SK-Ca1 Small Conductance Calcium Activated Potassium Channel

Stephan Grissmer Universitat Ulm, Ulm, Germany

© 2007 Elsevier Inc. All rights reserved.

Introduction

The SK1 small conductance calcium-activated potassium channel belongs to the family of **potassium channels** that consist of one pore region (1P) with 6 putative transmembrane segments (6T) per alpha subunit (1P6T). It is a potassium selective ion channel that is opened by an increase in $[Ca^{++}]$. The opening of the channel is independent from the applied voltage and the single channel conductance is of small size compared to calcium-activated potassium channels with **intermediate** and large single channel conductances Hille (2001). This channel type is usually thought to underlie the slow after **hyperpolarization** seen in neuronal cells. In addition to the different single channel conductance, these channels do also have a specific pharmacology, i.e., they are blocked by **apamin**, a peptide toxin isolated from bee venom as well as blocked by Scyllatoxin (Leiurustoxin I), a peptide toxin isolated from scorpion venom. In addition, the channels are also blocked selectively by several bis-quinolinium cyclophanes (UCL1530, **UCL 1684**, UCL 1848, UCL 2079). The channels can be activated by 1-EBIO (1-ethyl-benzimidazolinone), similar to the calcium-activated potassium channels with intermediate conductance.

Nomenclature	
Superfamily	1P6T potassium channels
Family	Voltage independent Ca ⁺⁺ -activated potassium channels.
Туре	SK1
Subtypes	
Classification Numbers	KCNN1
Alternate or Previous	SK1,SKCa1
Comments	

Target Structure

Protein Information

SK1 is a pore forming subunit. The functional channel consists of four identical subunits (homotetramer), each with one pore region (1P) and 6 putative transmembrane segments (6T). The Ca^{++} sensor seems to be calmodulin bound to each subunit at a region between the S6 segment and the C-terminal end of the channel.

	Number or Name	Comments
Subunit Name Organism Name Gene Accession #	hKCNN1 human NM_002248	U69883 Kohler et al (1996), AF1311938 Litt et al (1999), AF131939 Litt et al (1999) isoform generated by skipping of exon 9 are lacking the ability to bind calmodulin Zhang et al (2001).
SwissProt Accession # # of Amino Acid Residues Protein Sequence Motifs	Q92952 561	hKCNN1 contains 1 consensus site for N-glycosylation, 1 consensus site for cAMP- and cGMP-dependent protein kinase phosphorylation, 7 consensus sites for Protein kinase C phosphorylation, 5 consensus sites for Casein kinase II phosphorylation, 2 leucine zipper motives and 2 prolin rich regione
Chromosomal Localization	19p13.1	Litt et al (1999), Ganshani et al (2000) NT_011288 genomic working draft sequence chromosome 19, AH007779 all Exons, Exon 1 AF131938, Exon 2 AF131939, Exon 3 AF131940, Exon 4 AF131941, Exon 5 AF131942, Exon 6 AF131943, Exon 7 AF131944, Exon 8 AF131945, Exon 9 AF131946, Exon 10 AF131947, Exon 11 AF131948

Protein Sequence Information

	Number or Name	Comments
Subunit Name	rKCNN1	
Organism Name	rat	
Gene Accession #	NM_01931	Kohler et al (1996) U69885
SwissProt Accession #	P70606	
# of Amino Acid Residues	537	
Protein Sequence Motifs		rKCNN1 contains contains 1 consensus site for N-glycosylation, 1 consensus site for cAMP- and cGMP-dependent protein kinase phosphorylation, 8 consensus sites for Protein kinase C phosphorylation, 6 consensus sites for Casein kinase II phosphorylation, 5 consensus sites for N-myristoylation and 1 leucine zipper motive.
Chromosomal Localization		

	Number or Name	Comments
Subunit Name	mKCNN1	
Organism Name	mouse	
Gene Accession #	AF116525	Transcript starts with exon 3.1 Shmukler et al (2001), NM_032397 NCBI automated annotation project. isoforms I through VIII are generated by alternative splicing of exons 8, 8a, and 9.

SwissProt Accession # # of Amino Acid Residues	Q9EQR3 580	
Protein Sequence Motifs		mKCNN1 contains 1 consensus site for Nglycosylation, 1 consensus site for cAMP and cGMPdeependent protein kinase phosphorylation, 8 consensus sites for protein kinaseC phosphorylation, 5 consensus sites for caseinkinase II physphorylation, 5 consensus sites for Nmyristoylation, 1 glutamate rich region and 2 laucine zipper motives
Chromosomal Localization	8	NW_000344 Mus musculus WGS supercontig Mm8_WIFeb01_189, AF297870 exon 11 Shmukler et al (2001), AF299358 Exon A Shmukler et al (2001), AF297869 exons 3 through 10 Shmukler et al (2001), AH010601 exons 3 through 11 Shmukler et al (2001).

	Number or Name	Comments
Subunit Name Organism Name	mKCNN1 isoform mouse	
Gene Accession #	AF303463	Shmukler et al (2001) containes exon A, AF303462 containes exons C/B1 and AF303461 containes exons C/B1/B2. All transcripts joined exon 3.2 and have the same ORF starting at Met 44.
SwissProt Accession #	Q9EQR3	-
# of Amino Acid Residues	536	
Protein Sequence Motifs		mKCNN1 isoform contains 1 consensus site for Nglycosylation, 1 consensus site for cyclic AMP and cyclic GMPdeependent protein kinase phosphorylation, 7 consensus sites for protein kinaseC phosphorylation, 5 consensus sites for caseinkinase II physphorylation, 5 consensus sites for Nmyristoylation, 1 glutamate rich region and 2 leucine zipper motives.
Chromosomal Localization	8	NW_000344 Mus musculus WGS supercontig Mm8_WIFeb01_189, AF297870 exon 11 Shmukler et al (2001), AF299358 Exon A Shmukler et al (2001), AF297869 exons 3 through 10 Shmukler et al (2001), AH010601 exons 3 through 11 Shmukler et al (2001) supercontig Mm8_WIFeb01_189, AF297870 exon 11 Shmukler et al (2001), AF299358 Exon A Shmukler et al (2001), AF297869 exons 3 through 10 Shmukler et al (2001), AH010601 exons 3 through 11 Shmukler et al (2001).

Localization

Protein

4

Neurons Hille (2001)

mRNA

Hippocampus (CA3), dentate gyrus, subiculum, anterior olfactory nucleus, olfactory tubercle, cerebellum, cortex Stocker et al (2000).

Ligands, Substrates, Ions

Ligands

Ca⁺⁺, calmodulin

Substrates

Name	Km value	Km units	Reference	Remarks
Ca++ Calmodulin	~ 300	nM	Kohler et al (1996) Xia et al (1998)	

lons

	Value	Units	Reference	Remarks
Potassium Conductance	4-20	pS	Hille (2001)	The higher conductance is measured with elevated external potassium
Voltage Dependence	none			

Effectors, Products

Establishing a link between Ca⁺⁺-based **second messenger** systems and the **electrical activity** of cells.

Endogenous Regulation

Protein Partners

calmodulin

Pharmacological Regulation

Selective peptide blockers for SK channels are thought to be **apamin** and scyllatoxin Hille (2001). Highly selective non-peptide blockers are different bis-quinolinium cyclophanes Stroebaek et al (2000), Shah et al (2000). Non-selective, more unspecific blockers are **d-tubocurarine**, **verapamil**, **diltiazem**, and tetraethylammonium. Openers are 1-ethylbenzimidazolinone (1-EBIO, Pedarzani et al (2001)); EBIO activates also IK channels Devor et al (1996) but not BK channels.

Agonist / Activator / Substrate

	Value	Units	Organism	Organ Tissue	Cell Line/Type	Reference	Comments
Age	nt: 1-eth	iyl-benz	zimidazolinor	ne (1-EBIO)			
Ki:	~ 650	μМ	human KCNN1		Xenopus oocytes	Pedarzani et al (2001)	1-EBIO activates directly the channel and requires the presence of intracellular Ca ⁺⁺ method: electrophysiology (whole cell) Ki value estim ated from a comparison with rKCNN2.

Antagonist / Inhibitor

	Value	Units	Organism	Organ Tissue	Cell Line/ Type	Reference	Comments
Agent: IC50:	UCL 16 0.8	84 nM	human KCNN1		HEK 293	Stroebaek et al (2000)	Method used: electrophysiology (whole cell).

Antagonist / Inhibitor

	Value	Units	Organism	Organ Tissue	Cell Line/ Type	Reference	Comments
Agent:	UCL 184	48					
IC50:	1	nM	human KCNN1	Ν	HEK 293; COS-7	Shah et al (2000)	Method used: electrophysiology (whole cell)

Antagonist / Inhibitor

	Value	Units	Organism	Organ Tissue	Cell Line/ Type	Reference	Comments
Agent: IC50:	apamin 3; 8	nM	human KCNN1		HEK 293; COS-7	Stroebaek et al (2000)	Method used: electrophysiology (whole cell)

Antagonist / Inhibitor

	Value	Units	Organism	Organ Tissue	Cell Line/ Type	Reference	Comments
Agent: IC50:	apamin >100	nM	human KCNN1		Xenopus oocytes	Kohler et al (1996)	method used: electrophysiology (whole cell)

Antagonist / Inhibitor

	Value	Units	Organism	Organ Tissue	Cell Line/ Type	Reference	Comments
Agent: IC50:	Leiurutoxin 80; 325	/ scyllat nM	toxin human KCNN1		HEK-293; COS-7	Stroebaek et al (2000); Shakkotai et al (2001)	method used: electrophysiology (whole cell)

Antagonist / Inhibitor

	Value	Units	Organism	Organ Tissue	Cell Line/ Type	Reference	Comments
Agent: IC50:	Lei-Dab 6	7 μΜ	human KCNN1		COS-7	Shakkotai et al (2001)	method used: electrophysiology (whole cell)

Antagonist / Inhibitor

	Value	Units	Organism	Organ Tissue	Cell Line/ Type	Reference	Comments
Agent: IC50:	dequalir 400	nium nM	human KCNN1		HEK-293; COS-7	Stroebaek et al (2000); Shah et al (2000)	method used: electrophysiology (whole cell)

6

Antagonist / Inhibitor

	Value	Units	Organism	Organ Tissue	Cell Line/ Type	Reference	Comments
Agent: IC50:	tubocura 23	arine μM	human KCNN1		HEK-293; COS-7	Stroebaek et al (2000); Shah et al (2000)	method used: electrophysiology (whole cell)

Journal Citations

- Devor, D.C., Singh, A.K., Frizell, R.A., Bridges, R.J., 1996. Modulation of Cl⁻ secretion by benzimidazolones. I. Direct activation of a Ca(2+)-dependent K⁺ channel. *Am. J. Physiol.*, 271, L775–L784.
- Ganshani, S., Wulff, H., Miller, M.J., Rohm, H., Neben, A., Gutman, G.A., Cahalan, M.D., Chandy, K.G., 2000. Up-regulation of the IKCa1 potassium channel during T-cell activation. *J. Biol. Chem.*, 275, 37137–37149.
- Kohler, M., Hirschberg, B., Bond, C.T., Kinzie, J.M., Marrion, N.V., Maylie, J., Adelman, J.P., 1996. Smallconductance, calcium-activated potassium channels from mammalian brain. Science, 273, 1709–1714.
- Litt, M., 1999. Gene structure and chromosomal mapping of the human small-conductance calciumactivated potassium channel SK1 gene (KCNN1). *Cytogenet. Cell Genet.*, 86, 70–73.
- Pedarzani, P., Mosbacher, J., Rivard, A., Cingolani, L.A., Oliver, D., Stocker, M., Adelman, J.P., Fakler, B., 2001. Control of electrical activity in central neurons by modulating the gating of small conductance Ca2 +-activated K+ channels. J. Biol. Chem., 276, 9762–9769.
- Shah, M., Haylett, D.G., et al. 2000. The pharmacology of hSK1 Ca2+-activated K+ channels expressed in mammalian cell lines. Br J Pharmacol, 129, 627–630.
- Shakkotai, V.G., Regaya, I., Wulff, H., Fajloun, Z., Tomita, H., Fathallah, M., Cahalan, M.D., Gargus, J.J., Sabatier, J.M., Chandy, K.G., 2001. Design and characterization of a highly selective peptide inhibitor of the small conductance calcium-activated K+ channel, SkCa2. J. Biol. Chem., 276, 43145–43151.
- Stocker, M., Pedarzani, P., et al. 2000. Differential distribution of three Ca2+-activated K+ channel subunits, SK1, SK2, and SK3, in the adult rat central nerveous system. *Mol. Cell Neurosci.*, 15, 476–493.
- Shmukler, B.E., Bond, C.T., Wilhelm, S., Bruening-Wright, A., Maylie, J., Adelman, J.P., Alper, S.L., 2001. Structure and complex transcription pattern of the mouse SK1 KCa channel gene, KCNN1. *Biochem. Biophys. Acta.*, 1518, 36–46.
- Stroebaek, D., Jorgensen, T.D., Christophersen, P., Ahring, P.K., Olesen, S.P., 2000. Pharmacological characterization of small-conductance Ca(2+)-activated K(+) channels stably expressed in HEK 293 cells. *Br. J. Pharmacol.*, 129, 991–999.
- Xia, X.M., Fakler, B., Rivard, A., Wayman, G., Johnson-Pais, T., Keen, J.E., Ishii, T., Hirschberg, B., Bond, C. T., Lutsenko, S., Maylie, J., Adelman, J.P., 1998. Mechanism of calcium gating in small conductance calcium-activated potassium channels. *Nature*, 395, 503–507.
- Zhang, B.M., Kohli, V., Adachi, R., Lopez, J.A., Udden, M.M., Sullivan, R., 2001. Calmodulin binding to the C-terminus of the small-conductance Ca2+-activated K⁺ channel hSK1 is affected by alternative splicing. *Biochemistry*, 40(10), 3189–3195.

Book Citations

Hille, B., 2001. Ion channels of excitable membranes, Edition 3. Sinauer Associates, Sunderland, MA.