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Abstract
A major function of the pulmonary alveolar type II cell
is the secretion of surfactant, a lipoprotein-like sub-
stance, via exocytosis of secretory vesicles termed
lamellar bodies (LBs). The process of surfactant se-
cretion is remarkable in several aspects, considering
stimulus-delayed fusion activity, poor solubility of vesi-
cle contents, long hemifusion lifetimes, slow fusion
pore expansion and active, actin-driven content re-
lease. Cell stretch as well as P2Y2 receptor stimula-
tion by extracellular ATP are considered the most
potent stimuli for LB exocytosis. For both stimuli, el-
evation of the cytoplasmic Ca2+ concentration [Ca2+]c
is a key step. This review summarizes possible physi-
ological roles and pathways of stretch- or ATP-in-
duced surfactant secretion and discusses molecular
mechanisms controlling the pre-, hemi- and
postfusion phase, in comparison with neuroendocrine
release mechanisms.

Introduction

Surfactant, short for “surface active agent”, is a
lipid-rich, lipoprotein-like substance, secreted into the
lumen of the pulmonary alveolus. It consists of mainly
phospholipids and four specific surfactant proteins (SP)
[1, 2]. Surfactant is a crucial secretory product during
and after birth, its continuous and accurate secretion and
function is indispensable throughout life. The discovery
of surface tension as the major component of retractive
forces in the lung was made as early as 1929 [3], but it
was not until the 1950s and early 1960s that active
surface material from the lung was isolated and charac-
terized [4, 5]. Its deficiency causes infant respiratory dis-
tress syndrome (IRDS) [6]. The lamellar body (LB) within
the type II pneumocyte was identified as the intracellular
vesicular storage site of surfactant [7]. The LB is a large
organelle (about 1-2 µm Ø) that stores surfactant in an
extremely compact, lamellar conformation (recently
reviewed in [8]). Although the number of type II
pneumocytes is about twice the number of type I
pneumocytes, they represent only about 7% of the
alveolar surface [9]. The first convincing evidence in favor
of an exocytotic surfactant release mechanism was
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provided by electron microscopy (EM) studies [10].
The phospholipid composition of LBs isolated from type
II pneumocytes is similar to that of whole lung surfactant
obtained from broncho-alveolar lavage (BAL) [11, 12].
Essentially all alveolar surfactant phospholipids are se-
creted via exocytosis of LBs [13]. In addition to the
phospholipids, all four surfactant proteins (SP-A, SP-B,
SP-C, and SP-D) which account for about 10% by weight,
can be obtained by BAL [8, 14]. Their respective distri-
butions within LBs and BAL are different: The small
hydrophobic SP-B and SP-C are localized within LBs
and co-secreted with all other LB contents. Both pro-
teins are believed to play an important role in squeezing
out non-dipalmitoyl phosphatidylcholine (DPPC) compo-
nents during film formation and compression at the air-
liquid-interface, which results in a highly DPPC-enriched
surface film [8, 15]. In contrast, the large hydrophilic
SP-A and SP-D are secreted largely independently of
LB contents by other routes. Although SP-A has an in-
hibitory effect on LB exocytosis [16], these proteins
appear to be mainly involved in pulmonary host defense.
Surfactant secretion has been extensively reviewed else-
where [17-21]. This review focuses on the regulation of
the exocytotic process of LBs by the two probably most
potent and physiologically important stimuli: alveolar
stretch or extracellular ATP. In particular, we shall
discuss and distinguish between mechanisms before and
after fusion of the LB with the plasma membrane, in
comparison with neuroendocrine release mechanisms.

Ventilation and mechanical effects on al-
veolar epithelial cell shape

It has been known for decades that large lung infla-
tions stimulate surfactant secretion [22-27]. When
the lung is distended during inspiration, at least two dif-
ferent forms of mechanical stress (defined as force per
unit of area) can act on the epithelium of the respiratory
zone:

1. Re-opening of collapsed airways can induce shear
stress on the epithelium and connective tissue. This shear
stress may play an important role for ventilator-induced
lung injury during artificial ventilation of diseased lungs
(reviewed in detail in [28]).

2. Probably even more relevant is the fact that al-
veoli are subject to a tensile strain (= stretch, defined as
a change in length in relation to the initial length).
Under the assumption of the alveolus as a homogenously
inflated balloon, each spot should be stretched in an

equi-biaxial way, i.e. by the same length in all directions.
However, this strain model is likely a gross simplification,
due to the uneven alveolar shape and an alveolar wall
that is probably not homogenous in its elastic properties
[29], resulting in an unisotropic stress distribution [30, 31].
In fact, it is still a matter of debate how much inflation is
actually needed to stretch individual epithelial cells after
unfolding of connective tissue (analogous to the
extension of an accordion). From alveolar surface to vol-
ume relationships, Gil and Weibel concluded that alveolar
surface changes are primarily due to folding and unfold-
ing of septa before plastic tissue changes occur [32].
On the other hand, a morphometric analysis by
Tschumperlin and Margulies revealed significant changes
of the epithelial basement membrane surface area
above 40% of total lung capacity [33], indicating
epithelial cell deformation at physiologically relevant lung
volumes.

Stretch-induced signalling of alveolar type
II cells

Live cell imaging of single cells during static or cy-
clic stretch is a methodological challenge, and the eluci-
dation of stretch-induced Ca2+ signals with high temporal
and special resolution is just beginning to emerge [34].
Alveolar type II cells in culture (mostly isolated from rat
lungs) are very sensitive to tensile strain and respond to a
single stretch - increasing the cell surface area only by
about 10 % - with an elevation of the cytoplasmic Ca2+

concentration [Ca2+]c and stimulated surfactant secre-
tion [35, 36]. Thus, it is likely, that the increase of sur-
factant secretion, which is observed after only a single
inflation of the isolated perfused lung [25], is the result of
a related epithelial cell stretch. Recently however, the
notion of the type II pneumocyte as the alveolar stretch
sensor was challenged by an in situ study, based on
fluorimetric measurements of [Ca2+]c [37], suggesting that
type I pneumocytes are the primary responders to alveo-
lar inflation. Using gap junction blockers, Ashino and
collegues concluded that Ca2+ signals can promote from
type I cells to type II cells, consistent with the notion that
small signalling molecules can permeate gap junctions [38].
A distinct but related mechanism was recently proposed
using mechanically stretched co-cultures of type I and
type II rat pneumocytes: These data suggest that alveo-
lar type I cells act as mechanosensors, releasing ATP in
response to stretch activation, which subsequently
stimulates type II cells in a paracrine way [39].
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All these models, however, converge in an elevation
of [Ca2+]c in the type II pneumocyte, where surfactant is
stored and released by LBs. Ca2+ entry from the
extracellular space and Ca2+ release from intracellular
stores both contribute to this [Ca2+]c elevation [35, 36].
Ca2+ entry from the extracellular space is indeed essen-
tial for surfactant release from stretched type II cells,
which renders mechano-sensitive ion channels as
particularly promising candidates [35]. Nevertheless, the
molecular basis for the stretch-induced Ca2+ entry - in
particular the molecular entities of stretch-induced Ca2+

channels - are still obscure. It should be noted that
depolarizing membrane potentials do not result in Ca2+

entry into type II pneumocytes, because those cells do
not express functional voltage-dependent Ca2+ channels
(CaV) [40]. Thus, the entry of extracellular Ca2+ through
CaV is not possible, which is a fundamental difference to
neuroendocrine secretion, where CaV is an important
mediator in excitation-secretion-coupling. Consequently,
in contrast to neuroendocrine secretion, non-selective
cation channels can only be considered to contribute to
the rise of [Ca2+]c if they are permeable for Ca2+ [41],
since indirect activation via voltage-gated Ca2+ entry is
absent. This difference between epithelial and neuroen-
docrine secretion is illustrated in Fig. 1.

Among Ca2+ permeable channels which might
be involved in stretch-induced Ca2+ entry in the type II
cell, three different functional categories come
into consideration (Fig. 1):

Mechanosensitive channels (MSC), store-operated
channels (SOC), and second messenger-operated

channels (SMOC).
1. Mechanosensitive channels (MSC): Recently,

several Ca2+ permissive members of the transient
receptor potential (TRP) channel family have been
proposed as stretch-sensitive channels; and channels of
the epithelial Na+ channel (ENaC)/degenerin family are
other candidates [42-49]. Tissue specific mRNA expres-
sion analysis (RT-PCR and in situ hybridization) suggest
several potentially mechanosensitive TRP channels of the
V and C subfamilies in the lung as candidates, but func-
tional evidence is yet lacking [50].

2. Store-operated channels (SOC): Since cell
stretch in the type II cell causes Ca2+ release from
thapsigargin-sensitive intracellular stores [35, 36], the
activation of a store-operated Ca2+ entry pathway must
be taken into consideration. Thapsigargin is an inhibitor
of the endoplasmic Ca2+ ATPase and frequently used as
a pharmacological tool to specifically stimulate SOC in
the absence of phosphoinositide breakdown [51]. Although
different conductances and ion selectivities of SOC have
been presented , a highly Ca2+ selective channel termed
CRAC (Ca2+ release activated Ca2+) channel is best
characterized [52]. CRAC channel activation involves
physical migration of endoplasmic reticulum (ER)-resi-
dent STIM proteins to ER–plasma membrane junctions
and subsequent aggregation of the Ca2+ influx channel
Orai (recently reviewed by [53]). To this end, the exist-
ence and potential physiological role of CRAC channels
in type II cells remains to be elucidated.

3. Second messenger-operated channels (SMOC).
The impact of static or cyclic stretch on extracellular matrix

Fig. 1. Stimulus-secretion-coupling in neuroendocrine
cells (left) and epithelial (type II) cells (right). In
neuroendocrine cells, a depolarization of the
membrane potential (e.g. due to K+ channel block or
cation channel activation) triggers the activation of
voltage-dependent Ca2+ channels (CaV), which leads
to Ca2+ entry and subsequent fusion of secretory vesi-
cles (green) with the plasma membrane within millisec-
onds. In type II epithelial cells, the resting membrane
potential is part of the electrochemical force, which
drives Ca2+ ion influx presumably through one or sev-
eral of the following channel types: mechanosensitive
channels (MSC), store-operated channels (SOC) or
second messenger operated channels (SMOC). Vesi-
cle fusion with the plasma membrane is triggered within
seconds to minutes. In both cell types, intracellular
stores also contribute to the increase in cytoplasmic
Ca2+ concentration (not shown).
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(ECM)/integrin signalling, gene expression, cytokine re-
lease and type II cell function/phenotype has been re-
viewed in detail elsewhere [22, 27, 54-57]. Hindering
integrin interaction with the ECM by RGD (Arg-Gly-Asp)
peptides inhibits the stretch-induced Ca2+ signal (G. Fois,
unpublished observation). Recently, it was shown that
variable stretch patterns influence surfactant secretion
[58]. These observations leave space for speculations
that mechanically induced signalling molecules might af-
fect LB exocytosis, however possible links between fo-
cal adhesions and Ca2+ permeable channels are yet un-
clear.

Possible causes of ATP release in the
alveolus

As noted, stretch during a deep lung inflation is con-
sidered the most important if not the only physiologically
relevant stimulus of surfactant secretion [23-25, 27, 59-
64], and stretch-induced cellular ATP release could rep-
resent a key element of pulmonary alveolar
mechanotransduction. An autocrine mechanism of
purinergic (ATP) stimulation was proposed after hypot-
onic swelling in a surrogate cell line of type II pneumocytes
(A549 cells) [65], but it is still unclear if osmotic cell vol-
ume changes occur in alveolar cells in vivo at all. The
intriguing question whether or not ATP is indeed involved
in stretch-induced surfactant secretion in the native lung
remains unclear. In 1983, Gilfillan et al. [66] presented
first evidence for extracellular ATP as a stimulator of
surfactant secretion using a perfused rat lung slice prepa-
ration. Their work was inspired by the discovery of
purinergic nerves [67], which utilize ATP as a
neuro(co)transmitter and innervate several visceral or-
gans including the lung, terminating at sites close to al-
veolar type II cells [68]. Although a clear physiological
role of ATP release from pulmonary purinergic nerves
has never been established, ATP emerged as the most
potent physiological agonist of surfactant secretion, de-
spite its mysterious origin and presence under various
conditions of stimulation. One possible route of ATP re-
lease is through anion channels (reviewed in detail [69]).
However, although various anion channels have been iden-
tified in fetal and adult pneumocytes [70], their involve-
ment in alveolar ATP release has not yet been demon-
strated. It is unlikely that membrane stress alone is the
reason for ATP release from cells under physiological
conditions, because moderate amounts of stretch are in
general tolerated without signs of membrane damage [35,

36, 71, 72]. However, ATP may exit all cells under condi-
tions of cell damage, and this could be the case in hyper-
inflation-induced lung injury. Indeed, Gajic et al. found
signs of reversible cell membrane stress failure in rats
ventilated with high tidal volumes using propidium iodide
as a cell-impermeable marker of cell damage [72]. In
addition, we found ultrastructural evidence for membrane
damage in type II pneumocytes stretched on silastic mem-
branes [71]. In summary, in pathophysiological conditions,
ATP leakage from wounded cells could influence type II
cells and surfactant secretion in an autocrine/paracrine
way.

Interestingly, new findings suggest that purinergic
(ATP) control of surfactant secretion could be stimulated
by bacterial lipopolysaccharides (LPS), presumably via
upregulation of purinergic receptors of the P2Y2 subtype
(see below), resulting in an increased Ca2+ signal and a
pronounced exocytotic response of LBs to treatment with
ATP [73]. Hence, sensitation of the purinergic system
during inflammation might augment physiological stimuli.

Purinergic receptors and their signalling
cascades in type II pneumocytes

Since ATP is a very potent stimulus of surfactant
secretion [74-77], the purinergic signalling pathway has
been intensively investigated and is detailed in several
excellent reviews [1, 17, 18, 21, 78-80]. ATP and UTP
are equally potent to stimulate surfactant secretion [81],
indicating signalling via a P2Y2 receptor (formally termed
P2U receptor), consistent with pharmacological data [74].
In addition, surfactant secretion is also stimulated by ad-
enosine [75], and all its receptor subtypes (A1, A2A, A2B
and A3) have been identified in isolated type II cells [82].

The ATP-induced Ca2+ signal in type II cells con-
sists of at least 2 phases, the “peak” and the “plateau”
phase, analogous to a multitude of other cell types [83].
The “peak” is independent of extracellular Ca2+ and hence
a result of intracellular Ca2+ release from stores, pre-
sumably the endoplasmic reticulum [83]. The “plateau”
depends on extracellular Ca2+ and is most likely a result
of Ca2+ entry through the plasma membrane [83]. The
“plateau” is not as stable as in many other cell types but
frequently superimposed by transient Ca2+ elevations of
yet unknown origin that coincide with single LB fusions
with the plasma membrane [84]. Ion channels which are
responsible for the ATP-induced Ca2+ influx and “pla-
teau” phase in type II pneumocytes are yet unknown,
nor is their mechanism of activation. In analogy to stretch-
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induced Ca2+ entry (see above), SOCs and/or SMOCs
may account for ATP-induced Ca2+ entry (Fig. 1). Since
type II cells are subject to considerable changes of shape
(and possibly cell volume) after stimulation with ATP (un-
published observation), not even MSCs can be excluded
in this context.

Type II cell stimulation with ATP is coupled to both
adenylate cyclase (AC; cAMP/PKA) and phospholipase
C (PLC; IP3/DAG/PKC) signalling [85, 86]. cAMP is
also generated due to stimulation of ß2-adrenergic
receptors with isoproterenol [87], which may be impor-
tant during labor [88]. Accordingly, cell-permeable cAMP
analogues themselves stimulate surfactant secretion [89].
The mechanism by which cAMP elicits this exocytotic
response is not yet known, but its potency is much lower
than that of an elevation of the cytoplasmic Ca2+ concen-
tration or phorbol esthers (Haller and Dietl, unpublished
observation), which also stimulate secretion (see below).

Activation of PLC results in phosphoinositide (PIP2)
breakdown and generation of inositol-1,4,5-trisphosphate
(IP3) and diacylglycerol (DAG) [74]. The PLC isoform
PLC-β3 was identified by RT-PCR and immunoblotting
as the only isoform present in type II cells [82]. DAG
generation in type II cells in response to extracellular ATP
is biphasic: The first peak occurs immediately (about 10
s) after ATP treatment and coincides with IP3 formation
as a result of PLC activation [74]. The second DAG
peak follows with a delay of 10 - 15 min and coincides
with formation of phosphatidic acid (PA) or - in the pres-
ence of ethanol - phosphatidylethanol, indicating the
coactivation of a phosphatidylcholine-specific phospholi-
pase D (PLD) [74, 81, 90]. mRNA for both PLD
isoforms, PLD1 and PLD2, have been identified by RT-
PCR in type II cells [80].

ATP-induced DAG activates protein kinase C
(PKC), and again, several PKC-isoforms have been iden-
tified by RT-PCR in type II cells [82, 91, 92]. DAG, re-
leased from a caged compound by UV-photolysis, or cell-
permeable phorbol esthers (like TPA, OAG) that directly
activate PKC, are themselves strong stimulators of sur-
factant secretion [83, 93], further supporting that PKC is
involved in downstream stimulation of surfactant secre-
tion via extracellular ATP. In fact, phorbol esthers
degranulate type II cells quite effectively without a con-
comitant elevation of the cytoplasmic Ca2+ concentra-
tion, but intracellular Ca2+ chelation abolishes this effect
[83]. It was therefore proposed that PKC sensitizes the
exocytotic machinery for the action of Ca2+ [83, 94], pos-
sibly by phosphorylation of SNAP-25 as demonstrated in
an insulin-secreting cell line [95].

In this context it is reasonable to assume that IP3
formation accounts for ATP-induced Ca2+ mobilization
from intracellular stores [96, 97]. However, the effects
of IP3 were never directly investigated in type II
pneumocytes. It is not clear if Ca2+ stores mobilized by
ATP are different from or overlap with Ca2+ stores mobi-
lized by stretch.

The process of surfactant exocytosis

The described orchestrated activity of bioactive com-
pounds generated by stretch or purinergic stimulation
makes a single mechanism or molecular target of
exocytosis quite unlikely. Nevertheless, the elevation of
[Ca2+]c appears to be a central common component by
which LB exocytosis from alveolar type II pneumocytes
is triggered. This assumption is based on the following
findings:

1. A variety of Ca2+-dependent agonists and Ca2+

ionophores stimulates surfactant secretion, most specifi-
cally flash photolysis of caged Ca2+ [83, 98-100].

2. Intracellular Ca2+ chelation blocks LB exocytosis
stimulated by different agonists [83, 100].

3. There is an almost linear correlation between the
integrated [Ca2+]c over time and the amount of surfactant
secretion after stimulation with ATP [83].

Since exocytosis is an extremely conserved mecha-
nism in evolution, the predominant role of Ca2+ in this cell
type is not surprising. However, in contrast to synaptic or
neuroendocrine secretion, where secretory vesicle fusion
occurs within < one millisecond up to > hundred millisec-
onds following the rise of [Ca2+]c [101, 102], the kinetics
and time scale of surfactant release are delayed by sev-
eral orders of magnitude: The delay between the ATP-
induced Ca2+ signal and LB fusion with the plasma mem-
brane is between seconds and several minutes, and the
delay between LB fusion and surfactant release is of the
same order of magnitude, occasionally even longer (hours)
[84, 96, 99]. The reasons for this discrepancy between
type II cell and neuroendocrine secretion are probably
manifold (see also Fig. 1), but mostly related to structural
features: First, there is neither morphological nor func-
tional evidence in favour of so-called “docked” vesicles
in type II cells. It rather appears that a few LBs are
bulging out the plasma membrane, resulting in tongue-
like folds of the plasma membrane after fusion [10]. Sec-
ond, as noted above, epithelial cells lack voltage-gated
Ca2+ channels and thus have no “active zones”, as present
in presynaptic terminals.

Stretch and ATP - induced Surfactant Exocytosis Cell Physiol Biochem 2010;25:01-12
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As summarised in Fig. 2, the exocytotic process of
surfactant could be divided into three distinct steps, which
are differently controlled. Each one can be rate-limiting
for the secretion of surfactant:

1. The prefusion phase: This denotes all events that
make the LB fusion-competent, including trafficking and
docking of the LB to the plasma membrane, creating a
morphological and biochemical contiguity that enables li-
pid merger and fusion pore formation.

2. The hemifusion phase and fusion: The exocytotic
hemifusion state (“fusion-through-hemifusion” theory) is
a postulate (reviewed in detail by [103]) which denotes
the merger of the outer leaflet of the limiting vesicle mem-
brane with the inner leaflet of the plasma membrane.
Experimental evidence for hemifusion is scarce and indi-
rect [104, 105], however our own observations by darkfield
microscopy provide evidence in favour of hemifusion in-
termediates in the type II cell, with a duration from not
measurable up to about 9s [106].

Fusion pore formation takes place when the vesicle
membrane and plasma membrane become a lipid bilayer
continuum, and thus the vesicle lumen and the extracel-
lular space an aqueous continuum. These steps have been
intensively investigated in biological and artificial systems
and are hallmarks of exocytosis [107].

3. The postfusion phase: This denotes fusion pore
expansion and release of LB contents. In the type II cell,
fusion of a LB with the plasma membrane (synonymous
with fusion pore formation) can precede surfactant re-

lease (secretion) for long periods (up to hours under cell
culture conditions, see also below).

Control of the prefusion phase

LB fusion with the plasma membrane is a stereotypic
response to an elevation of [Ca2+]c, triggered eg. by UV
flash photolysis of caged Ca2+ [99], the Ca2+ ionophore
ionomycin [100, 108-110], cell stretch [35, 36], or purinergic
stimulation (as discussed above). The threshold [Ca2+]c
for LB fusion is about 320 nM and thus far lower than in
cells with small vesicles (up to hundreds of µM) [99]. In
contrast to far more intensively investigated neurotrans-
mitter release [107], the molecular mechanisms by which
Ca2+ elicits LB fusion are still less clear. SNARE (solu-
ble N-ethylmaleimide-sensitive-factor attachment
receptor) proteins and the presumed Ca2+ sensor
synaptotagmin are major candidates for LB fusion , and
synaptotagmin II knockout mice have indeed impaired
stimulated mucin secretion from airway epithelial cells,
which shares many features with surfactant secretion
[112, 113]. Yet, no information is available on surfactant
secretion in these mice.

Another discussed Ca2+ sensor that might be respon-
sible for LB fusion is synexin (annexin VII), a GTP
hydrolyzing and phospholipid binding protein, displaying
fusogenic activity in various cell types [114]. Several stud-
ies suggest involvement of synexin in Ca2+-dependent LB

Fig. 2. Top: Schematic illustration of the three
phases of surfactant secretion from type II
pneumocytes, indicated by different back-
ground colors. Prefusion, hemifusion and
postfusion. The hemifusion and postfusion
phases are separated by the instance of fusion
pore formation (fusion). Bottom: Original trac-
ing of the darkfield light intensity measured
from a single LB within a living type II cell.
Arrows indicate that phase 1 of the darkfield
scattered light intensity decrease (SLID) cor-
responds to the presumed hemifusion phase,
and phase 2 to the postfusion phase. Modified
from Ref [106]. For details see text.

Dietl/Liss/Felder/Miklavc/WirtzCell Physiol Biochem 2010;25:01-12
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fusion with the plasma membrane [115-119]. This is
consistent with the finding that the non-hydrolyzeable GTP
analogue GTPγS stimulates LB fusion with the plasma
membrane without stimulating LB-LB fusion [120].

Another way by which Ca2+ could mediate
LB fusion with the plasma membrane is the disassembly
of cortical actin, which is located beneath the plasma
membrane. The idea that exocytotic fusion is limited
by the cortical F-actin network, which represents a physi-
cal barrier, preventing vesicle contact with the plasma
membrane, was proposed as a general principle for
exocytosis in non-excitable cells [121]. The notion that
exocytotic fusion is enabled whenever the fusion hin-
drance by cortical actin is removed gains support by
recent fusion studies on proteoliposomes and synaptic vesi-
cles, showing that the SNARE complex syntaxin 1,
SNAP-25, and synaptobrevin can act as a constitutively
active fusion machine, independently of synaptotagmin
and Ca2+ [122]. Evidence that disassembly of the actin
network does in fact enhance exocytotic LB fusion comes
from a study where basal surfactant secretion was
augmented after decreasing cellular F-actin levels with
botulinum C2 toxin [123]. Beside being a fusion clamp
that inhibits fusion, actin may promote exocytosis by
various mechanisms at a pre- or postfusion stage
(see below). Possible roles for actin in the exocytotic
process have recently been  summarized in an excellent
review by Malacombe et al. [124]. A possible Ca2+ sen-
sor for this task is scinderin, a Ca2+-dependent actin fila-
ment-severing protein,  which binds phosphatidylserine,
PIP2 and actin [124].  A role for scinderin was demon-
strated in mucous  cells [125], but information in type II
cells is yet lacking.

Control of the hemifusion phase

As a general rule, hemifusion is favored by lipids
that support negative curvature of the membrane
leaflets (facilitating stalk formation), such as fatty acids,
whereas fusion pore formation and expansion is favored
by positive curvature lipids, such as lysophospholipids
[126]. It was proposed that vesicles transiently hemifused
with the presynaptic membrane enable the extremely fast
kinetics of neurotransmitter release (< 100 µs after the
rise of [Ca2+]c) [127], and this is consistent with EM and
FRAP investigations revealing docked vesicles in a
hemifused state [104, 105]. Owing to the long delay
(several seconds) between the elevation of [Ca2+]c and
fusion pore formation in LBs [99], it is very unlikely

that LBs reside in a “docked”, hemifused state.
Nevertheless, using a newly developed hemifusion assay
based on darkfield scattered light intensity decrease
(Fig. 2), we have recently shown that hemifusion inter-
mediates in type II pneumocytes can last for up to about
9 seconds [106]. It is yet unclear if LB hemifusion inter-
mediates are always destined to proceed to fusion, or
if they can be transient and revert to a prefused state.
In any case they represent a significant stage of
surfactant exocytosis that is potentially subject to
regulation by SNARE proteins or lipid metabolites.

Among the discussed bioactive lipid metabolites
generated by purinergic stimulation that might promote
LB fusion, PA is a particularly promising candidate
because it induces negative plasma membrane curvature
due to its small polar head group in combination with
two fatty-acyl side chains [128], possibly promoting
lipid merger with the vesicle membrane and hemi-fusion
[129]. Although direct evidence for this mechanism has
never been presented in type II cells, it is supported by
the observation that some type II cells exhibit a biphasic
fusion activity (immediately after ATP treatment and
> 10 min later), where the early response coincides with
Ca2+ mobilization, whereas the delayed one occurs with
a delay reported for PA generation [84].

Mechanisms to control surfactant release
in the postfusion phase

Our knowledge about the release mechanism of
surfactant from native type II cells in the lung still mainly
comes from electron microscopy (EM) investigations,
where tubular myelin, a highly ordered array of
membranes found by transmission EM in pulmonary
alveoli, was postulated as the extracellular conversion
product of released LBs [130, 131]. Some images
display fusion pores of various diameters (up to > 1 µm),
through which surfactant appears to be squeezed
(example in Ref. [80]). However, a dynamic resolution
of this process within the intact lung is still beyond
the limits of current imaging techniques.

Nevertheless, advanced microscopy techniques
do allow the visualization of the entire exocytotic process
– including fusion pore formation, fusion pore expansion
and surfactant release in either primary cultured type II
pneumocytes [84, 96, 132, 133] or in situ (isolated
perfused lung), however yet with limited resolution
[37]. Using fluorescence microscopy in isolated type II
cells, tubular myelin cannot be clearly identified, and it
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8

appears that the hydrophobic, poorly soluble complex of
surfactant must be actively squeezed through a
reluctantly opening fusion pore. Several experimental data
are in line with this notion:

1. Fusion pores in type II cells have the tendency
to expand slowly [84]. The reason for this slow
expansion is not yet clear but may well be related to
cytoskeletal elements. An elevation of [Ca2+]c acceler-
ates pore expansion [84].

2. Fusion pores in type II cells can act as
mechanical barriers for release. This was concluded
from experiments using laser tweezers as force genera-
tors [134].

3. An actin coat must be formed around the fused
LB before surfactant can be squeezed out, probably
by contraction of the actin coat [133]. These observa-
tions using GFP-actin-transfected pneumocytes were
consistent with earlier observations that actin re-
organization accompanies LB exocytosis [135, 136].

Prior to LB contraction by the actin coat, the
fused LB transiently swells, presumably by fluid uptake
through the fusion pore [106]. The physiological signifi-
cance of postfusion LB swelling is yet unknown, although
this may represent a mechanical load to the limiting LB
membrane and surrounding structures. Postfusion vesi-
cle swelling was observed in numerous secretory cell
types [137]. Swelling of the vesicle and hydration of vesi-
cle matrix might be important for fusion pore stabilization
and expansion in mast cells [138].

Intracellular Ca2+ immobilization with the chelator
BAPTA-AM, as well as the PLD inhibitor C2-ceramide
hindered ATP-induced actin coat formation in type II
cells [133]. In the absence of an actin coat, however,
cells were unable to secrete surfactant, and fused
LBs remained in this position (“wait” position) as filled
bags connected with the plasma membrane [133].
This suggests that Ca2+ and PLD activation (in response
to ATP) may control the postfusion (release) phase of
surfactant exocytosis.

Is actin-powered release the reason for fast
surfactant secretion in vivo?

There is ample evidence that surfactant secretion
by pharmacological stimulation or stretch in vivo is fast
and occurs within min (reviewed in detail in [21, 139]).
Isolated type II pneumocytes in vitro, however, exhibit a

considerable variability in the time course of
surfactant release from single LBs, ranging from
minutes to hours [84]. Recent experiments using
GFP-actin-transfected pneumocytes suggest that a slow
time course of release relates with the inability to pro-
duce an actin coat around fused LBs [133]. Hence, it
may be that the fast surfactant secretion observed in
vivo is due to a more effective actin coating as com-
pared to isolated cells.

Outlook

The slow process of stimulated surfactant exocytosis
renders the type II pneumocyte an ideal cell model to
investigate time-resolved actions of physiologically
relevant modulators of exocytosis.

Currently, one of the most intriguing questions is how
actin coat formation is limited to the fused LB without
affecting all LBs in a cell stimulated with ATP. It appears
that there are spacially and/or temporarily confined
processes that cannot spread throughout the cell. Yu and
Bement recently disclosed a signalling pathway in oocytes
involving a PLD-dependent DAG incorporation into the
granule membrane after fusion, triggering Cdc42/N-
WASP-induced actin assembly [140]. Although this still
has to be investigated in type II cells, PLD would be
expected to primarily control the post-fusion phase,
because neither alcohol, which inhibits PLD-induced
DAG generation, nor the PLD inhibitor C2 ceramide,
blocked LB fusion activity [83, 133]. As outlined above,
a potential way by which lipid metabolites might control
surfactant exocytosis is the promotion of hemifusion as
well as the expansion of the fusion pore.

Inducible, type II pneumocyte-specific knock-
out animals of the P2Y2 receptor would probably be of
great help to distinguish stretch- from ATP-dependent
signalling pathways and to clarify potential autocrine
(ATP release) mechanisms involved in stretch-induced
surfactant secretion.
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