
“bio443” — 2004/3/4 — page 1 — #1

BIOINFORMATICS Vol. 20 no. 0 2004, pages 1–3
DOI: 10.1093/bioinformatics/bth151

Sight: automating genomic data-mining without
programming skills

Audrius Meskauskas, Frank Lehmann-Horn and Karin Jurkat-Rott∗

Department of Applied Physiology, Ulm University, Albert-Einstein-Allee 11,
D-89069 Ulm, Germany

Received on July 4, 2002; revised on August 25, 2003; accepted on January 27, 2004

ABSTRACT
Summary: We created and tested Sight, a Java-based
package that provides a user-friendly interface to generate
and connect agents for automatic genomic data-mining for
individual requirements without requiring programming skills
from the user.
Availability: http://physiologie.uni-ulm.de//Seiten/Arbeits-
gruppe/Jurkat-Rott/Jurkat-Rott.htm. The system does not
require additional components and runs on IBM PCs under
Windows (NT 4.0, 2000 and XP) or Linux (Phat 4.0 and
Mandrake 9.0).
Contact: karin.jurkat-rott@medizin.uni-ulm.de

Simple Web agents like WebBlast (Ferlanti et al., 1999)
or BioQuery (Brundege and Dubay, 2003) do not allow
sequential connection of genome database servers. More
complex data-mining systems provide an attractive alternat-
ive to sequential manual Internet submission by automating
the most commonly used computations. However, these sys-
tems either follow only pre-determined workflows [Genotator
(Harris, 2000), Pedant (Frishman et al., 2001), EDITto-
TrEMBL (Moller et al., 1999)] or enable assembly of custom
workflows using only fixed elements [Kleisli (Kolatkar et al.,
1998), Tambis (Stevens et al., 2000) or GAIA (Bailey et al.,
1998)]. Applications for tasks that need special workflows
or that require integration of additional programs and new
Web resources are realized by systems that require signific-
ant programming skills from the user. Typical members of
this group are Jade (Stein et al., 1998), BioJava (Mangalam,
2002), BioPerl (Stajich et al., 2002) or Decaf (Graham et al.,
2003). We have created Sight, a system incorporating features
of both application types. However, Sight allows the assembly
of an arbitrary tree-like workflow without requiring program-
ming skills from the user. Additionally, Sight has generic data
structures, can integrate new resources and can perform user-
defined conversion from one structure to another—features
generally found in large-scale programming-based packages,
several of which are only commercially available, such as
Ariadne (Knoblock et al., 2000).

∗To whom correspondence should be addressed.

Sight (Fig. 1) contains a Web form analyzer that identifies
data fields in the Web form and generates a test agent that
extracts these data. The data are presented to the user, who
can then define the data of interest upon which Sight finalizes
the agent. In this procedure, four means of data extraction are
employed: (i) a table-based analyzer, (ii) a text-based ana-
lyzer that identifies space-delimited tables, (iii) a modified
Stalker algorithm (Muslea et al., 2001) that controls the mark-
ing of the data of interest in close vicinity to one another and
(iv) a user-defined transformation for XML documents. The
Web agents generated can also access DAS servers or connect
to SSH servers by uploading parameters and capturing the
output.

Sight agents are similar to the agents described by Sakiyama
et al. (2000) and include the data structures for request and
response and all task-specific codes required to submit the
request, to retrieve the response and to test the agent. Generic
data structures are used that consist of records for the request
and record-sets for the response comparable with Java Beans
(Boyle, 1998). A Java BeanInfo-like implementor has also
been realized that provides information about methods and
properties of agent data structures. Appropriate transforms
can then be applied to map between models. Therefore,
interfaces connecting any two Sight agents can be generated
regardless of their original data structures. Sight agents report
their response in a table format in which each retrieved record
represents a line in the table.

A tree-like work flow is generated by the user, who simply
connects the response data fields of one agent to the request
data fields of another using the application generator (Fig. 1).
During execution, a separate request for the subsequent agent
is made for each record in the original response of the preced-
ing (master) agent. Request fields may be initialized directly
by the user if required. Conditional connection of agents can
be achieved by integrated Weka text-based filtering and classi-
fication algorithms (Witten and Frank, 1999), which filter the
input for subsequent agents according to user-defined criteria.

In order to minimize Internet connections for trivial tasks to
be performed by primitive Sight Web agents, the underlying
algorithms for several applications such as pattern searches,
protein translator or simple sequence manipulations have been

Bioinformatics 20(0) © Oxford University Press 2004; all rights reserved. 1



“bio443” — 2004/3/4 — page 2 — #2

A.Meskauskas et al.

Fig. 1. Sight components. The user-interactive agent generator produces agents that can be connected for sequential tasks using the application
generator. Compiler modules and agent templates are available at our Website.

included in the system for local use. Additionally, non-Java
applications can be integrated by a wrapper generator that pro-
duces a skeleton agent with compatible request and response
data structures. The output from both types of local applica-

Please check
the changes
made to the
sentence ‘vice
versa Sight...’

tions can then be analyzed just like responses from typical
Sight agents. Vice versa, Sight agents can be imported into
user-written programs due to the easy accessibility of the Java
code, linking the data structures of request and response.

The user can observe all opened Internet connections by
a pictogram-based real-time viewer. A security system sus-
pends request submission if the same agent has not yet
received a response to the previous request. Several retries
are performed before an error result is generated. If the final
report of the master contains incomplete sections, i.e. caused
by subsequent agents who have generated error reports due to
server breakdowns, the whole program can be restarted. This
results in resubmission only of the requests without cached
values, i.e. only of the previously failed requests. The expira-
tion time of the cache is set during agent generation but may
be modified during agent assembly. In the cache, the complete

request at its specific position in an agent work flow is saved;
alternatively, for other integrated applications, the cache is
computed using hash codes from all request fields.

To test the usability of Sight for non-programmers, we
instructed 16 molecular biologists to use it during the Chan-
nelomics Summer School Ulm in Fall 2002. Fourteen par-
ticipants were able to develop their individual agents using
Sight after a 3 h course. To test system stability, we gener-
ated a Sight-based genome walker, a typical application with
long runtimes and potentially facing numerous server and net-
work errors. To test the generated Web agents in specialized
Java applications, we created a splicing signals analyzer. To
test co-operability with non-Java programs, we integrated a
locally installed BLAST (tblastx) version into a Sight-based
gene finder. The results and figures of these and additional
applications are at our Website. In brief, they are the following.

Genome walker: Sight generated agents performed the fol-
lowing steps. A sequence retriever agent loaded the sequences
from the Internet. Then, the GenScan module predicted genes.

2



“bio443” — 2004/3/4 — page 3 — #3

Sight

After getting the protein sequence, the following set of agents
started their work in parallel: BLAST similarity search (at
NCBI), prediction of the transmembrane helixes (TmPred),
prediction of the rapid degradation signals (PSORT) and integ-
rated classification (InterPro or PROSITE). The predicted
RNA sequence was submitted to the BLAST similarity search
using the complete expressed sequence tag (EST) database.
The list of hits returned by this search contained hyperlinks to
the corresponding Internet pages. These links were visited to
obtain RNA expression patterns. The system detected which
NCBI contig was assembled using a clone with a given acces-
sion number and included the hyperlink to this contig in the
reports. To test this system, we scanned human chromosome 8,
thereby classifying 1305 genes.

Splicing signals analyzer: Sight was used to look at the aver-
age distribution of nucleotide frequencies at the intron/exon
boundaries and around the intronic splicing branch point of
genomic DNA. Our system consisted of a sequence retriever,
a GenScan module and specialized analyzers. We plotted
the occurrence, relative frequencies and levels of confidence.
Apart from the known pyrimidine-rich region downstream of
the branch point, we found another pyrimidine-rich region
upstream of the branch point and confirmed the known
pyrimdine-rich region upstream of the splicing acceptor site.
In the coding regions, the system detected a hitherto unknown
decrease in T in the first position of each coding triplet—
presumably to avoid stop codons, which all commence
with T.

Please check
the changes to
the sentence
‘Our system
consisted of a
sequence
retriever. . .’

Gene finder: A database was generated by selecting
all proteins containing known ion channel signatures from
the NCBI non-redundant protein database. Corresponding
DNA sequences were then submitted to a NCBI BLAST
search against the NCBI non-redundant nucleic acid database.
This search returned hits containing ESTs, annotated RNA
sequences and genome regions. Next, the hit with the highest
similarity level points to a sequence from non-human organ-
isms was added to the report. We evaluated ion channel genes
on chromosome 8, and the program reported a set of fragments
that were not mentioned in the corresponding NCBI contig. It
was located in clones AP000075.1 and AP000074.1 of contig
NT_008251.5 and was most similar to the mouse potassium
large-conductance pH-sensitive channel (gi:6680542), sug-
gesting an as yet unannotated ion channel to exist on human
chromosome 8.

Please check
the changes to
the acknow-
ledgements
statement.

ACKNOWLEDGEMENTS
This work was supported by the Interdisciplinary Clinical
Research Center (iZKF) of Ulm University and funded by
the Federal Ministry of Research (BMBF) and the GRK 460
Graduate College of the German Research Foundation (DFG).

REFERENCES
Bailey,L.C., Fischer,S., Schug,J., Crabtree,J., Gibson,M. and

Overton,G.C. (1998) GAIA: framework annotation of genomic
sequence. Genome Res., 8, 234–250.

Boyle,J. (1998) A visual environment for the manipulation and
integration of JAVA beans. Bioinformatics, 14, 739–748.

Brundege,J.M. and Dubay,C. (2003) BioQuery: an object framework
for building queries to biomedical databases. Bioinformatics, 19,
901–902.

Ferlanti,E.S., Ryan,J.F., Makalowska,I. and Baxevanis,A.D. (1999)
WebBLAST 2.0: an integrated solution for organizing and ana-
lyzing sequence data. Bioinformatics, 15, 422–423.

Frishman,D., Albermann,K., Hani,J., Heumann,K., Metanomski,A.,
Zollner,A. and Mewes,H.W. (2001) Functional and structural
genomics using PEDANT. Bioinformatics, 17, 44–57.

Graham,J., Decker,K.S. and Mersic,M. (2003) Decaf—a flexible
multi-agent system architecture. J. Aut. Agents Multi-Agent Syst.,
7, 7–27.

Harris,N.L. (2000) Annotating sequence data using Genotator. Mol.
Biotechnol., 16, 221–232.

Knoblock,C.A, Minton,S., Ambite,J.L., Ashish,N., Muslea,I.,
Philpot,A. and Tejada,S. (2000) The Ariadne approach to web-
based information integration. Int. J. Coop. Inf. Syst., 10,
145–169.

Kolatkar,P.R., Sakharkar,M.K., Tse,C.R., Kiong,B.K., Wong,L.,
Tan,T.W. and Subbiah,S. (1998) Development of software tools
at BioInformatics Centre (BIC) at the National University of
Singapore (NUS). Pac. Symp. Biocomput., 735–746.

Mangalam,H. (2002) The Bio∗ toolkits—a brief overview. Brief.
Bioinform., 3, 296–302.

Moller,S., Lesser,U., Fleischmann,W. and Apweiler,R. (1999) EDIT-
toTrEMBL: a distributed approach to high-quality automated
protein sequence annotation. Bioinformatics, 15, 219–227.

Muslea,I., Minton,S. and Knoblock,C.A. (2001) Hierarchical wrap-
per induction for semistructured information sources. J. Aut.
Agents Multi-Agent Syst., 4, 93–114.

Sakiyama,T., Takami,H., Ogasawara,N., Kuhara,S., Kozuki,T.,
Doga,K., Ohyama,A. and Horikoshi,K. (2000) An automated
system for genome analysis to support microbial whole-
genome shotgun sequencing. Biosci. Biotechnol. Biochem., 64,
670–673.

Stajich,J.E., Block,D., Boulez,K., Brenner,S.E., Chervitz,S.A.,
Dagdigian,C., Fuellen,G., Gilbert,J.G., Korf,I., Lapp,H. et al.
(2002) The Bioperl toolkit: Perl modules for the life sciences.
Genome Res., 12, 1611–1618.

Stein,L.D., Cartinhour,S., Thierry-Mieg,D. and Thierry-Mieg,J.
(1998) JADE: an approach for interconnecting bioinformatics
databases. Gene, 209, 39–43.

Stevens,R., Baker,P., Bechhofer,S., Ng,G., Jacoby,A., Paton,N.W.,
Goble,C.A. and Brass,A. (2000) TAMBIS: transparent access to
multiple bioinformatics information sources. Bioinformatics, 16,
184–185.

Witten,I.H. and Frank,E. (1999) Data Mining: Practical Machine
Learning Tools and Techniques with Java Implementations.
Morgan Kaufmann Publishers, San Francisco, 416 p.

3


