IK-Ca Intermediate Conductance Calcium Activated Potassium Channel

Stephan Grissmer Universitat Ulm, Ulm, Germany

© 2007 Elsevier Inc. All rights reserved.

Introduction

The IK calcium-activated potassium channel belongs to the family of **potassium channels** that consist of one pore region (1P) with six putative transmembrane segments (6T) per alpha subunit (1P6T). It is a potassium-selective ion channel that is opened by an increase in $[Ca^{++}]_i$. The opening of the channel is independent from the applied voltage, and the single channel conductance is of intermediate size compared to calcium-activated potassium channels with large and **small** single-channel conductances Hille (2001). This channel type was first extensively investigated and observed in erythrocytes by Gardos Gardos (1958) and is still referred to as the "Gardos channel." In addition to the different single-channel conductance, it has also a specific pharmacology, i.e., is blocked by **charybdotoxin** (ChTX), a peptide toxin isolated from scorpion venom. In addition, the channel is also blocked by **clotrimazole** and can be activated by 1-EBIO (1-ethyl-benzimidazolinone).

Nomenclature	
Superfamily	1P6T potassium channels
Family	Voltage independent Ca++-activated
	potassium channels
Туре	IK1
Subtypes	
Classification Numbers	KCNN4
Alternate or Previous	IK1, IKCa1, KCa4, SK4, Gardoschannel (native channel),
Names	
Comments	

Target Structure

Protein Information

IK1 is a pore-forming subunit. The functional channel consists of four identical subunits (homotetramer), each with one pore region (1P) and six putative transmembrane segments (6T). The Ca^{++} sensor seems to be calmodulin bound to each subunit at a region between the S6 segment and the C-terminal end of the channel.

Protein Sequence Information

	Number or Name	Comments
Subunit Name	HIK1	
Organism Name	Human	
Gene Accession #	AF022150	Ishii et al (1997), Joiner et al (1997), Logsdon et al (1997)

SwissProt Accession # # of Amino Acid Residues	O15554 427	
Protein Sequence Motifs		hIK1 contains three consensus sites for N-glycosilation, one consensus site for phosphorylation by PKA, four consensus sites for phosphorylation by PKC, two consensus sites for phosphorylation by Casein kinase II, nine consensus sites for N- myristoylation, and three leucine zipper patterns
Chromosomal Localization	19q13.13-19q13.2	

	Number or Name	Comments
Subunit Name Organism Name Gene Accession # SwissProt Accession # # of Amino Acid Residues	mIK1 Mouse AF042487 O89109 425	Vandorpe et al. Vandorpe et al (1998)
Protein Sequence Motifs		mIK1 contains two consensus sites for N-glycosilation, one consensus site for phosphorylation by PKA, five consensus sites for phosphorylation by PKC, two consensus sites for phosphorylation by Casein kinase II, one consensus sites for phosphorylation by tyrosine kinase, seven consensus sites for N-myristoylation, and two leucine zipper patterns
Chromosomal Localization		

	Number or Name	Comments
Subunit Name	rlK1	
Organism Name	Rat	
Gene Accession #	AJ133438	Warth et al. Warth et al (1999)
SwissProt Accession #	Q9QYW1	
# of Amino Acid Residues	425	
Protein Sequence Motifs		rlK1 contains two consensus sites for N-glycosilation, one consensus site for phosphorylation by PKA, four consensus sites for phosphorylation by PKC, two consensus sites for phosphorylation by Casein kinase II, one consensus site for phosphorylation by tyrosine kinase, six consensus sites for N- myristoylation, and two leucine zipper patterns
Chromosomal Localization		

Localization

Protein

Erythrocytes Gardos (1958), activated T lymphocytes Grissmer et al (1993), Logsdon et al (1997), some endothelial and epithelial cells Jensen et al (1998)

mRNA

Colon (+), **prostate** (+), stomach (++), fetal **liver** (+), salivary gland (++++), **mammary gland** (+), **kidney** (++), liver (+), small intestine (+), spleen (+), thymus (++), lymph node (+), bone marrow (++), **lung** (+++), trachea (+++), placenta (+++); not found in **brain**; all data from Jensen et al. Jensen et al (1998)

Ligands, Substrates, Ions

Ligands

Ca⁺⁺, calmodulin

Substrates

Name	Km value	Km units	Reference	Remarks
Ca++ Calmodulin	~300	nM	Grissmer et al (1993) Fanger et al (1999)	

lons

	Value	Units	Reference	Remarks
Potassium				
Conductance	20-80	pS	Hille (2001)	The higher conductance is measured with elevated external potassium concentrations
Voltage Dependence	None			F

Effectors, Products

Establishing a link between Ca⁺⁺-based **second messenger** systems and the **membrane potential** of cells.

Endogenous Regulation

Developmental Expression

Low level of functional expression in resting T lymphocytes and upregulation of functional channels in response to antigens and mitogens Grissmer et al (1993) 4

Protein Partners

Calmodulin

Pharmacological Regulation

Selective peptide blocker is Maurotoxin Castle et al (2001), and nonspecific peptide blocker is charybdotoxin Hille (2001). Highly selective nonpeptide blockers are clotrimazole Alvarez et al (1992) and TRAM-34 Wulff et al (2000), a clotrimazole derivative. Nonselective, more unspecific blockers are nitrendipine, nifedipine, verapamil, diltiazem, cetiedil, micanozole, ecanozole, and tetraethylammonium. Openers are 1-ethylbenzimidazolinone (1-EBIO) Devor et al (1996) and 5,6 dichloro-1-ethyl-benzimidazolinone (DC-EBIO); EBIO activates also SK channels but not BK channels. Other less potent openers are chlorzoxazone and zoxazoloamine Singh et al (2000)

Agonist / Activator / Substrate

	Value	Units	Organism	Organ Tissue	Cell Line/ Type	Reference	Comments
Age	ent: 1-EE	310					
Ki:	74	μΜ	Human KCNN4		HEK-293	Jensen et al (1998)	1-EBIO activates directly the channel and requires the presence of intracellular Ca ⁺⁺ method: electrophysiology (whole cell)

Agonist / Activator / Substrate

	Value	Units	Organism	Organ Tissue	Cell Line/ Type	Reference	Comments
Age Ki:	nt: 1-EBI 210	C μM	Human	Colon carninoma; endogeneously expressed	T84	Singh et al (2001)	method used: short-circuit current

Agonist / Activator / Substrate

uman KCNN4	HEK-293	Singh et al (2001)	methods used: Rb uptake and single-channel recording
KC	CNN4	NN4	CNN4 (2001)

	Value	Units	Organism	Organ Tissue	Cell Line/Type	Reference	Comments
0	ent: DC-E 19	EBIO μM	Human	Colon carninoma; endogeneously expressed	T84	Singh et al (2001)	method used: short-circuit current

Agonist / Activator / Substrate

Agonist / Activator / Substrate

	Value	Units	Organism	Organ Tissue	Cell Line/ Type	Reference	Comments
Age Ki:	ent: DC-E 19	BIO μM	Human KCNN4		HEK-293	Singh et al (2001)	methods used: Rb uptake and single- channel recording

Agonist / Activator / Substrate

Value	Units	Organism	Organ Tissue	Cell Line/ Type	Reference	Comments
Agent: Chlo Ki:	rzoxazo	ne Human	Colon carninoma; endogeneously expressed	T84	Singh et al (2000)	method used: short- circuit current, Rb uptake, single- channel recording

Agonist / Activator / Substrate

Value	Units	Organism	Organ Tissue	Cell Line/ Type	Reference	Comments
Agent: Zoxa Ki:	izoloam	ine Human	Colon carninoma; endogeneously expressed	T84	Singh et al (2000)	method used: short- circuit current, Rb uptake, single- channel recording

Antagonist / Inhibitor

	Value	Units	Organism	Organ Tissue	Cell Line/ Type	Reference	Comments
Agent: IC50:	Charybd 10	otoxin nM	Human KCNN4		HEK-293	Jensen et al (2001)	method used: electrophysiology (whole cell)

Antagonist / Inhibitor

	Value	Units	Organism	Organ Tissue	Cell Line/ Type	Reference	Comments
Agent: IC50:	Mauroto 1	xin nM	Human KCNN4		СНО	Castle et al (2001)	method used: electrophysiology and Rb efflux

Antagonist / Inhibitor

	Value	Units	Organism	Organ Tissue	Cell Line/ Type	Reference	Comments
Agent:	Stichoda	ctyla toxi	in				
IC50:	291	nM	Human KCNN4		HEK-293	Jensen et al (1998)	method used: electrophysiology (whole cell)

Antagonist / Inhibitor

	Value	Units	Organism	Organ Tissue	Cell Line/ Type	Reference	Comments
Agent: IC50:	Margato 459	xin nM	Human KCNN4		HEK-293	Jensen et al (1998)	method used: electrophysiology (whole cell)

Antagonist / Inhibitor

	Value	Units	Organism	Organ Tissue	Cell Line/ Type	Reference	Comments
Agent: IC50:	Clotrimaz 70	ole nM	Human KCNN4		COS-7	Wulff et al (2000)	method used: electrophysiology (whole cell)

Antagonist / Inhibitor

	Value	Units	Organism	Organ Tissue	Cell Line/ Type	Reference	Comments
Agent: IC50:	Miconazo 790	ole nM	Human KCNN4		HEK-293	Jensen et al (1998)	method used: electrophysiology (whole cell)

6

Antagonist / Inhibitor

	Value	Units	Organism	Organ Tissue	Cell Line/ Type	Reference	Comments
Agent: IC50:	TRAM 3 20	4 nM	Human KCNN4		COS-7	Wulff et al (2000)	method used: electrophysiology (whole cell)

Antagonist / Inhibitor

	Value	Units	Organism	Organ Tissue	Cell Line/ Type	Reference	Comments
Agent: IC50:	Nitrendi 27	pine nM	human KCNN4		HEK-293	Jensen et al (1998)	method used: electrophysiology (whole cell)

Antagonist / Inhibitor

	Value	Units	Organism	Organ Tissue	Cell Line/ Type	Reference	Comments	
Agent: Nimodipine								
IC50:	1	μΜ	Human KCNN4		COS-7	Wulff et al (2000)	method used: electrophysiology (whole cell)	

Antagonist / Inhibitor

	Value	Units	Organism	Organ Tissue	Cell Line/ Type	Reference	Comments
Agent Kd:	:: Nifedip	bine					it is likely that the blocking effect is direct and not through the block of voltage-gated Ca channels
IC50:	1.5	μM	Human KCNN4	n/a since exogeneously expressed	HEK-293	Jensen et al (1998)	method used: electrophysiology (whole cell)

Antagonist / Inhibitor

	Value	Units	Organism	Organ Tissue	Cell Line/ Type	Reference	Comments
Agent IC50:	: Cetiedi 79	nM	Human KCNN4		HEK-293	Jensen et al (1998)	method used: electrophysiology (whole cell)

Antagonist / Inhibitor

	Value	Units	Organism	Organ Tissue	Cell Line/ Type	Reference	Comments
Agent IC50:	: Tetraet 40	hylamm mM	Grissmer et al	method used:			
1000.			Human	T cells		(1993)	electrophysiology (whole cell)

Journal Citations

- Alvarez, J., Montero, M., Garcia-Sancho, J., 1992. High affinity inhibition of Ca(2+)-dependent K⁺ channels by cytochrome P-450 inhibitors. J. Biol. Chem., 267, 11789–11793.
- Castle, N., Creech, C., Sabatier, J-M., 2001. Maurotoxin a potent inhibitor of the intermediate conductance calcium-activated potassium channel IK1. *Biophys. J.*, 80, 205a.
- Devor, D.C., Singh, A.K., Frizzell, R.A., Bridges, R.J., 1996. Modulation of CI-secretion by benzimidazolones. I. Direct activation of a Ca(2+)-dependent K+ channel. Am. J. Physiol., 271, 775–L784.
- Fanger, C.M., Ghanshani, S., Logsdon, N.J., Rauer, H., Kalman, K., Zhou, J., Beckingham, K., Chandy, K. G., Cahalan, M.D., Aiyar, J., 1999. Calmodulin mediates calcium-dependent activation of the intermediate conductance K_{Ca} channel, *IKCa1. J. Biol. Chem.*, 274, 5746–5754.
- Gardos, G., 1958. The function of calcium in the potassium permeability of human erythrocytes. *Biochim. Biophys. Acta*, 30, 653–654.
- Grissmer, S., Nguyen, A.N., Cahalan, M.D., 1993. Calcium-activated potassium channels in resting and activated human T lymphocytes. J. Gen. Physiol., 102, 601–630.
- Ishii, T.M., Silca, C., Hirschberg, B., Bond, C.T., Adelman, J.P., Maylie, J., 1997. A human intermediate conductance calcium-activated potassium channel. PNAS, 94, 11651–11656.
- Jensen, B.S., Stroebaek, D., Christophersen, P., Joergensen, T.D., Hansen, C., Silahtaroglu, A., Olesen, S-P., 1998. Characterization of the cloned human intermediate-conductance Ca2+-activated K+ channel. *Am. J. Physiol.*, 275, 848–C856.
- Jensen, B.S., Stroebaek, D., Olesen, S-P., Christophersen, P., 2001. The Ca2+-activated K+ channel of intermediate conductance: A molecular target for novel treatments? *Current Drug Targets*, 2, 401–422.
- Joiner, W.J., Wang, L-Y., Tang, M.D., Kaczmarek, L.K., 1997. hSK4, a member of a novel subfamily of calcium-activated potassium channels. *PNAS*, 94, 11013–11018.
- Logsdon, N.J., Kang, J., Togo, J.A., Christia, E.P., Aiyar, J., 1997. A novel Gene, hKCa4, encodes the calcium-activated potassium channel in human T lymphocytes. *J. Biol. Chem.*, 272, 32723–32726.
- Singh, A.K., Devor, D.C., Gerlach, A.C., Gondor, M., Pilewski, J.M., Bridges, R.J., 2000. Stimulation of Cl(-) secretion by chlorzoxazone. *J. Pharmacol. Exp. Ther.*, 292, 778–787.
- Singh, S., Syme, C.A., Singh, A.K., Devor, D.C., Bridges, R.J., 2001. Benzimidazolone activators of chloride secretion: potential therapeutics for cystic fibrosis and chronic obstructive pulmonary disease. *J. Pharmacol. Exp. Ther.*, 296, 600–611.
- Vandorpe, D.H., Shmukler, B.E., Jiang, L., Lim, B., Maylie, J., Adelman, J.P., de Franceschi, L., Cappellini, M.D., Brugnara, C., Alper, S.L., 1998. cDNA cloning and functional characterization of the mouse Ca²⁺gated K⁺ channel, mlK1. *J. Biol. Chem.*, 273, 21542–21553.
- Warth, R., Hamm, K., Bleich, M., Kunzelmann, K., 1999. Molecular and functional characterization of the small Ca²⁺-activated K⁺ channel (rSK4) of colonic crypts. *Pflugers Arch.*, 438, 437–444.

8

Wulff, H., Miller, M.J., Hansel, W., Grissmer, S., Cahalan, M.D., Chandy, K.G., 2000. Design of a potent and selective inhibitor of the intermediate-conductance Ca²⁺-activated K⁺ channel, *IKCa1*: A potential immunosuppressant. *PNAS*, 97, 8151–8156.

Book Citations

Hille, B., 2001. Ion channels in excitable membranes, Edition 3, Sinauer, Sunderland, MA.