

(12)

with S2ptq “ 1´P02ptq. Let G0j;i , 1 ď i ď n, 1 ď j ď 2, be i.i.d. zero-mean random variables with variance one. Then
a general wild bootstrap version of Wn is defined by replacing the unknown martingales M0j,i with randomly weighted
counting processes G0j,iN0j,i:

W ‹
nptq “

1
?
n

n
ÿ

i“1

#

ż t

0

Ŝ2puqG01;i
1
nY puq

dN01;ipuq `

ż t

0

P̂01p0, uqG02;i
1
nY puq

dN02;ipuq

´P̂0jp0, tq

ż t

0

G01;idN01;ipuq `G02;idN02;ipuq
1
nY puq

+

, (13)

where Ŝ2ptq “ 1´P̂02ptq. WritingW ‹
nptq “

?
npP̂ ‹0jp0, tq´P̂0jp0, tqq as in the case of Efron’s bootstrap, a wild bootstrap

version of P̂0jp0, tq is thus given by P̂ ‹0jp0, tq “ n´1{2W ‹
nptq` P̂0jp0, tq. Substituting Efron’s bootstrap version P̂˚0jp0, tq

with P̂ ‹0jp0, tq in the confidence intervals from Section 3.1 we obtain various wild bootstrap confidence intervals. Again
the best thereof is based on approximating Hn with Ĥ‹nptq “

?
ng‹ptqΨ1pP̂0jp0, tqqW

‹
nptq, i.e. on replacing z1´α2

in (8)
with the respective (conditional) p1´ α

2 q-quantile q‹1´α2 from Ĥ‹n.

4 Simulation Study
In order to evaluate the performance of the different bootstrap methods, we conducted several simulation studies based
on the pregnancy data set. As in Allignol et al. (2010) we generated competing risks data with only two competing states.
We consider a linearly decreasing cause specific hazard function for the event of interest α01ptq “ ´1.7 ¨10´4 ¨ t`0.017.
For the competing event we used the Weibull-type cause specific hazard α02ptq “ 1.4{271.4 ¨ t0.4. Both hazard functions
are displayed in Figure 1.

The competing risks data were generated as described in Beyersmann et al. (2009), i.e,
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Figure 1: Hazard functions for scenarios 1 and 2.

1. The event times T are generated according to the all-cause hazard α0¨ptq “ α01ptq ` α02ptq using the inversion
method.

2. Given a survival time T “ t, a binomial experiment is run, which decides with probability α01ptq{α0¨ptq for an
event of type 1.

3. Left-truncation times L are simulated independently of pT,XpT qq.

In the first two scenarios, the left-truncation times follow a skewed normal distribution with density function(Azzalini,
1985)

fpxq “
2

ω
φ

ˆ

x´ ξ

ω

˙

Φ

ˆ

α

„

x´ ξ

ω

˙

, (14)

where pξ, ω, αq are the location, scale and shape parameters, respectively. φp¨q and Φp¨q are the density and the cumulative
distribution function of the standard normal distribution, respectively. Scenario 1 includes rather extreme scenarios, with
pω, αq “ p4.3,´8q and varying location parameter (ξ P t8, 12, 16, 20u) to simulate different truncation probabilities. In
Figure 2 the impact of the location parameter on the density function of the skewed normal distribution is shown. In
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Figure 2: Density of skewed normal distribution with pω, αq “ p4.3,´8q and different location parameters ξ.

particular, the likelihood that an individual starts in state 0 at time t “ 0 is very low. Scenario 2 is less extreme. The
setting is the same as in Scenario 1, but the parameters of the truncation distribution are chosen such that approximately
10% of the individuals had a study entry at time point t “ 0, i.e., pξ, αq “ p0, 1q and ω “ t6.9, 13.8, 23.3, 38.3u (Figure
3). In Scenario 3, we considered a more simple set-up with exponentially distributed survival times and α01ptq “ 0.03 as
well as α02ptq “ 0.08. The truncation times are also exponentially distributed with rate λ P t0.6, 0.2728, 0.1547, 0.097u.

We run simulations for different sample sizes m P t100, 200u. Since the results are similar we only show those for
m “ 200. Because of left-truncation, the number of individuals under observation is random with n ď m, e.g., for
m “ 200 and ξ “ 16 in scenario 1, there are on average n̄ “ 117 individuals in the study. For each scenario, we
calculated the coverage probabilities of the confidence intervals introduced in Sections 2 - 3 based on 1, 000 simulation
runs each. In particular, we investigated the asymptotic method (8) based on the log-minus-log transformation (Asympt),
the classical bootstrap methods based on the percentile method (PercM) and variance estimates (VarBoot), respectively,
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Figure 3: Density of skewed normal distribution with pξ, αq “ p0, 1q and different scale parameters ω.

Table 1: Coverage probabilities at time point t “ 20 for different scenarios of underlying truncation distributions. PercM:
Percentile method using Efron’s bootstrap. VarBoot: Plug-in variance based on Efron’s bootstrap. TBoot: modified Efron
confidence intervals based on (11). TWBoot: Wild bootstrap confidence intervals.

m, n̄ Asympt. PercM VarBoot TBoot TWBoot
Scenario 1 m “ 200, n̄ “ 169 92.40 91.60 92.70 95.10 94.70

m “ 200, n̄ “ 143 83.90 80.70 83.40 89.70 87.70
m “ 200, n̄ “ 117 71.10 63.20 71.50 87.30 83.20
m “ 200, n̄ “ 94 62.00 49.00 63.20 95.00 93.20

Scenario 2 m “ 200, n̄ “ 169 94.10 93.30 94.20 95.20 95.60
m “ 200, n̄ “ 142 92.30 90.70 92.40 95.50 95.50
m “ 200, n̄ “ 117 92.50 91.80 92.60 95.30 95.50
m “ 200, n̄ “ 93 94.10 91.50 94.00 96.50 95.70

Scenario 3 m “ 200, n̄ “ 169 94.10 94.30 94.10 94.50 94.30
m “ 200, n̄ “ 143 94.60 94.20 95.10 96.10 95.80
m “ 200, n̄ “ 117 93.20 92.70 93.80 94.70 94.60
m “ 200, n̄ “ 94 94.60 94.00 94.60 95.90 95.40

as well the more involved transformed bootstrap based confidence intervals based on (11) (TBoot) and (13) (TWBoot).
For the latter we focus on standardized Poisson-pPoip1q ´ 1q wild bootstrap weights since they showed a slightly better
performance than the usual standard normal multipliers (results not shown here).

Since we were interested in the confidence interval for spontaneous abortion, we focus on the coverage probability
at time t “ 20. The results are presented in Table 1. For Scenario 1 it is readily seen that the first three methods
(Asympt, PercM, VarBoot) are highly liberal with coverage probabilities as low as 49% in the most extreme scenario.
In particular, the classical bootstrap based on the percentile method (PercM) results in slightly lower values than the
asymptotic confidence interval. This may be caused by the fact that in contrast to the asymptotic confidence intervals,
the intervals were neither transformed nor weighted. The intervals based on bootstrapped variances (VarBoot) yield
comparable coverage probabilities to that of the asymptotic confidence intervals. On the contrary, the modified bootstrap
(TBoot) and Wild bootstrap confidence intervals (TWBoot) both result in higher coverage probabilities, that are close to
the nominal level.

Scenario 2 — that allows for around 10% of the individuals to enter the study at time 0 — leads to higher coverage
probabilities for all confidence intervals and the nominal 95% level is much better approximated here. Again the modified
bootstrap based confidence intervals (TBoot and TWBoot) showed the best coverage.

In the more simple setting of Scenario 3 all procedures controlled the coverage probability adequately with slight
advantages for the enhanced bootstrap methods.

5 Data Example
We reanalyse the data from Meister and Schaefer (2008). It contains information on 1186 pregnant women who — or
whose physician — contacted the Teratology Information Service in Berlin, Germany. Among those women, 173 were
therapeutically exposed to coumarin derivatives, an anticoagulant, while 1013 women not exposed to known teratogens
served as controls. Data were left-truncated as women usually become aware of their pregnancy several weeks after
conception. Moreover, they are subject to competing risks as a pregnancy may end either in a spontaneous abortion,
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Figure 4: The upper panel displays yptq, i.e., the number of pregnant women at risk over time. The bottom panel gives
the number of spontaneous abortions at each gestational week.

induced abortion or a live-birth. We refer to Meister and Schaefer (2008) for more details on the data and Allignol
et al. (2010) for an investigation of the independent left-truncation assumption and a comparison of different variance
estimators.

The interest lies in estimating the probability of spontaneous abortion for the exposed women, and induced abortion
and live-birth are subsumed into one competing endpoint. Figure 4 depicts the number of treated women at risk and the
number of spontaneous abortion over the course of time. No women entered the cohort before week 4 but the first event
happens at week 6 while 35 women were under observation. The risk set then grows steadily until around week 10.

The CIF of spontaneous abortion is displayed in Figure 5 along with the asymptotic 95% complementary-log-minus-
log-transformed confidence intervals (grey lines). The asymptotic confidence intervals are compared to bootstrapped
confidence intervals based on 10, 000 bootstrapped samples.

All variants of Efron’s bootstrap investigated in Section 4 lead to confidence intervals that are close to the asymptotic
ones. In contrast, confidence intervals based on the wild bootstrap are larger than the asymptotic pointwise confidence
intervals. But note that the wild bootstrap confidence intervals are computed for t ą 7 due to numerical instabilities at the
earliest event time.

6 Discussion and Outlook
It is well known that ignoring left-truncation in time to event data may lead to biased estimates of endpoint probabil-
ities(Meister and Schaefer, 2008). The effect of left-truncation on the coverage has, however, not been investigated
considerably. Motivated by a recent pregnancy outcome study we investigated this effect in a competing risks set-up.
Since pregnant women usually enter the study weeks after conception, left-truncation occurs naturally in these studies. It
turned out that the usual log-minus-log transformed confidence intervals (Lin, 1997; Allignol et al., 2010) for pregnancy
outcome probabilities are very sensitive to the shape of the underlying left-truncation distribution. The same observation
has also been made for naive bootstrap-based intervals obtained from the percentile method or bootstrapped variances.
In particular, for rather left tailed truncation distributions the amount of truncation considerably increased their liberality
leading to low coverage up to 50 ´ 60% in the most extreme scenario. To tackle this problem, we proposed two more
enhanced confidence intervals based on bootstrap and wild bootstrap techniques. Besides utilizing an adequate transfor-
mation, also bootstrapping the underlying weight functions shaped up as a key issue for gaining much better coverage
probabilities. In the data example, we have illustrated their applicability.

In future research we plan to investigate the coverage of usual confidence intervals in more complex multi-state
models. This is relevant even in the absence of left-truncation: For instance, in an illness-death model without recovery,
initial state 0, intermediate illness state 1 and absorbing death state 2, there will be internal left-truncation due to 0
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strap. VarBoot: Plug-in variance based on Efron’s bootstrap. TBoot: modified Efron confidence intervals based on (11).
TWBoot: Wild bootstrap confidence intervals.

Ñ 1 transitions. Moreover, it is of research interest to investigate whether the more accurate confidence intervals lead to
different results in the analysis of other studies with non-negligible left-truncation. For example, the analysis of pregnancy
outcome studies with different strata should be revisited with the novel methods.
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