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Abstract. Count data are common endpoints in clinical trials, e.g. magnetic resonance imaging
lesion counts in multiple sclerosis. They often exhibit high levels of overdispersion, i.e. vari-
ances are larger than the means. Inference is regularly based on negative binomial regression
along with maximum-likelihood estimators. Although this approach can account for heterogene-
ity it postulates a common overdispersion parameter across groups. Such parametric assump-
tions are usually difficult to verify, especially in small trials. Therefore, novel procedures which
are based on asymptotic results for newly developed rate and variance estimators are proposed
in a general framework. Moreover, in case of small samples the prcoedures are carried out using
permutation techniques. Here, the usual assumption of exchangeability under the null hypothesis
is not met due to varying follow-up times and unequal overdispersion parameters. This problem
is solved by the use of studentized permutations leading to valid inference methods for situations
with (i) varying follow-up times, (ii) different over-dispersion parameters and (iii) small sample
sizes.
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1 Introduction

Count data are common endpoints in clinical trials. Examples include relapses and magnetic
resonance imaging (MRI) lesion counts in relapsing-remitting multiple sclerosis (MS), exacer-
bations in chronic obstructive pulmonary disease (COPD), and hospitalizations in heart failure.
For several of these the negative binomial distribution has been suggested to be an appropri-
ate model accounting for between-patient heterogeneity in event rates manifesting in overdis-
persion, i.e. variances exceeding the means. For instance, Wang et al. (2009) suggested the
negative binomial model for the analyses of relapses, and Sormani et al. (1999, 2001, 2005)
and van der Elskamp et al. (2009) for various types of MRI lesion counts in MS. Based on two
large-scale COPD trials, Keene et al. (2008) assessed various models and recommended the
negative binomial model for application. In the situations described above, commonly analyses
methods (e.g. PROC GENMOD in SAS) are applied based on large sample properties of under-
lying Maximum-Likelihood-Estimates (MLE) and the assumption of a common overdispersion
parameter across treatment groups. Such distributional assumptions, however, can hardly be
verified; especially in case of small to moderate sample sizes (Aban et al., 2009). Even if the
distribution is correctly specified the MLEs of the overdispersion parameters are biased (Lord,
2006; Paul and Islam, 1995; Link and Sauer, 1997; Saha and Paul, 2005; Saha, 2011) which may
lead to wrong conclusions. Moreover, for count data it is quite common that varying follow-up
times occur, see e.g., Chen et al. (2013). To the best of our knowledge no suitable methods
currently exist that can simultaneously accomodate all of these different complications.

It is the aim of the present paper to develop valid inference procedures for the analysis of
count data in general models allowing for possibly time-varying follow-up times and different
overdispersion parameters in a nonparametric way. This is accomplished by newly derived un-
biased estimators (based on the methods of moments) for the (count) rates and their variances.
The rigorous study of their large sample properties then leads to asymptotically correct tests and
confidence intervals for treatment effects using critical values from the standard normal distri-
bution.

With small samples the use of normal quantiles for inference can lead to liberal or conserva-
tive decisions whereas permutation tests offer an opportunity to derive quantiles from appropri-
ate reference distributions. In particular, the application of studentized permutation procedures
is tempting since they have been shown to control the type-I-error rate very accurately in various
situations (Janssen, 1997; Chung and Romano, 2013; Konietschke and Pauly, 2014; Pauly et al.,
2015; Chung and Romano, 2016). The problem in this particular situation is that with varying
follow-up times and unequal overdispersion parameters the usual assumption of independently
identically distributed (iid) observations in the groups is not met. This issue can be solved by ap-
plying more general theorems on permutation statistics by Janssen and Pauls (2003) and Janssen
(2005) and Pauly (2011). Even though data may not be exchangeable under the null hypothesis,
the derived permutation methods are asymptotically correct in that they control the type I error
rate or the coverage probability for hypothesis tests and confidence intervals, respectively.

The paper is organized as follows: The statistical model and point estimates are given in Sec-
tion 2. Unbiased variance estimators are provided in Section 3. In Section 4 test procedures and
confidence intervals are derived. Permutation-based small sample size approximations and sim-
ulation results are presented in Section 5. Finally, Two illustrative data examples are analyzed in
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Section 6. The paper closes with a discussion of the proposed methods in Section 7. All proofs
are given in the supplement to this paper.

2 Statistical model, point estimates and multivariate
normality

We consider a two-sample layout with independent random variables Xik with

E(Xik) = tikλi and V ar(Xik) = σ2ik, i = 1, 2, k = 1, . . . , ni. (1)

Here, the index i represents the treatment groups (i = 1 control, and i = 2 treatment), and
k the subject within treatment group i with individual follow-up time tik, and λi > 0 the rate
of group i. Note that the variance σ2ik may depend on tik, e.g., when Xik follows a negative
binomial distribution (in this special case σ2ik = tikλi + t2ikλ

2
iφi). We further assume that the

fourth moments exist and are bounded, i.e. E(X4
ik) ≤ C0 < ∞ for a constant C0 > 0 and all

i, k.
The design is allowed to be completely heteroscedastic, i.e., every observation might have a

different expectation and variance. All statistical procedures for the analysis of iid observations
are inappropriate for statistical inference in model (1). LetN =

∑2
i=1 ni denote the total sample

size, Ti =
∑ni

k=1 tik the total follow-up times in group i, i = 1, 2, and let T =
∑2

i=1 Ti denote
the total follow-up times across both treatment groups. The unknown rate parameters λi can be
estimated without bias by

λ̂i =
1

Ti

ni∑
k=1

Xik (2)

and can be interpreted as a weighted mean of the data. The variance of λ̂i is given by

σ2i = V ar
(
λ̂i

)
=

1

T 2
i

ni∑
k=1

σ2ik. (3)

For the derivation of asymptotic results for the rate estimtes (2), the following mild regularity
conditions on sample sizes and follow-up times are required:

tik ∈ [L,U ] where 0 < L < U <∞, (4)

N →∞ such that
ni
N
→ κi ∈ (0, 1), (5)

T →∞ such that
Ti
T
→ κ̃i ∈ (0, 1), (6)

1

Ti

ni∑
k=1

σ2ik → τ̃2i ∈ (0,∞), as Ti →∞. (7)

Assumption (4) ensures that the follow-up times appear on a fixed time interval of interest,
while Assumptions (5) - (7) guarantee the existence of limiting variances of the point estimates,
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see Theorem 2 below. In particular, it follows immediately, that the estimator λ̂i is consistent
as ni → ∞ and Ti → ∞, respectively. However, the variance σ2i defined in (3) represents
an unknown weighted sequence of the quantities σ2ik, which depends on both the follow-up
times and sample sizes. Thus, it cannot be represented by model constants. In order to derive
inference methods for the general hypothesisH0 : h(λ1, λ2) = θ0, however, the estimator needs
to be multiplied by adequate known coefficients, such that σ2i converges to a specific variance
constant, which is, asymptotically, unaffected by the follow-up times and sample sizes. The
result along with the multivariate normality of the estimator λ̂ = (λ̂1, λ̂2)

′ of λ = (λ1, λ2)
′ are

given in the next theorem.
Theorem 2

1. Under Assumptions (4), (6) and (7),√
T1T2
T

(λ̂− λ)
D→ N(0,Σ), where Σ = diag

{
κ̃2τ̃

2
1 , κ̃1τ̃

2
2

}
(8)

is a diagonal limiting covariance matrix.

Note that the diagonal covariance matrix Σ neither depends on the sample sizes ni, nor on the
time-varying coefficients tik. The matrix, is, however, unknown in practical applications, and
needs to be estimated. An unbiased and L2-consistent estimator is derived in the next section.

3 Estimation of the variance

Moment - based estimators for variances denote, roughly speaking, the squared deviation from
the mean. In model (1), however, no uniquely defined mean exists. In particular, the variance
σ2i is a sum of variances, and is not defined as a fixed variance constant. Therefore, the usual
sample variance moment-based estimator is biased, a rather inappropriate characteristic of a
variance estimator. Below, we derive an unbiased and consistent moment-based estimator of σ2i .

Define the random variables Z̃ik = Xik − tikλ̂i, and note that E(Z̃ik) = 0 for all i = 1, 2,
and k = 1, . . . , ni. The variables Z̃ik describe the deviation of Xik to its estimated expectation.
An unbiased moment-based estimator can now be derived by considering the squared deviation
from Z̃ik along with a bias correction. Define

Ki =

ni∑
k=1

t2ik
(Ti − 2tik)Ti

(9)

and consider

σ̃2i =
1

(1 +Ki)T 2
i

ni∑
k=1

Ti
(Ti − 2tik)

Z̃2
ik. (10)

The estimator σ̃2i is not a usual sample variance estimator, since it only involves sums of the
follow-up times tik as weighting factors. However, it describes the mean squared deviation from
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the observations Xik to their estimated mean tikλ̂i. Further let

Σ̂ = diag
(
σ̂21, σ̂

2
2

)
=
T1T2
T

diag
(
σ̃21, σ̃

2
2

)
(11)

denote the diagonal matrix with diagonal elements T1T2
T σ̃21 and T1T2

T σ̃22 , respectively. It is shown
in the next theorem, that σ̃2i is an unbiased estimator of σ2i and that Σ̂ is L2-consistent.

Theorem 3 For each i = 1, 2 the estimator σ̃2i is an unbiased estimator of σ2i . Moreover, the
estimator Σ̂ is L2-consistent, i.e.

||Σ̂Σ−1 − I2||22 → 0, T →∞.

The asymptotic normality of the point estimates and the consistent variance estimates can now
be used for the derivation of test procedures and confidence intervals.

4 Test procedures and confidence intervals

In this section, different procedures for testing the null hypothesis
H0 : h(λ1, λ2) = θ0 as well as confidence intervals for the treatment effect h(λ1, λ2) will
be discussed, where h : R2

+ → R is continuously differentiable in (λ1, λ2). Let g(h) =

g (h, λ1, λ2) =
(
∂h
∂λ1

, ∂h∂λ2

)′
denote the gradient of h with estimator ĝ(h) = ĝ

(
h, λ̂1, λ̂2

)
=(

∂h

∂λ̂1
, ∂h
∂λ̂2

)′
. It follows from the multivariate delta-method that

f

(
h
(
λ̂1, λ̂2

)′
− h (λ1, λ2)

)
D→ N

(
0, σ2h

)
, (12)

where

f =

√
T1T2
T

and σ2h = (g(h))′Σg(h). (13)

The variance σ2h is unknown, and must be estimated in practical applications. However, σ2h is
a linear combination of the individual variances σ2i , respectively. It follows immediately, that a
consistent estimator is given by

σ̂2h = (ĝ(h))′ Σ̂ĝ(h). (14)

Based on the asymptotic normality of f
(
h
(
λ̂1, λ̂2

)′
− h (λ1, λ2)

)
and Slutsky’s Theorem, it

thus follows that

T(h)(θ) = f

(
h
(
λ̂1, λ̂2

)
− θ
)

σ̂h

D→ N(0, 1) (15)
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where θ = h(λ1, λ2). For large sample sizes, the null hypothesis H0 : h(λ1, λ2) = θ0 will be
rejected at a two-sided significance level α, if |T(h)(θ0)| ≥ z1−α/2, where z1−α/2 denotes the
(1−α/2)-quantile of the standard normal distribution. Asymptotic (1−α)-confidence intervals
for θ are obtained from

P

(
θ ∈

[
h
(
λ̂1, λ̂2

)
±
z1−α/2

f
σ̂h

])
→ 1− α. (16)

5 Small sample approximations and simulation results

Extensive simulations were conducted to investigate the accuracies of the test procedures de-
rived in Section 4 for small sample sizes with regard to (i) controlling the type-1 error rate
at the nominal significance level (α = 5%), (ii) their powers to detect certain alternatives
H1 : h(λ1, λ2) 6= θ0, and (iii) the coverage probabilities of the corresponding confidence inter-
vals in (16). All simulations were conducted with R environment, version 2.15.2. (R Develop-
ment Core Team, 2010), each with nsim = 10, 000 simulation runs.
In all simulations, we focus on testing the hypothesis

H
(L)
0 : hL(λ1, λ2) = log (λ1/λ2) = 0 vs. H

(L)
1 : log (λ1/λ2) 6= 0, (17)

corresponding to the function h(λ1, λ2) = L(λ1, λ2) = log(λ1/λ2).The test statistic is given by

T(L) = f
log
(
λ̂1/λ̂2

)
√
σ̂21/λ̂

2
1 + σ̂22/λ̂

2
2

, (18)

which yield to asymptotically valid tests ψf = 1{|T(L)| ≤ z1−α/2} for H(L)
0 . Moreover, con-

fidence intervals can be derived from (16), respectively. Simulation studies indicate, however,
that the statistic T(L) in (18) tends to result in rather liberal conclusions for small sample sizes
(ni ≤ 20). Therefore, we propose a studentized permutation approach to approximate its sam-
pling distribution for small sample sizes. This will be explained in the next section.

5.1 A studentized permutation approach

Permutation tests are widely known to be robust and exact level α tests when the data are
exchangeable. Exchangeability implies, however, that variances across the groups are identi-
cal. As mentioned above, the data are allowed to be completely heteroscedastic in model (1).
Roughly speaking, a usual permutation test would fail to test the null hypotheses formulated
above. However, asymptotic permutation tests can be obtained, if appropriate studentized statis-
tics are permuted. Let X = (X11, . . . , X1n1 , X21, . . . , X2n2)′ denote the pooled sample, and let
t = (t11, . . . , t1n1 , t21, . . . , t2n2)′ denote the corresponding vector of the pooled follow-up times
tik. For a fixed, but random permutation π of (1, . . . , N), let Xπ = (Xπ

11, . . . , X
π
1n1
, Xπ

21, . . . ,
Xπ

2n2
)′ and tπ = (tπ11, . . . , t

π
1n1
, tπ21, . . . , t

π
2n2

)′ denote the permuted data and corresponding
follow-up times, respectively.
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It turns out that the finite sample approximation of the permutation method can be improved
by independently permuting X and t. This is similar to two sample problems with right-censored
survival data, where it is also recommended that the permuted failure times do not occur in gen-
eral with their corresponding censoring indicators, see Janssen and Mayer (2003) as well as
Brendel et al. (2014). To this end we consider another random permutation π′ of (1, . . . , N)
that is independent of π and calculate the permuted estimators λ̂πi = λ̂i(X

π, tπ
′
) and σ̂2πh =

σ̂2h(Xπ, tπ
′
). Note that the possible number of random permutation is considerably increased

when permuting both X and t independently.

It turns out that the distribution of the test statistic fh(λ̂1, λ̂2) differs in the general model (1)
from its permutation distribution, and a valid level α test can not be achieved in this setup. There-
fore, we consider the distribution of the test statistic T(h) defined in (15) and of the studentized
quantity

T π(h) = f
h
(
λ̂π1 , λ̂

π
2

)
σ̂πh

. (19)

The conditional limiting distribution of T π(h) given the data X will be derived in the next theorem.
Theorem 5.1 Let T π(h) as given in (19) and denote by Φ(x) the standard normal distribution
function. If σ2L > 0, then we have convergence under the null as well as under the alternative
with

sup
x∈R

∣∣∣P (T π(L) ≤ x)− Φ(x)
∣∣∣ P→ 0.

Theorem 5.1 states that the limiting standard normal distribution of T π(L) does not depend on the
distribution of the data, particularly, it is achieved for arbitrary h(λ1, λ2) = θ0, i.e. it even holds
under the alternative.

Let ψπf = 1{T(h) ≤ zπα/2} + 1{T(h) ≥ zπ1−α/2}, where zπα/2 denotes the α/2-quantile from
the studentized permutation distribution of T(L). In the next theorem we will show that both the
conditional and unconditional tests are asymptotically equivalent, which means, that both tests
have, asymptotically, the same power to detect certain alternatives.
Theorem 5.2 Suppose that the assumptions of Theorem 5.1 are fulfilled.

1. Under the null hypothesis H0 : h(λ1, λ2) = 0, the studentized permutation test ψπf is
asymptotically exact at α level of significance, i.e. E(ψπf ) → α, and asymptotically
equivalent to ψf , i.e.

E
(∣∣ψπf − ψf ∣∣)→ 0, f →∞.

2. The permutation test ψπf is consistent, i.e. we have convergence

E(ψπf )→ α1{h(λ1, λ2) = 0}+ 1{h(λ1, λ2) 6= 0}, f →∞.
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In particular, Theorem 5.1 states that the distributions of the pivotal quantity T(h) and of the
studentized permutation statistic T π(h) asymptotically coincide. Under the assumptions of Theo-
rem 5.1, approximate (1− α)-confidence intervals for θ can be obtained from

P

(
θ ∈

[
h
(
λ̂1, λ̂2

)
−
zπ1−α/2

f
σ̂h, h

(
λ̂1, λ̂2

)
−
zπα/2

f
σ̂h

])
→ 1− α. (20)

5.2 Simulation results

In a negative binomial-NB(tikλi, φi)-model we investigate the empirical control of the pre-
assigned type-1 error rate at the usual two-sided significance level α = 5% of the statistic
T(L) in (18) using the standard normal approximation as given in (15), and the permutation test
using the quantiles of the conditional distribution of T π(h) in (19) as critical values. As a further
competing procedure, we estimate the variances σ2i using maximum likelihood methods. In
this NB(tikλi, φi)-model the variance σ2i is given by the weighted sequence of the quantities
tikλi + t2ikλ

2
iφi, respectively. An intuitive plug-in estimation approach is achieved by replacing

the unknown parameter λi as above and φi by a consistent maximum-likelihood estimator (ML),
e.g., by using

σ̈2i =
1

T 2
i

ni∑
k=1

{
tikλ̂i + t2ikλ̂

2
i φ̂i

}
, (21)

see, e.g. Schneider et al. (2013). This estimation approach, however, has the disadvantage that
neither λ̂2i nor φ̂i are unbiased estimators of λ2i or φi, respectively, resulting in biased variance
estimators. The variance estimators σ̂2i used in T(L) are finally replaced by σ̈2i , and the corre-
sponding Wald-statistic, which is asymptotically equivalent to the Likelihood-ratio test, denoted
by LRT.

5.2.1 Type-1 error rate simulations

We explore the behavior of the test statistics for smaller and larger effect rates λ1 and λ2 ∈
{1.5, 10} as well as smaller and larger over-dispersion parameters φ1 and φ2 ∈ {0.3, 0.5, 3, 5}.

All simulation designs are motivated by the examples presented in Section 6. A major as-
sessment criterion for the accuracy of the procedures is their behavior when increasing sam-
ple sizes are combined with increasing variance parameter constellations (positive pairing) or
with decreasing variances (negative pairing). We investigate balanced situations with sam-
ple size vector n1 = (n1, n2)

′ = (7, 7) and unbalanced situations with sample size vector
n2 = (n1, n2) = (7, 15)′. The sample sizes are increased by adding a constant m to the com-
ponents of the vectors n1 or n2, respectively. The different simulation settings are displayed in
Table 1. Each simulation setting n = ns(m) = (n1 +m,n2 +m)′ represents a different design
with an increasing sample size m, where s = 1, 2, see Table 1.

Data were generated from Xik ∼ NB(tikλi, φi), where tik denotes the realization from a (i)
uniformly distributed random variable Tik ∼ U(1, 2), or (ii) Tik ∼ Exp(2) + 1, respectively.
For each simulation setting, the same generated follow-up times tik were used for the nsim =
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Table 1: Simulated designs, where m ∈ {0, 5, 10, 20, 25} and n1 = (7, 7)′, n2 = (7, 15)′.
Here φ1 = (φ1, φ2)

′ = (0.3, 0.3)′, φ2 = (φ1, φ2) = (0.3, 0.5)′, φ3 = (φ1, φ2) =
(0.5, 0.3)′, φ4 = (φ1, φ2)

′ = (3, 3)′, φ5 = (φ1, φ2) = (3, 5)′, and φ6 = (φ1, φ2) =
(5, 3)′ denote vectors of overdispersion parameters and ni +m means that every com-
ponent of ni, i.e. each group size, is increased by m.

Setting λ1 = λ2 Sizes Overdisp. Interpretation
1 1.5 n = n1 +m φ = φ1 balanced / equal overdispersion
2 1.5 n = n2 +m φ = φ1 unbalanced / equal overdispersion
3 1.5 n = n1 +m φ = φ2 balanced / unequal overdispersion
4 1.5 n = n2 +m φ = φ2 unbalanced / unequal overdispersion

(positive pairing)
5 1.5 n = n2 +m φ = φ3 unbalanced / unequal overdispersion

(negative pairing)
6 10 n = n1 +m φ = φ4 balanced / equal overdispersion
7 10 n = n2 +m φ = φ4 unbalanced / equal overdispersion
8 10 n = n1 +m φ = φ5 balanced / unequal overdispersion
9 10 n = n2 +m φ = φ5 unbalanced / unequal overdispersion

(positive pairing)
10 10 n = n2 +m φ = φ6 unbalanced / unequal overdispersion

(negative pairing)

10, 000 simulation runs, but they were newly generated for each design. The number of random
permutations was set to nperm = 10, 000. The simulated type-1 error rates for a significance
level α = 5% assuming uniformly distributed follow-up times are displayed in Figure 1.

It turns out that in case of small effect rates (λ1 = λ2 = 1.5) and small overdispersion
parameters the statistics T(L) based on the normal approximation as well as the LRT statistics
based on ML tend to be slightly liberal. It can be readily seen from Figure 1 that the permutation
tests control the type-1 error rate best, even for extremely small sample sizes. In case of larger
effect rates and overdispersion parameters the distribution of the data is much more skewed.
In these situations the procedures T(L) based on the normal approximation and ML tend to

considerably over-reject the null hypothesis H(L)
0 . Remarkably, the estimated type-1 error rates

are even larger than 20% and 10%, respectively in Settings 6-10 (see Figure 1). In comparison,
the permutation technique greatly improves the finite sample performance of all asymptotic
procedures, and is therefore recommended in practical applications.

In order to investigate the impact of the underlying distributions of the follow-up times, we
re-simulate the same designs with exponentially distributed follow-up times. The results are dis-
played in the supplementary material. It can be seen that the shape of the underlying follow-up
times distributions slightly affect the behavior of the statistics in all scenarios. This is intu-
itively clear, since the different follow-up times particularly influence the variance of the effect
estimators, and increase the variance with wider ranging follow-up times or certain amount of
skewness. Therefore, all procedures tend to be slightly more liberal when wide ranging follow-
up times and small sample sizes are apparent. This can be particularly seen by the permutation
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Figure 1: Type-I error level (α = 5%) simulation results (y-axis) of the statistics T(L) in (18),
permutation test T π(h) in (19) and ML-based statistics for different distributions, sample
size increments m ∈ {0, 5, 10, 15, 20, 25} (x-axis), where tik denote the realizations
from Tik ∼ U(1, 2). The simulation settings are described in Table 1.
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test. The liberality, disappears with increasing sample sizes.

5.2.2 Power comparisons

The type-1 error rate simulation results presented in Section 5.2.1 indicate a quite liberal behav-
ior of the methods T(L) and ML-based statistics under certain parameter constellations and small
sample sizes. All methods tend to accurate conclusions with large sample sizes. The liberality
of these methods increases the “power” of the methods to detect alternatives in small sample
size settings. In an additional simulation study, not presented here, it turned out, that with large
sample sizes, i.e. when all competing methods are accurate, their powers are all very similar.

5.2.3 Simulated coverage rates of the confidence intervals

Next we investigate the empirical coverage probabilities of the corresponding confidence inter-
vals. Data was generated by X1k ∼ NB(λ1t1k, φ1), k = 1, . . . , n1 and X2k ∼ NB(λ1(1 +
δ)t2k, φ2) for varying δ ∈ {0, 0.1, 0.2, . . . , 2}, n1, n2 ∈ {10, 20}, and different overdispersion
parameters. For illustration purposes, we only display the results using uniformly distributed
follow-up times, different overdispersion parameters φ1 = 3 and φ2 = 6 and rate λ1 = 10.
The results are displayed in Figure 2. It is readily seen that the competing procedures tend to
be rather liberal, while only the permutation based confidence intervals maintain the nominal
coverage probability very satisfactorily.

6 Two illustrative examples

Pediatric MS with disease onset under the age of 16 is uncommon and qualifies as a rare disease.
Differences in clinical presentation before and after puberty have been reported (Huppke et al.,
2014). Randomized controlled trials in pediatric MS have been very rare (Unkel et al, 2016),
but are becomming more common now (Rose and Müller, 2016). We consider a randomized
controlled trial assessing efficacy and safety of interferon beta-1a compared to no treatment in
pediatric MS reported by Pakdamen et al. (2006). In this trial, 16 patients were randomized to
verum or control. Relapse rates and new T2 lesions were both considered as endpoints. The
estimated rates and overdispersion parameters are given in Table 2. As a second example, we
consider the Acyclovir trial reported by Lycke et al. (1996). In this experiment, Acyclovir
treatment was used in a randomized, double-blind, placebo-controlled clinical trial with parallel
groups to test the hypothesis that herpes virus infections are involved in the pathogenesis of MS.
In total, N = 60 adult patients were recruited, whereas n1 = n2 = 30 were randomized to
placebo or active treatment, respectively. The data (relapse counts) can be found in Figure 1 in
the original publication (Lycke et al., 1996). As a secondary analysis of this trial, the relapse
counts from patients that showed a progressive course during the trial were excluded from the
statistical analysis. In this situation, patients have different follow-up times and estimators must
be weighted accordingly.

The estimated rates and overdispersions being defined as variance-to-mean ratios are given in
Table 2. It can be readily seen from Table 2 that the over-dispersion parameters seem to differ
between the treatment groups, and even under-dispersed counts are apparent. The effect of the
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Figure 2: Empirical coverage probabilities of nominal 95% confidence intervals of the corre-
sponding confidence intervals given in (16), permutation based confidence intervals
given in (20) and ML-based LRT statistics for different distributions and rate incre-
ments δ ∈ {0, 0.1, . . . , 2} (x-axis) and unequal overdispersion parameters (φ1 =
3, φ2 = 6), where tik denote the realizations from Tik ∼ U(1, 2).
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different overdispersion parameters on the behavior of the statistical methods has been analyzed
in detail in extensive simulation studies in Section 5.2.

Table 2: Estimated rates and overdispersion parameters (Variance / Mean Ratio) for the two
example studies

Pediatric MS trial (N=16)
Endpoint Group Estimated rate λ̂i Sample Variance Estimated Overdispersion
T2 lesions Control 11.875 13.268 1.1178

Active 10.625 16.8398 1.585
Relapses Control 4.5 6.5718 1.4608

Active 2.375 0.268 0.113

Acyclovir trial (N=60)
Relapses Control 3.133 6.602 2.107

ACYC 2.067 3.030 1.466

Acyclovir trial (N=60; Secondary Analysis)
Relapses Control 3.204 6.602 2.061

ACYC 2.118 3.172 1.498

Both motivating examples discussed above used over- and under-dispersed counts as out-
comes. Here we present the results based on standard methods including normal approximation
and maximum-likelihood as well as the new developed methods. The test statistic being used is
given by

TNB =
log
(
λ̂1/λ̂2

)
√

σ̈
2(c,P )
1

λ̂
2(c)
1

+
σ̈
2(c,P )
1

λ̂
2(c)
1

, (22)

where

σ̈2i =
1

T 2
i

ni∑
k=1

{
tikλ̂i + t2ikλ̂

2
i φ̂
}
,

denotes the estimated variance of the effect estimator using a MLE estimator of the over-
dispersion parameter φ, which is assumed to be identical across both treatment groups.

As competing methods, we also analyse the data using both a Negative Binomial Regression-
and Poisson Regression using SAS PROC GENMOD.

Thus, the illustrative examples include constant as well as varying follow-up times, and even
the analyses with constant follow-up times still presents a challenge since the sample sizes are
with 16 and 60 very and moderately small, and the overdispersion is fairly pronounced, in partic-
ular for the MRI lesion counts and relapses. The effect estimates, standard errors, test statistics,
p-values as well as 95%-confidence intervals are displayed in Table 3.
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It can be readily seen from Table 3, that the estimated standard errors of the effect estimates
for the T2 lesions are likely, and therefore all methods results in the same conclusion. Only
the estimated standard error being computed via a Poisson-Regression tends to be smaller. This
occurs because the Poisson-Regression sets the overdispersion to be zero, by default. A signif-
icant effect at 5% level can not be detected with any method (p > 0.05). The relapse rates are
significantly different at 5%-level of significance. It can be seen, however, that the estimates
of the standard errors significantly differ from the moment-based unbiased variance estimators
(SE=0.216 versus SE=0.302 using ML). Therefore, the p-values based on ML estimates are
larger than using the moments-based estimator and standard normal distribution (p=0.003 vs.
p= 0.034). However, since sample size is rather small, the permutation approach is the most
robust method in this setup, and results in a p-value of p=0.026. Since both over-and under-
dispersed counts were observed, the ML.Pool, the negative binomial, and poisson regression are
tend to provide identical results.

The results obtained for the Acyclovir trial, however, differ significantly. First, both treatment
groups show a different overdispersion. Therefore, the SE obtained by a Poisson-Regression
is way smaller than with all other methods, and thus results in a significant treatment effect at
5% level of significance. Comparing the other estimation approaches it can be seen that the
ML-based estimation approaches (assuming negative binomial distribution) of the SE tend to
be larger than the unbiased methods-of-moments based methods. The largest SE is estimated
via ML.Pool (which is identical to a NB-Regression). The estimated standard error based on
the unbiased variance estimate is given by SE=0.215. Therefore, the p-values range from 0.052
through 0.071. Due to the moderate sample size of N = 60, both the normal and permutation
approximation tend to provide similar p-values with p = 0.052 and p = 0.054, respectively.
The secondary analysis of the the Acyclovir trial shows similar results to the above. This occurs
because only the relapse counts from four of the 60 patients were excluded from the analysis.
However, slightly different effect estimates coming from the Negative Binomial and Poisson
Regression can be seen. This occurs, because in case of unequal follow-up times the rates are
estimated using maximum likelihood estimation methods, which are not identical to moment
(mean-based) methods.

7 Discussion

In this paper, inference methods for testing hypotheses formulated in terms of the effect rates
of overdispersed counts were developed without assuming a specific data distribution and/or
different overdispersion parameters. They are based on the asymptotic properties of novel un-
biased estimators of the count rates and their variances. In order to also provide valid methods
for small sample sizes, resampling methods have been derived. Although data is in general not
exchangeable, following the ideas of Neuhaus (1993), Janssen (1997, 2005) and Chung and Ro-
mano (2013), studentized permutation techniques could be applied. Simulation studies indicate,
however, that the procedures control the nominal level reasonably well even with ni ≈ 5.

Furthermore, in clinical trials, the computation of confidence intervals for the treatment effects
is important, following the ICH E9 guideline for randomized clinical trials: “Estimates of treat-
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ments shall be accompanied by confidence intervals, whenever possible... (ICH E9 Guideline
1998, chap. 5.5, p. 25). For instance, Saha (2013) investigates different methods for the compu-
tation of confidence intervals for the mean difference in the analysis of over-dispersed count data
(assuming constant follow-up times tik). In this paper, these procedures were generalized for
possibly time-varying and over-dispersed count data and equipped with the studentized permu-
tation approach. Extensive simulation studies show that the new methods improve the existing
methods in terms of coverage probability and type-I-error rate control.

In future investigations, the results shall be extended to more general models allowing for co-
variates (e.g. for baseline adjustment) and several samples. Furthermore, investigating the over-
lap of range-preserving confidence intervals for the effects is an interesting attempt for making
inferences (Noguchi and Marmolejo-Ramos, 2016).
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Table 3: Statistical analsis of the examples using h(λ1, λ2) = log(λ1/λ2): Approximate
method, Effect (log(λ̂1/λ̂2)), Standard Error (SE), Test Statistic (= Effect / SE) and
95% confidence intervals.

Method Effect SE Statistic p-Value 95% CI
T2 lesions

Normal (15) 0.111 0.174 0.638 0.524 (-0.231 ; 0.453 )
LRT (21) 0.111 0.162 0.686 0.493 (-0.207 ; 0.429 )
LRT.Pool (22) 0.111 0.161 0.691 0.489 (-0.204 ; 0.427 )
Perm (19) 0.111 0.174 0.638 0.545 (-0.269 ; 0.510 )
NB-Reg 0.111 0.161 0.691 0.489 ( -0.204 ; 0.428 )
Pois-Reg 0.111 0.149 0.745 0.456 ( -0.181 ; 0.405 )

Relapses
Normal (15) 0.639 0.216 2.964 0.003 ( 0.216 ; 1.062 )
LRT (21) 0.639 0.302 2.116 0.034 ( 0.047 ; 1.231 )
LRT.Pool (22) 0.639 0.284 2.254 0.024 ( 0.083 ; 1.195 )
Perm (19) 0.639 0.216 2.964 0.026 ( 0.116 ; 1.162 )
NB-Reg 0.639 0.284 2.254 0.024 ( 0.096 ; 1.215 )
Pois-Reg 0.639 0.284 2.254 0.024 ( 0.096 ; 1.215 )

Acyclovir Relapses
Normal (15) 0.416 0.215 1.939 0.052 ( -0.004 ; 0.837 )
LRT (21) 0.416 0.228 1.824 0.068 ( -0.031 ; 0.863 )
LRT.Pool (22) 0.416 0.231 1.805 0.071 ( -0.036 ; 0.868 )
Perm (19) 0.416 0.215 1.939 0.054 ( -0.007 ; 0.842 )
NB-Reg 0.416 0.231 1.805 0.071 ( -0.035 ; 0.870 )
Pois-Reg 0.416 0.164 2.544 0.011 ( 0.098 ; 0.741 )

Acyclovir Relapses (Secondary Analysis)
Normal (15) 0.414 0.218 1.904 0.057 ( -0.012 ; 0.841 )
LRT (21) 0.414 0.230 1.798 0.072 ( -0.037 ; 0.866 )
LRT.Pool (22) 0.414 0.233 1.781 0.075 ( -0.076 ; 0.845 )
Perm (19) 0.414 0.218 1.904 0.062 ( -0.022 ; 0.845 )
NB-Reg 0.415 0.233 1.780 0.075 ( -0.040 ; 0.874 )
Pois-Reg 0.422 0.165 2.553 0.011 ( 0.101 ; 0.750 )
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