Structural Differences of Bacterial and Mammalian K⁺ Channels^{*}

Received for publication, July 31, 2000, and in revised form, August 24, 2000 Published, JBC Papers in Press, August 28, 2000, DOI 10.1074/jbc.M006827200

Anja Wrisch and Stephan Grissmer‡

From the Department of Applied Physiology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany

Using a peptide toxin, kaliotoxin (KTX), we gained new insight into the topology of the pore region of a voltage-gated potassium channel, *m*Kv1.1. In order to find new interactions between mKv1.1 and KTX, we investigated the pH dependence of KTX block which was stronger at pH_o 6.2 compared with pH_o 7.4. Using sitedirected mutagenesis on the channel and the toxin, we found that protonation of His³⁴ in KTX caused the pH_o dependence of KTX block. Glu³⁵⁰ and Glu³⁵³ in mKv1.1, which interact with His³⁴ in KTX, were calculated to be 4 and 7 Å away from His³⁴/KTX, respectively. Docking of KTX into a homology model of mKv1.1 based on the KcsA crystal structure using this and other known interactions as constraints showed structural differences between mKv1.1 and KcsA within the turret (amino acids 348-357). To satisfy our data, we would have to modify the KcsA crystal structure for the mKv1.1 channel orienting Glu³⁵⁰ 7 Å and Glu³⁵³ 4 Å more toward the center of the pore compared with KcsA. This would place Glu³⁵⁰ 15 Å and Glu³⁵³ 11 Å away from the center of the pore instead of the distances for the equivalent KcsA residues with 22 Å for Gly^{53} and 15 Å for Gly^{56} , respectively. Bacterial and mammalian potassium channels may have structural differences regarding the turret of the outer pore vestibule. This topological difference between both channel types may have substantial influence on structure-guided development of new drugs for mammalian potassium channels by rational drug design.

Voltage-gated potassium channels guide fundamental biological processes such as electrical signaling, osmotic balance and signal transduction (1). Peptide toxins from scorpions, snakes, and sea anemones, which inhibit ion conduction through potassium channels by binding within the outer pore region, have been used to characterize physiological significance, localization, and structural aspects of these channels (2). Charybdotoxin (CTX)¹ has been used to characterize the region of potassium channels bearing both the CTX receptor and the ion conduction pathway and to demonstrate the tetrameric stoichiometry of the channel (3, 4). Estimations of the topology of the external vestibule of various potassium channels were successful because the structure of the peptide toxins, which

This paper is available on line at http://www.jbc.org

was structurally defined by NMR studies, reports the complementary shape of the binding partner (5, 6). Structural features of different channel types were announced by specific binding properties of peptide toxins (7). Our knowledge about structural characteristics of potassium channels was confirmed and extended through data from the bacterial *Streptomyces KcsA* channel based on crystallographic studies (8). Therefore, up to the availability of x-ray data for each potassium channel, further application of peptide toxins as molecular calipers to investigate the architecture of structurally non-defined targets appears to be reasonable.

Several toxins display a blocking affinity dependent on the extracellular pH (pH_o) but until now only a decreased block at acid pH_a was known; both with peptide toxins (9-11) and with other blockers working on potassium channels like TEA (12) but also working on sodium channels like tetrodotoxin and saxitoxin (13). The reduced CTX affinity of the F425H mutant Shaker channel and of the wt Kv1.3 channel (9, 11) as well as the lowered TEA affinity of mKv1.1 channels (12) at low pH_o was caused by protonation of histidine residues within the outer vestibule of the respective channel proteins. Affinity of tityustoxin to the squid Kv1 channel SqKv1A, which contains a histidine at Shaker position 425, is also reduced at acid pH_o (14). In contrast, in mKv1.1 and H404T mutant mKv1.3 channels, we observed a better KTX block at low pH_o. In this paper we present evidence that protonation of a histidine in KTX, which interacts with negatively charged amino acids in the outer pore region of mKv1.1 and H404T mutant mKv1.3 channels, is responsible for the higher KTX affinity of these channels. Using electrostatic compliance we found distances of 4 and 7 Å between Glu^{353} and Glu^{350} in *m*Kv1.1 and His³⁴ in KTX, respectively. Our data define the position of the turret (amino acids 348-357) in Kv1.1 and also Kv1.3 and imply structural differences between mammalian and bacterial K⁺ channels in that region. These results help refine our picture of the spatial arrangement of amino acid residues in the outer pore region of Kv1.1 and Kv1.3 that might facilitate therapeutic drug design.

MATERIALS AND METHODS

Cells—All experiments were carried out on single cells of a rat basophilic leukemia cell line, RBL cells (15). Cells were obtained from the American Type Culture Collection (Rockville, MD). The cells were maintained in a culture medium of Minimal Essential Medium with Earle's salts supplemented with 1 mM L-glutamine and 10% heat-inactivated fetal calf serum in a humidified, 5% CO₂ incubator at 37 °C. Cells were plated to grow non-confluently onto glass 1 day prior to use for injection and electrophysiological experiments (16).

^{*} This work was supported by Bunderministerium für Bildung und Forschung Grants iZKF Ulm B1 and B7 and by Deutsche Forschungsgemeinschaft Grants Gr848/4-2 and Gr848/8-1. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked *"advertisement"* in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

[‡] To whom correspondence should be addressed. Tel.: 49-731-50-23253; Fax: 49-731-50-23237; E-mail: stephan.grissmer@medizin. uni-ulm.de.

¹ The abbreviations used are: CTX, charybdotoxin; Dab, diaminobutyric acid; Dap, diaminopropionic acid; KTX, kaliotoxin; KTX₃, kaliotoxin 3; NTX, noxiustoxin; pH_o, extracellular pH; ThLys, thiohomolysine; wt, wild type; TEA, tetraethylammonium; MES, 4-morpholineethanesulfonic acid; FITC, fluorescein isothiocyanate; Ω , ohm(s); S, siemen(s).

Solutions—The experiments were done at room temperature (21–25 °C). Cells measured in the whole cell configuration were normally bathed in mammalian Ringer's solution containing, in mM: 160 NaCl, 4.5 KCl, 2 CaCl₂, 1 MgCl₂, and 10 X (with X either Tris, HEPES, MES, or citrate), with an osmolarity of 290–320 mOsm. The pH was adjusted to 5.5, 6.2 (X: citrate); to 6.2, 6.6, 6.8, 7.0 (X: MES), to 7.0, 7.4, 7.8 (X: HEPES), and to 7.8, 8.2 (X: Tris) with NaOH. No differences in current were seen comparing mammalian Ringer's solution containing either citrate or MES at pH_a 6.2, either MES or HEPES at pH_a 7.0, and either

HEPES or Tris at pH_o 7.8 as described earlier (12). A simple syringedriven perfusion system was used to exchange the bath solutions in the recording chamber. The internal pipette solution for the whole-cell recordings contained (in mM): 155 KF, 2 MgCl₂ 10 HEPES, 10 EGTA, adjusted to pH 7.2 with KOH, with an osmolarity of 290–320 mOsm.

Toxins—Kaliotoxin was purchased from Bachem Biochemica GmbH (Heidelberg, Germany) or made by recombinant methods (see below). Because of different batches of KTX, KTX from only one charge was used in each experiment. CTX was obtained from Bachem Biochemica GmbH (Heidelberg, Germany). Noxiustoxin (NTX) was a generous gift from Dr. Stephen Brady (Merck Institute, West Point, PA). The Lys²⁷ mutants of KTX (K27Dap, K27Dab, K27Nle, K27ThLys, K27A) were generous gifts from Dr. K. George Chandy (University of California, Irvine, CA). KTX₃ was kindly provided by Dr. Martin-Eauclaire (Marseille, France). KTX mutants H34A, H34K, R31A/H34A, and K32A were generated recombinantly with friendly help of Dr. H. G. Knaus and Maria Trieb at the Department of Biochemical Pharmacology (University of Innsbruck, Innsbruck, Austria) (17).

The lyophilized peptides were stored at -70 °C. Stock solutions of 10–100 μ M were made with mammalian Ringer's solution containing 0.1% bovine serum albumin. The final dilutions were prepared shortly before the experiment.

Electrophysiology—Experiments were carried out using the wholecell recording mode of the patch-clamp technique as described before (16). Electrodes were pulled from glass capillaries (Clark Electromedical Instruments, Reading, United Kingdom) in three stages, coated with Sylgard (Dow Corning, Seneffe, Belgium), and fire-polished to resistances measured in the bath of 2.5–4 M Ω . Membrane currents were recorded with an EPC-9 patch-clamp amplifier (HEKA Elektronik, Lambrecht, Germany) interfaced to a Macintosh computer running acquisition and analysis software (Pulse and PulseFit). Capacitative and leak currents were subtracted using the P/10 procedure. Series resistance compensation (>80%) was employed if the current exceeded 1 nA. The holding potential in all experiments was -80 mV.

Expression—pBSTA plasmids containing the entire coding sequence of the *m*Kv1.1 wild type (wt) gene, and the pSP64T plasmids containing the sequences for the H404T mutant *m*Kv1.3 channel (18) (a generous gift from Dr. K. George Chandy) were linearized with *Pst*I and *Eco*RI, respectively and *in vitro* transcribed with the T7 (*m*Kv1.1) and SP6 (*m*Kv1.3 H404T) Cap-Scribe system (Roche Molecular Biochemicals). The resulting cRNA was phenol/chloroform-purified and could be stored at -75 °C for several months.

Injection—The cRNA was diluted with a fluorescent FITC dye (0.5% FITC-dextran in 100 mM KCl) to a final concentration of 1 $\mu g/\mu$ l. RBL cells were injected with the cRNA/FITC solution filled in injection capillaries (Femtotips[®]) using an Eppendorf microinjection system (Micromanipulator 5171 and Transjector 5246). In the visualized cells, specific currents could be measured 3–6 h after injection.

Mutagenesis—All mutants of mKv1.1, mKv1.3, and KTX were generated by using the QuikChangeTM site-directed mutagenesis kit (Stratagene, Heidelberg, Germany). Mutations were confirmed by sequencing plasmid DNA with the Cy5-AutoRead kit (Amersham Pharmacia Biotech, Uppsala, Sweden).

Thermodynamic Mutant Cycle Analysis—Thermodynamic mutant cycles assist in studying of coupling energies between pairs of amino acid in a protein-protein complex. The dimensionless Ω value, which indicates the interaction strength of a given channel-toxin pair, was calculated as shown before (9, 19). The change in coupling energy, $\Delta\Delta G$, for the channel-toxin pairs was calculated using the formula $\Delta\Delta G = kT \ln \Omega$ as described earlier (7). The distances between this pair of residues was estimated based on the studies of Schreiber and Fersht (20) and Hidalgo and MacKinnon (19), assuming that $\Delta\Delta G$ values ≥ 0.5 kcal mol⁻¹ correspond to an inter-residue distance of ≤ 5 Å.

Electrostatic Compliance Measurements—For the estimation of the distances between the charges at KTX position His³⁴ and positions Glu³⁵⁰ and Glu³⁵³ in the *m*Kv1.1 channel (equivalent to Asp³⁷⁵ and Ser³⁷⁸ in *m*Kv1.3), we used the method of electrostatic compliance (5, 9, 12). Protonation of His³⁴ in KTX creates a higher effective KTX concentration at the receptor site of the channels compared with the bulk concentration. Calculation of the potential ψ causing the higher effective KTX concentration and the appropriate distances between the interacting amino acids was performed as described by Bretschneider *et al.* (12).

Docking—KTX was docked into a homology model of mKv1.1 based on the x-ray data of the *KcsA* channel. To create a homology model of mKv1.1, we exchanged the *KcsA* amino acids with the equivalent mKv1.1 sequence. Using the *KcsA* structure as template (Protein Data Bank code 1BL8; Ref. 8), we calculated the mKv1.1 homology structure

FIG. 1. Effect of extracellularly applied KTX on currents through mKv1.1 and H404T mutant mKv1.3 channels. A, pH_-dependent KTX block of mKv1.1 channels. Currents were elicited by 200 ms depolarizing voltage steps from a holding potential of -80 mV to +40 mV every 20 s at pH 7.4 and 6.2, respectively. Currents were recorded before (control) and after external application of 60 nm KTX. The applied KTX was purchased from Bachem. B, dose-response curve for KTX to block peak current through *m*Kv1.1 channels at pH₀ 7.4 (\triangle) and pH₀ 6.2 (\Box). Data points, peak currents elicited as in A (top) in the presence of different KTX concentrations (I_{KTX}) were divided by the peak currents without KTX ($I_{control}$). Ratios $I_{KTX}/I_{control}$ of at least four independent experiments are shown as mean \pm standard deviation (error bars are only shown if they exceed the size of the symbol) and plotted against the indicated KTX concentration. The lines through the points were fitted to a modified Hill equation $(I_{\text{toxin}}/I_{\text{control}} = 1/[1 +$ $([toxin]/K_d)]$ with a Hill coefficient of 1 revealing a K_d of 62 nM at pH_o 7.4 and of 19 nM at pH_o 6.2, respectively. C, dose-response curve for KTX to block peak current through H404T/mKv1.3 channels at pH₀ 7.4 (\triangle) and pH_o 6.2 (\Box). The fit was made as described in *B*, indicating a K_d of 0.24 nm at pH_o 7.4 and of 0.10 nm at pH_o 6.2, respectively. The applied KTX was purchased from Bachem.

as described before (7). The protein backbone of the mKv1.1 homology model was identical to the KcsA backbone. Docking of KTX into the mKv1.1 homology model was performed using the interactions between mKv1.1 and KTX as described before (7, 21). Additionally, the well characterized interaction between the terminal amino group of the central Lys²⁷ in KTX and the C^{β} atoms of Tyr³⁷⁵ in the GYGD motive was exploited (6, 21). The docking configuration and the distances between interacting amino acids were analyzed using RasMol 2.7.1.

RESULTS

To initially characterize the effect of extracellularly applied KTX on current through mKv1.1 channels, we measured whole cell currents in response to depolarizing steps from -80 to +40 mV in the absence and presence of KTX (Fig. 1A, *left*). 60 nm KTX (Bachem) added to the external mammalian Ringer solution resulted in a peak current reduction of about 50%. To quantify the KTX affinity of mKv1.1, we measured, in additional experiments, the effect of different KTX concentrations on current through mKv1.1 channels and plotted the normalized peak currents against the applied KTX concentration (Fig. 1B, *open triangles*). A Hill equation was fitted to the data with a Hill coefficient of 1, indicating a 1:1 stoichiometry suggesting

Mammalian K^+ Channel Structure

TABLE I

 K_d values (in nM) of the tested channels and channel mutants with the analyzed peptide toxins and peptide toxin mutants at pH_o 7.4 and 6.2 K_d values without S.E. were revealed by fitting (by eye) a Hill equation to data points for different toxin concentrations, whereas each data point represented the mean \pm S.E. of at least four experiments. The other values represent the mean \pm S.E. of at least four measurements with one toxin concentration. Also shown is the (K_d pH_o 7.4/ K_d pH_o 6.2) ratio.

	K_d at pH_o 7.4	K_d at pH $_o$ 6.2	${K_d \over K_d}$ at pH $_o$ 7.4/ ${K_d \over K_d}$ at pH $_o$ 6.2
Kv1.1	пМ	nM	
KTX^a KTX^b	$\begin{array}{c} 62\\ 10.6 \pm 2 \end{array}$	$\begin{array}{c} 19\\ 3.3 \pm 0.5 \end{array}$	3.3 3.3
D361N Kv1.1 KTX a	272 ± 67	82 ± 12	3.6
E353S Kv1.1 KTX a	94 ± 33	40 ± 12	2.4
H404T Kv1.3	0.94	0.10	9.4
	0.24 0.059 ± 0.006	0.10 0.025 ± 0.004	2.4
CTX	0.059 ± 0.000	0.025 ± 0.004	2.5
NTX	5.4	7.7	07
KTX ₂	0.15 ± 0.015	0.17 ± 0.025	0.9
KTX-H34A	0.097 ± 0.008	0.096 ± 0.019	1.0
KTX-H34K	0.017 ± 0.003	0.016 ± 0.006	1.06
KTX-R31A/H34A	0.98 ± 0.1	1.07 ± 0.1	0.91
KTX-K32A	0.24 ± 0.04	0.11 ± 0.03	2.2
KTX-K27Dap	5.4 ± 0.3	1.4 ± 0.04	3.8
KTX-K27Dab	5.6 ± 0.3	3.2 ± 0.3	1.8
KTX-K27ThLys	0.19 ± 0.02	0.08 ± 0.01	2.3
KTX-K27Nle	42	16	2.7
KTX-K27A	79 ± 4	33.7 ± 2.5	2.4
D375A/D376A/H404T Kv1.3			
KTX^b	0.111 ± 0.01	0.102 ± 0.01	1.1
D375A/H404T Kv1 3			
KTX ^b	0.059 ± 0.006	0.056 ± 0.005	1.05
D976 A // I 404 T 12-1 9			
KTX^{b}	0.094 ± 0.012	0.040 ± 0.008	2.4
	0.001 _ 0.012	0.010 - 0.000	<i>2.</i> 1
S378E/H404T Kv1.3		0.010 + 0.000	0.5
KTX	0.057 ± 0.003	0.016 ± 0.002	3.5
P377A/S378E/H404T Kv1.3			
KTX^{b}	0.064 ± 0.006	0.019 ± 0.002	3.4

^a KTX from Bachem.

^b Recombinant KTX.

that one KTX molecule is sufficient to block one mKv1.1 channel. The fit gave a dissociation constant K_d at pH_o 7.4 of 62 nM (n = 25), which is in agreement with earlier reports (22). The current reduction by KTX was fully reversible upon washout (data not shown). Application of 60 nm KTX (Bachem) to the bath solution at pH_o 6.2 reduced the current much more than 50% (Fig. 1A, right). The determination of the KTX affinity of *m*Kv1.1 at pH₀ 6.2 was made as for pH₀ 7.4 and showed a K_d of 19 nm (n = 28). Fig. 1B clearly demonstrates that the doseresponse curve for KTX at pH_o 6.2 (open squares) to block currents through mKv1.1 channels was shifted toward lower concentrations. Therefore, lowering pHo from 7.4 to 6.2 increased the KTX affinity to mKv1.1 \sim 3.3 times. The same relationship between K_d pH_o 7.4 and 6.2 was revealed with the recombinantly made KTX which exhibited an ~4 times higher affinity to *m*Kv1.1 channels compared with KTX from Bachem (Table I) probably because of higher purity of the recombinant KTX.

We wanted to know whether this observed higher KTX affinity of mKv1.1 at low pH_o is caused by protonation of an amino acid in the channel protein or by protonation of a residue in KTX. To rule out effects of His³⁵⁵ of the mKv1.1 channel (protonation of His³⁵⁵ results in a decrease of the TEA affinity at low pH_o (see Ref. 12)), we tested KTX on mKv1.1 mutant channels with a non-protonatable glycine instead of a histidine at position 355 (H355G/mKv1.1). KTX, however, seemed to bind to this H355G mutant mKv1.1 channel in an irreversible manner since currents could not be recovered after application of KTX even after wash-out for more than 1 h (data not shown). To avoid possible problems with rundown versus block, we tested KTX on H404T mutant mKv1.3 channels. The H404T/ mKv1.3 channel also contains no protonatable histidine in the outer pore region (Fig. 2A). Instead of the histidine, it has a glycine at the corresponding position 380; the histidine residue of the wt mKv1.3 channel at position 404 (equivalent to position 379 of mKv1.1) is changed to a threenine in this mutant of the channel (Fig. 2A). We did identical experiments with KTX from Bachem for H404T mutant mKv1.3 channels as we did for mKv1.1 channels. KTX displayed an increased affinity to H404T mutant mKv1.3 channels at low pH_o despite the absence of protonatable histidines in the outer pore region. The dose-response curve for pH_o 6.2 was shifted toward lower concentrations compared with pH_o 7.4 (Fig. 1C) and revealed K_d values of 0.24 nm (n = 28) and 0.10 nm (n = 28) for pH₀ 7.4 and 6.2, respectively.

In order to find out whether voltage-dependent binding of KTX could effect the pH_o dependence of KTX block, we investigated voltage dependence of KTX block on current through H404T mutant *m*Kv1.3 channels (Fig. 3). Crest *et al.* (23) and Mourre *et al.* (24) reported that the KTX block of calcium-dependent potassium channels with large conductance (MaxiK channels) and of voltage-dependent potassium channels is voltage-independent at physiological pH_o , but there were no studies testing a possible voltage dependence of KTX block at acid

FIG. 2. Alignment of channels and toxins. A, amino acid alignment of mKv1.1, H404T mutant mKv1.3, KcsA, and Shaker sequences in the turret and putative pore region. Negatively charged residues of mKv1.1 (Glu³⁴⁸, Glu³⁵⁰, Glu³⁵¹, Glu³⁵³, Asp³⁶¹, Asp³⁷⁷) and the corresponding residues in the other channels are highlighted. Also emphasized is His³⁵⁵ of mKv1.1 (and equivalent positions of the other channels), which was shown to cause pH_o dependence of TEA block (12). *B*, alignment of the amino acid sequences of all investigated peptide toxins and peptide toxin mutants. Highlighted is position 27 of KTX and corresponding residues of the other toxins as well as amino acids at KTX position 34.

pH_o. To create a conductance-voltage relationship of the KTX block, we converted the currents shown in Fig. 3 (A and C) to conductances by dividing the peak currents through the driving force for $[K^+]$ $(E - E_K)$. At pH_o 7.4 application of 50 pM recombinant KTX reduced maximum conductance to 68% of the values obtained in the absence of KTX without changing activation of the channels. The suppression of the conductance was identical at membrane potentials more positive than 0 mV up to +100 mV, indicating that the KTX block on H404T mutant mKv1.3 channels was voltage-independent in that potential range at physiological pH_o. At pH_o 6.2, application of 50 pM recombinant KTX reduced maximum conductance $g_{K(\max)}$ significantly higher compared with pH_o 7.4 to only 40% of the control value. The KTX block was again voltage-independent; membrane potentials more positive than +20 mV did not modify the blocking strength of KTX (Fig. 3D). Since the KTX effect seemed to be independent of the applied voltage for depolarizations between 0 and +100 mV at both pH_o values, it seemed sufficient for later experiments to evaluate the KTX block at one potential, in our case +40 mV, using the ratios of the peak currents (see also Fig. 1C). In comparison to the voltage independence of KTX block on current through H404T/mKv1.3 shown here, CTX block of Ca²⁺-activated K⁺ channels (25) and of voltage-dependent Shaker K⁺ channels (26) was reported to be slightly voltage-dependent. Both Figs. 1C and 3 demonstrate that KTX block on current through H404T mutant mKv1.3 channels was better at low pH_o with a ratio of 237 K_d pH_o $7.4/K_d$ pH_o 6.2 253 of 2.4 but to a lesser extent compared with mKv1.1 channels with a ratio of 3.3 (Table I). This difference might be explained by distinct amino acids in the outer pore region of *m*Kv1.1 and *m*Kv1.3 channels (for details see below). The existence of a pH_o-dependent KTX block of H404T/mKv1.3 channels lacking histidine residues in the pore region indicated that protonation of an amino acid in KTX might be responsible for the higher affinity at low pH_o. In all tested channels recombinant KTX blocked current more efficiently compared with KTX from Bachem (Table I). However, both batches of peptide toxins exhibited a similar pH_o dependence of block with an improvement of the KTX affinity to H404T mutant *m*Kv1.3 of \sim 2.4 times with changing pH_o from 7.4 to 6.2 (Table I).

To find out further indications for our hypothesis that protonation of an amino acid in KTX is responsible for the higher affinity at pH_o 6.2, we investigated the pH_o dependence of block by other peptide toxins like CTX and NTX on current through the H404T mutant *m*Kv1.3 channels. CTX blocked the current through H404T/*m*Kv1.3 with equal strength at pH_o 7.4 as well as at pH_o 6.2, which can be seen by the identical K_d values shown in Table I for pH_o 7.4 (0.25 nM; n = 28) and pH_o 6.2 (0.25 nM; n = 22. In addition, H404T mutant *m*Kv1.3 channels showed a slight but opposite pH_o dependence of NTX block with K_d values of 5.4 nM (n = 24) and 7.7 nM (n = 20) at pH_o 7.4 and 6.2, respectively (Table I). We therefore concluded that the increase in affinity by lowering pH_o is specific for KTX since CTX and NTX did not show this behavior.

By comparing the amino acid sequence of the toxins, we found that KTX possesses a unique histidine at position 34 not present in CTX and NTX (Fig. 2B). In order to find out whether His³⁴ might be the protonatable amino acid in KTX, we used KTX₃ which has an Asp at position 34 whose protonation should not vary between pH_o 7.4 and 6.2. KTX₃ exhibited nearly the same affinity to H404T mutant *m*Kv1.3 channels at pH_o 7.4 and 6.2 with K_d values of 150 ± 15 pM (n = 6) and 170 ± 25 pM (n = 6) at pH_o 7.4 and 6.2, respectively (Table I). The loss of the pH_o-dependent KTX effect in KTX₃ indicated that His³⁴ of KTX might be responsible for this effect because of the lack of a histidine residue at position 34 in KTX₃.

Additional experiments with KTX-Lys²⁷ mutants on H404T mutant *m*Kv1.3 channels were made to exclude Lys^{27} of KTX as the protonatable amino acid of KTX. The KTX mutants K27Dap, K27Dab, and K27ThLys contained non-natural positively charged lysine analogs of varying side chain lengths (Dap, 2.5 Å from C^{α} ; Dab, 3.8 Å; ThLys, 7.7 Å; natural lysine, 6.3 Å), whereas in K27A and K27Nle the neutral alanine and the non-natural neutral norleucine replaced lysine (6, 9). If Lys²⁷ was somehow involved in the pH_o dependence of KTX block, we would expect a pH_o-independent block with the noncharged amino acids at position 27 and perhaps an altered pH_o dependence with the shorter and longer non-natural lysine analogs Dap, Dab, and ThLys. Table I shows that all KTX-Lys²⁷ mutants bound in a pH_o-dependent manner to H404T mutant mKv1.3 channels with a higher affinity at low pH_a, revealing that Lys²⁷ is not responsible for pH_o dependence of KTX block.

To further substantiate that protonation of His^{34} in KTX is responsible for the pH_o dependence of KTX block on current through mKv1.1 and H404T mutant mKv1.3 channels, we made mutants of this peptide toxin by recombinant methods (17). His^{34} of KTX seemed to be a good candidate for the protonatable amino acid in KTX, as indicated by the investigations with H404T/mKv1.1 channels and CTX, NTX, and KTX₃. Therefore, we investigated the KTX mutants H34A and H34K. In addition, we also replaced Arg³¹ and Lys³² in KTX with neutral amino acids to examine whether these two positions in KTX were also involved since earlier work indicated that these two positions participate in important interactions (9, 27). We therefore tested the pH_o dependence of block of all four KTX mutants with H404T mutant mKv1.3 channels (Table I). The KTX mutant K32A still had a weaker blocking effect at pH_o 7.4 compared with pH_o 6.2 by a factor of about 2.1 on H404T mutant mKv1.3 channels, suggesting that Lys³² in KTX did not cause the pH_o dependence of block (Table I). In contrast, KTX-H34A blocked H404T mutant *m*Kv1.3 with the same potency at

FIG. 3. Voltage dependence of KTX block on current through H404T mutant *m*Kv1.3 channels at pH_o 7.4 and 6.2. A, currents elicited by a set of 200-ms voltage steps from a holding potential of -80 mV to voltages between -60 and +100 mV in 20-mV increments every 20 s, in the absence (*top*) and the presence (*bottom*) of 50 pM recombinantly produced KTX at pH_o 7.4. *B*, corresponding conductances for the currents shown in *A* are plotted against the applied membrane potential, in the absence (\triangle) and in the presence (\triangle) of KTX. The lines through the points were fitted by a Boltzmann equation: $g_{K(E)} = g_{K(max)}/[1 + \exp[(E_{1/2} - E)/k]]$ with values for $g_{K(max)}$ of 24 and 16 nS without and with KTX, respectively. The determined values for *k* (6 mV) and $E_{1/2}$ (-24 mV) were confirmed by additional experiments. *C*, currents, elicited as described in *A* at pH_o 6.2. *D*, corresponding conductance-voltage relations for the currents shown in *C*, in the absence (\Box) and in the presence (\blacksquare) of KTX. The Boltzmann fit was made as described in *B* with values for $g_{K(max)}$ of 25 and 10 nS without and with KTX, respectively. Values for *k* (6 mV) and $E_{1/2}$ (-10 mV) were also confirmed by additional experiments.

pH_o 7.4 and 6.2 (Fig. 4A (top) and Table I). Additional replacement of Arg³¹ with alanine in the H34A/R31A mutant KTX exhibited no further effect (Table I). Replacement of His³⁴ in KTX by lysine led to the same effect as substitution by alanine concerning the pH_o-independent block but exhibited a higher affinity to H404T/mKv1.3 than H34A and wt KTX (Fig. 4A (bottom) and Table I). Therefore H34A, H34K, and R31A/H34A mutants of KTX blocked currents through H404T mutant mKv1.3 channels in a pH_o-independent manner, whereas KTX-K32A block is influenced by pH_o. These results suggest that only the histidine residue at position 34 of KTX is the protonatable amino acid of KTX that causes pH_o dependence of block while Arg³¹ and Lys³² of KTX do not seem to play a role in this effect.

If protonation of His³⁴ in KTX is the reason for the better block of mKv1.1 and H404T mutant mKv1.3 channels with lowering pH_{α} , H34A and H34K mutants of KTX should (a) have a pH_o-independent block as shown before (Fig. 4A and Table I) and (b) represent the fully protonated (H34K) and the fully unprotonated (H34A) form of wt KTX responsible for the pH_o dependence of block. Fig. 4B shows the titration of wt KTX and the mutants H34K and H34A from pH₂ 5.5 to pH₂ 7.8 examined on H404T mutant mKv1.3 channels. KTX-H34K exhibited the same K_d of ${\sim}16~{\rm pM}$ in the investigated ${\rm pH}_o$ range, and KTX-H34A had identical K_d values of ~100 pM at 6 different pH_o values between pH_o 5.5 and 7.4. Linear regressions through the data points of both KTX mutants had slopes of zero, indicating that these KTX mutants cannot be titrated in the pH_o range used. This also suggests that histidine at position 34 of KTX is protonatable. The affinity of wt KTX to H404T mutant mKv1.3 channels decreased with increasing pH_o . The fit through the data points using the Hill equation gave a $K_{d(\min)}$ of 18 pm at $\rm pH_{\it o}~5.5$ and a $\rm \it K_{\it d(max)}$ of 60 pm at $\rm pH_{\it o}~7.8$ and a $\rm p\it K_{\it a}$ of 6.5, which represents the pH of the half-maximum protonation. The Hill

coefficient of 1.7 suggests that more than one negatively charged amino acids of the channel protein could sense His³⁴ of KTX. The $K_{d(\min)}$ of 18 pM wt KTX at pH_o 5.5 is the expected value with good agreement with the K_d of KTX-H34K, which stands for the fully protonated form of wt KTX. In contrast, KTX-H34A, which represents the unprotonated wt KTX, had a lower affinity to H404T/mKv1.3 channels with 100 pM compared with $K_{d(\max)}$ of wt KTX with 60 pM at pH_o 7.8. The reason for this difference might be a non-ionic interaction between the unprotonated His³⁴ of wt KTX and an amino acid of the channel that is abolished by the substitution with alanine. A more conservative replacement with glutamine or asparagine might solve this question (28, 29). Since the data confirmed our predictions apart from this difference between $K_{d(\max)}$ of wt KTX and K_d of KTX-H34A, we concluded that indeed protonation of His³⁴ in KTX caused the pH_o dependence of block.

To determine which amino acid(s) of the channel protein interacted with the protonatable His³⁴ of KTX, we tested some mutants of the mKv1.1 and the H404T/mKv1.3 channels, respectively. Six negatively charged residues in the mKv1.1 pore region could be candidates for the interaction with His³⁴ in KTX: Glu³⁴⁸, Glu³⁵⁰, Glu³⁵¹, Glu³⁴³, Asp³⁶¹, and Asp³⁷⁷ (Fig. 2A). The *m*Kv1.3 channel contains all of these negatively charged amino acids except one at position 378, which corresponds to position 353 of mKv1.1 with an uncharged serine instead of the glutamate in mKv1.1. We did not investigate the Asp³⁷⁷ of mKv1.1 (Asp⁴⁰² in mKv1.3) of the GYGD motif, since we had found that the shorter lysine analogs Dap and Dab at position 27 of KTX that were shown to interact with Asp⁴⁰² in mKv1.3 (6) still blocked in a pH_o-dependent manner (Table I). In addition, from the KcsA crystal structure data, we concluded that the negative charges at positions 348-353 of mKv1.1 would be the best candidates for the interacting amino acids. We expected that replacing negatively charged amino acids in

FIG. 4. pH_o dependence of block of recombinant wt KTX and the KTX mutants H34A and H34K on current through H404T mutant mKv1.3 channels. A, pH_o-independent block of KTX mutants H34A (*top*) and H34K (*bottom*). Currents were elicited as described in the legend to Fig. 1A. B, Mean K_d values and standard deviations of wt KTX (\Box), KTX-H34A (**a**), and KTX-H34K (**•**) block of current through H404T mutant mKv1.3 channels were plotted against the pH_o. K_d values were obtained as described in the legend to Fig. 1A. The curve through the wt KTX data points represents a fit with the equation $K_d = K_{d(\max)} + \{[K_{d(\max)} - K_{d(\min)}]/[1 + (10^{\text{PH}}/10^{\text{FK}a})^h]\}$ with $K_{d(\max)}$ of 60 pM, $K_{d(\min)}$ of 18 pM, pK_a of 6.5, and a Hill coefficient, h, of 1.7. The applied wt KTX was made recombinantly. Straight lines through data points for KTX-H34A and KTX-H34K represent linear regressions with slopes of zero.

the channel that interact with His³⁴ with neutral residues would diminish or abolish pHo-dependent KTX block, depending on whether the negatively charged residue alone or together with others could sense His³⁴ in KTX. As a starting point, we investigated Glu^{353} of *m*Kv1.1 as an interacting residue because of the dissimilar amino acid at the equivalent position of H404T/mKv1.3 channels, which might explain the different ratios (K_d pH_o 7.4/ K_d pH_o 6.2) of both channels. The E353S mutant mKv1.1 channel showed still an improvement of KTX affinity with lowering pH_o with K_d values of 94 nm and 40 nm (n = 5) for pH₀ 7.4 and 6.2, respectively (Table I). Nevertheless, the ratio of $(K_d \text{ pH}_o 7.4/K_d \text{ pH}_o 6.2)$ was reduced to 2.4, the same ratio as for H404T mutant *m*Kv1.3 channels. Therefore, we concluded that (a) the lack of a negative charge at position 378 in mKv1.3 (equivalent to 353 in mKv1.1) reduced the $(K_d \text{ pH}_o 7.4/K_d \text{ pH}_o 6.2)$ ratio, and (b) that Glu^{353} in mKv1.1 is one of the negatively charged residues in mKv1.1, which interacts with the protonatable amino acid in KTX. This result was confirmed by the introduction of a negatively charged amino acid at mKv1.3 position 378 (P377A/S378E/H404T and S378E/H404T mutant *m*Kv1.3 channels) exhibiting the stronger improvement of KTX block with lowering pH_o like mKv1.1 channels (Table I). Therefore, protonation of His^{355} in *m*Kv1.1 (12) seemed not to cause the stronger pH_o effect of mKv1.1 compared with H404T/mKv1.3.

As additional candidate for an interacting amino acid of the channel, we investigated the D361N mutant mKv1.1 channel

lacking the negative charge at position 361 (equivalent to position 386 in *m*Kv1.3). As can be seen from Table I, despite the deficiency in this negative charge, KTX block is still pH_o-dependent and exhibited the same (K_d pH_o 7.4/ K_d pH_o 6.2) ratio as wt *m*Kv1.1. Therefore we concluded that Asp³⁶¹ in *m*Kv1.1 (Asp³⁸⁶ in *m*Kv1.3) did not interact with His³⁴ in KTX.

Furthermore, we investigated whether the negative charges in *m*Kv1.1 position 350 and 351 (corresponding to positions 375 and 376 in mKv1.3) sense the protonatable His³⁴ in KTX. These studies were performed with three mutants of the H404T/ mKv1.3 channel since equivalent mKv1.1 mutants could not be expressed in RBL cells. Substitution of both negatively charged aspartate residues with neutral alanines in the D375A/D376A/ H404T mutant mKv1.3 channel diminished the pH_a dependence of KTX block (Table I). Since we could not detect any statistical significant difference between the K_d values at pH_o 7.4 and 6.2 by using Student's *t* test (p < 0.05), removal of the negative charges at position 375 and 376 in mKv1.3 abolished the pH_o dependence of KTX block. To test whether both or only one of these glutamates could interact with His³⁴ in KTX, we replaced only one of the negative charged residues by a neutral alanine. The D376A/H404T mutant mKv1.3 channels showed the same pH_o-dependent KTX block as H404T/mKv1.3 channels with an unchanged ($K_d pH_o 7.4/K_d pH_o 6.2$) ratio of 2.4 (Table I). In contrast, KTX displayed the same affinity to D375A/H404T mutant mKv1.3 channels at pH_o 7.4 and 6.2 with an identical (K_d pH_o 7.4/ K_d pH_o 6.2) ratio to D375A/ D376A/H404T mutant mKv1.3 channels. Again there was no statistical significant difference between the K_d values at pH_o 7.4 and 6.2 analyzed with Student's t test with p < 0.05; accordingly, we concluded that only Asp³⁷⁵ interacts with the protonatable His³⁴ in KTX. From this result we could also exclude Glu^{373} in *m*Kv1.3 and the equivalent Glu^{348} in *m*Kv1.1 to interact with His^{34} in KTX.

To calculate the distances between His³⁴ in KTX and Glu³⁵³/Glu³⁵⁰ in *m*Kv1.1, we performed electrostatic compliance. Protonation of His³⁴ in KTX caused a higher effective KTX concentration of 200 nM at pH_o 6.2 compared with the bulk concentration of 60 nM. The raised effective KTX concentration was due to the interaction of both Glu³⁵³ and Glu³⁵⁰ with His³⁴/KTX. E353S mutant *m*Kv1.1 channels exhibited the exclusive interaction between Glu³⁵⁰/*m*Kv1.1 and His³⁴/KTX with an effective KTX concentration of 100 nM. The sole interaction between Glu³⁵³/*m*Kv1.1 and His³⁴/KTX with an effective KTX concentration of 100 nM. The sole interaction between Glu³⁵³/*m*Kv1.1 and His³⁴/KTX was calculated by dividing the K_d factor for *m*Kv1.1 by the same factor for E353S/*m*Kv1.1, indicating that protonation of His³⁴/KTX would raise KTX concentration 1.4 times due to the interaction with Glu³⁵³

The knowledge about the effective KTX concentration enabled us to determine the potential ψ , which caused the higher effective KTX concentration at low pH_o . ψ for wt mKv1.1 was -30.4 mV, for E353S/mKv1.1 -22 mV, and for the calculated mutant E350A/mKv1.1 -8.6 mV. These values for ψ were correct if only one Glu³⁵⁰ and Glu³⁵³, respectively, of the channel would sense protonation of His³⁴ in KTX. Because it was not possible to determine the number of interacting channel subunits without investigating heterotetrameric channels, we calculated the potentials for one, two, and four interacting channel subunits by dividing the above ψ values by these numbers of subunits. Because of the distance dependence of electrostatic interactions, we were able to determine the distance between interacting amino acids of mKv1.1 and KTX. For this calculation the degree of charge that was caused by protonation of His³⁴ has to be known and was calculated with 67% protonation at pH_{$_{0}$} 6.2 (12). We estimated distances of 4, 6–6.5, or 8.5

Å between His³⁴/KTX and one, two, or four interacting Glu³⁵⁰/mKv1.1 and distances of 6.5–7, 9.5, or 12.5 to 14 Å between His³⁴/KTX and one, two, or four interacting Glu³⁵³/mKv1.1.

Corresponding calculations were performed for interacting residues in H404T/mKv1.3 and His³⁴ in KTX. We estimated the same distances for His³⁴/KTX and Asp³⁷⁵/mKv1.3 as for His³⁴/KTX and Glu³⁵⁰/mKv1.1. The distance between His³⁴/KTX and S378E/mKv1.3 also seemed to be the same as for His³⁴/KTX and Glu³⁵³/mKv1.1.

Furthermore, we calculated the distance between the only interacting residue in H404T/mKv1.3 channels, Asp³⁷⁵, and His³⁴/KTX by electrostatic compliance using KTX₃ and KTX-H34K. By application of the known charge difference of two between Asp³⁴ in KTX₃ and Lys³⁴ in H34K (Fig. 2) and the K_d values (Table I), we calculated a local potential 89 of -55.9 mV. Therefore, we found distances between Asp³⁷⁵/mKv1.3 and His³⁴/KTX of 4–4.5 Å for the interaction with one channel subunit, of 6.5–7 Å for the interaction with two subunits, respectively. The agreement of this electrostatic compliance calculation using the known charge difference between H34K and KTX₃ at position 34 with the electrostatic compliance using the degree of protonation at His³⁴/KTX enabled us to confirm the above determined p K_a of His³⁴/KTX.

Estimation of the distance between Asp³⁷⁵/mKv1.3 and His³⁴/KTX was also carried out by mutant cycle analysis. The KTX block of the channel mutants D375A/H404T and D375A/H404T was tested at pH_o 7.4 and 6.2 (Table I) using the different degrees of protonation at KTX position His³⁴ instead of mutations at KTX position 34. The change in coupling energy $\Delta\Delta G$ of 0.5 kcal mol⁻¹ indicated a distance of maximally 5 Å between Asp³⁷⁵ of mKv1.3 and His³⁴ of KTX (7, 20). The mutant cycle analysis confirmed the distance calculation by electrostatic compliance and suggested the interaction of His³⁴/KTX with Asp³⁷⁵ in only one channel subunit.

To refine the docking conformation of mKv1.1 with KTX, we confirmed the known interacting pair of Gly³⁸⁰/Kv1.3 and Arg³¹/KTX for the mKv1.1 channel (9). We investigated wt and H355K mutant mKv1.1 channels with the KTX mutants H34A versus R31A/H34A. wt mKv1.1 exhibited an ~10 times higher affinity to H34A compared with R31A/H34A with K_d values of 38 ± 4 nM and 410 ± 40 nM, respectively. In contrast, R31A/H34A blocked current through H355K mutant mKv1.1 channels only 2 times more weakly than the H34A mutant KTX with K_d values of 1120 ± 180 nM and 620 ± 80 nM for R31A/H34A and H34A block, respectively. Application of mutant cycle analysis revealed a $\Delta\Delta G$ value of 1.05 kcal mol⁻¹, which indicates a proximity of \leq 5 Å between the interacting residues His³⁵⁵ in mKv1.1 and Arg³¹ in KTX similar to the Kv1.3-KTX complex.

Using a homology model of the mKv1.1 channel based on the known crystal structure of the KcsA channel (8), we visualized the docking configuration of mKv1.1 and KTX. The docking of KTX into the mKv1.1 homology model is shown in Fig. 5. KTX is shown in green, mKv1.1 in gray. The interacting amino acids of channel and toxin (Arg³¹ and His³⁴ of KTX and Glu³⁵⁰ Glu^{353} , and His^{355} of mKv1.1) are drawn as Corey-Pauling-Koltun surfaces, the remaining channel as schematic, the remaining toxin as *ribbon*. His^{$3\overline{4}$} of KTX interacts with Glu³⁵⁰ and Glu³⁵³ of one channel subunit as indicated by the mutant cycle analysis between Asp³⁷⁵/mKv1.3 and His³⁴/KTX. The large distances between two adjacent or opposite channel subunits would not yield the interaction strength measured by electrostatic compliance and mutant cycle analyses. The docking of KTX into the *m*Kv1.1 homology model based on the *KcsA* structure was performed using the interactions between chan-

FIG. 5. **Docking of KTX into a homology model of mKv1.1.** The docking configuration is shown as top view. The homology structure of mKv1.1 based on the *KcsA* crystal structure. The channel backbone is shown in gray as a schematic, KTX is shown in green as ribbons. Selected side chains are shown as Corey-Pauling-Koltun surfaces with Glu^{350}/m Kv1.1 in red-orange, Glu^{353}/m Kv1.1 in orange, His^{34}/KTX in red, His^{355}/m Kv1.1 in dark blue, and Arg^{31}/KTX in blue. Distances between interacting amino acids of mKv1.1 and KTX suggested by the docking are given in white. The yellow line simulates the position of the turret in mKv1.1, as suggested by the experimentally derived distances between Glu³⁵⁰ and Glu³⁵³ in mKv1.1 and His³⁴ in KTX. The arrangement of the simulated turret was made by rotating the backbone of the turret toward the center of the pore. The figure was made using RasMol 2.7.1.

nel and toxin described here and, additionally, the interaction between Tyr³⁷⁵/mKv1.1 and Lys²⁷/KTX (6). The docking exhibited distances of 11 Å between Glu³⁵⁰/mKv1.1 and His³⁴/KTX, of 11 Å between ${\rm Glu}^{353}\!/\!m{\rm Kv}1.1$ and ${\rm His}^{34}\!/\!{\rm KTX}\!,$ and of 5 Å between His³⁵⁵/mKv1.1 and Arg³¹/KTX. Therefore, the docking distance between $\text{Glu}^{350}/m\text{Kv1.1}$ and $\text{His}^{34}/\text{KTX}$ was 7 Å and between Glu³⁵³/mKv1.1 and His³⁴/KTX 4-4.5 Å larger compared with the experimentally determined distances. The docking distance of 5 Å between His³⁵⁵/mKv1.1 and Arg³¹/KTX was identical to the distance calculated by mutant cycle analysis according to the experimental results. The docking suggested distances of 22 Å between Glu³⁵⁰/mKv1.1 and of 15 Å between $\mathrm{Glu}^{353}/\mathrm{mKv1.1}$ and the center of the pore. In contrast, the experimentally derived results indicated distances of 15 Å between Glu^{350} and of 10.5–11 Å between Glu^{353} in *m*Kv1.1 and the pore axis. The *m*Kv1.1 homology model has the same amino acid sequence compared with the mKv1.1 clone, but the structure of the protein backbone was identical to KcsA. Therefore, deviations between the experimentally determined distances and the docking distances might indicate a different spatial arrangement of the turret in mKv1.1 and KcsA (amino acids 348-357 in *m*Kv1.1). Guiding the turret at position 350.7 Å and at position 353 4–4.5 Å more toward the center of the pore as simulated by the yellow line in Fig. 5 would match experimentally determined and docking distances. To satisfy our data, we must modify the KcsA crystal structure for mKv1.1, which suggests structural differences between mKv1.1 and KcsA in the outer pore region. Since mKv1.3 exhibited the same interacting positions and interaction strengths in the turret like *m*Kv1.1, the *m*Kv1.3 structure might differ from *KcsA* as well.

mKv1.1 and mKv1.3 and maybe other mammalian voltagegated potassium channels seem to be structurally different from *KcsA* in the turret.

DISCUSSION

In this report we demonstrate that the pH_o dependence of KTX block on current through mKv1.1 and H404T mutant mKv1.3 channels is caused by protonation of the histidine at KTX position 34. We could define two interacting positions of the channel proteins: 350/353 in mKv1.1 and 375/378 in H404T mutant mKv1.3 channels, respectively. Furthermore, we could confirm an equivalent interaction between Arg³¹ in KTX and His^{355} in *m*Kv1.1 known for Kv1.3 and KTX (9). Comparing experimentally derived and docking distances between interacting residues of mKv1.1 and KTX indicated that the turret of mKv1.1 is oriented more toward the center of the pore compared with KcsA whose structure was used as template for the *m*Kv1.1 homology model. In summary, we present new pairs of interacting residues between KTX and the potassium channels mKv1.1 and mKv1.3 to increase the knowledge about the outer pore region of these channels, which might be advantageous in designing novel drugs of higher affinity and specificity.

This is the first report of a peptide toxin binding to potassium channels whose affinity to the channel's receptor was increased in low pH_a. Deutsch et al. (10) reported about an enhanced CTX binding to the voltage-gated K⁺ channel in human T lymphocytes with increasing pHo. The reduced CTX and KTX block of wt Kv1.3 in acid pH_o was shown to be a consequence of protonation of His404 in wt Kv1.3 channels, which repelled the positively charged toxins (9). Replacing His⁴⁰⁴ in Kv1.3 with non-protonatable threenine caused a pHo-independent CTX block and an increased KTX block corresponding to our results (9). The diminished CTX block of F425H mutant Shaker channels at low pH_o was also a result of protonation of F425H of this Shaker mutant (11). Diminished sensitivity of tityustoxin to the squid potassium channel SqKv1A was also attributed to the protonation of a histidine at position 351 (equivalent to Shaker position 425) of the channel (14).

Other blocking agents like TEA also exhibited a pH_o dependence of block. Diminished TEA block on current through *m*Kv1.1 channels was caused by protonation of His³⁵⁵ in *m*Kv1.1, which induced an electrostatic repulsion of the positively charged TEA (12). Weaker sensitivity of saxitoxin and tetrodotoxin to block voltage-gated sodium channel at low pH_o was also discussed to be a result of protonation of the receptor (1, 13), but there is also evidence that the decreased block with increasing $[H^+]_o$ or increasing concentration of di- or trivalent cations is caused by neutralization of negative surface charges lowering the saxitoxin and tetrodotoxin concentration at its receptor site (30).

The reduced blocking strength of the above toxins was caused by protonation of the receptor or by changing the surface potentials. None of these examples revealed altered affinity because of protonation of the blocker itself. Therefore, our observations regarding the pH_o dependence of KTX block are different in two respects. First, the KTX block of *m*Kv1.1 and H404T mutant *m*Kv1.3 channels is increased with decreasing pH_o . Second, this higher affinity is the result of protonation of the KTX receptor seemed not to play a role in causing this effect.

 $\rm pH_o$ independence of CTX and KTX₃ block on current through H404T/mKv1.3 indicated that protonation of His³⁴/ KTX could cause the $\rm pH_o$ dependence of KTX block. Our hypothesis was proven by the $\rm pH_o$ -independent KTX-H34A and KTX-H34K block. Titration of wt and mutant KTX revealed that H34K behaved like the fully protonated wt KTX. On the other hand, H34A, which should behave like fully unproto-

nated wt KTX, certainly blocked H404T/mKv1.3 in a pH_oindependent manner, however, with a lower affinity compared with wt KTX at pH_o 7.8 with a degree of protonation less than 5%. The difference in affinity between wt KTX at high pH_o and H34A might be caused by an interaction between His³⁴/KTX and residues of the channel via the nitrogen atoms, which is destroyed by the substitution with alanine. More conservative exchanges of His³⁴ with glutamine or asparagine might have the same blocking strength as unprotonated wt KTX, as shown for several histidine interactions in other proteins (28, 29).

Titration of wt KTX also indicated a pK_a of 6.5 for His³⁴/KTX. Gairi *et al.* (27) determined the pK_a of His³⁴ in unbound KTX by NMR investigations with a value of about 5.2. These two observations seem to be in contrast; however, we investigated the pK_a of KTX that was interacting with H404T/mKv1.3 channels and not while unbound in solution. The stronger interaction of protonated His³⁴/KTX with negatively charged residues of the H404T channel might facilitate the protonation of His³⁴ and therefore raise its pK_a . Similar observations with lowered pK_a values (20) and elevated pK_a values (31) due to unfavorable and advantageous interactions with the receptor or ligand have been reported previously.

Replacing negatively charged residues in the outer pore vestibule of mKv1.1 and H404T/mKv1.3 or *vice versa* revealed Glu³⁵⁰ and Glu³⁵³ in mKv1.1 and Asp³⁷⁵ in H404T to sense protonation of His³⁴ in KTX. Since mKv1.1 and mKv1.3 exhibited the same interacting positions and the same strength of interaction, we could transfer results from one channel to the other. Using electrostatic compliance we were able to calculate the distances between the interacting residues of the KTX and both channels (5, 9). Application of two mutant cycles refined the docking configuration of KTX and suggested that His³⁴/ KTX interacted with only one subunit of the channel.

We used these experimental data for a docking of KTX into a *m*Kv1.1 homology model based on the *KcsA* coordinates (8). The average sequence identity of about 30% between KcsA and mKv1.1 is sufficient to generate homology models using the KcsA structure as template (32). The docking of KTX into the mKv1.1 homology model built on the basis of the KcsA structure exhibited a distance of about 5 Å between $His^{355}/mKv1.1$ and Arg³¹/KTX, which agrees with the experimentally derived distance. The pore diameter of about 30 Å at position 355/ mKv1.1 corresponds to the equivalent positions in Kv1.3 and Shaker channels (9, 19). In contrast, the docking distances at *m*Kv1.1 positions 350 and 353 within the turret disagreed from the experimentally obtained distances, suggesting shorter pore diameter at these positions for *m*Kv1.1 compared with *KcsA*. To get an agreement between the experimental and the docking data, we would have to modulate the KcsA structure within the turret (amino acids 348-357) guiding Glu³⁵⁰ 7 Å and Glu³⁵³ 4-4.5 Å more toward the center of the pore. Therefore, the shape of the mKv1.1 turret seemed to be distinct from KcsA, particularly in the region near the S5 segment but not in the region close to the pore helix. The spatial arrangement of the turret in mKv1.3 and mKv1.1 seems to be very similar since we found identical interacting positions and the same distances between the interacting positions. Evidence for topological differences between KcsA and voltage-gated potassium channels within the turret is also indicated by distinct toxin affinities of both channel types (33, 34). Only the replacement of the complete outer pore region of KcsA with the equivalent region of a mammalian voltage-gated potassium channel could create a similar toxin affinity in KcsA (35).

In conclusion, using KTX as a molecular caliper, we were able to characterize topological features within the turret of the voltage-gated potassium channels mKv1.1 and mKv1.3. The

turret of both channels seems to be structurally different compared with the bacterial KcsA channel. Since the receptor for many potassium channel modulators is located in the outer pore region, this information could aid the rational drug design and therefore accelerate the generation of new and improved drugs working on potassium channel.

Acknowledgments-We thank Dr. Maria Garcia for the KTX plasmid, Dr. Hans-Günther Knaus and Maria Trieb for help in toxin purification, Dr. Russ Spreen for mass spectroscopy of the peptide toxins, Thomas Hübner for the homology modeling and docking, and Katharina Ruff for excellent technical assistance.

REFERENCES

- 1. Hille, B. (1992) Ionic Channels of Excitable Membranes, 2nd Ed., Sinauer Associates, Sunderland, MA
- 2. Miller, C. (1995) Neuron 15, 5-10
- MacKinnon, R., Heginbotham, L., and Abramson, T. (1990) Neuron 5, 767-771 3.
- 4. MacKinnon, R. (1991) Nature 350, 232–235
- Stocker, M., and Miller, C. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 9509-9513 6. Aiyar, J., Rizzi, J. P., Gutman, G. A., and Chandy, K. G. (1996) J. Biol. Chem. **271,** 31013–31016
- 7. Rauer, H., Lanigan, M. D., Pennington, M. W., Aiyar, J., Ghanshani, S., Cahalan, M. D., Norton, R. S., and Chandy, K. G. (2000) J. Biol. Chem. 275, 1201 - 1208
- 8. Doyle, D. A., Cabral, J. M., Pfuetzner, R. A., Kuo, A., Gulbis, J. M., Cohen, S. L., Chait, B. T., and MacKinnon, R. (1998) Science 280, 69-77
- 9. Aiyar, J., Withka, J. M., Rizzi, J. P., Singleton, D. H., Andrews, G. C., Lin, W., Boyd, J., Hanson, D. C., Simon, M., and Dethlefs, B. (1995) Neuron 15, 1169-1181
- 10. Deutsch, C., Price, M., Lee, S., King, V. F., and Garcia, M. L. (1991) J. Biol. Chem. 266, 3668-3674
- 11. Perez-Cornejo, P., Stampe, P., and Begenisich, T. (1998) J. Gen. Physiol. 111, 441 - 450
- 12. Bretschneider, F., Wrisch, A., Lehmann-Horn, F., and Grissmer, S. (1999) Biophys. J. 76, 2351-2360
- 13. Ulbricht, W., and Wagner, H. H. (1975) Philos. Trans. R. Soc. 270, 353-363 14. Dudlak, C. S., Jerng, H. H., and Gilly, W. F. (2000) Biophys. J. 78, 97A

- 15. Eccleston, E., Leonard, B. J., Lowe, J. S., and Welford, H. J. (1973) Nat. New Biol. 244, 73-76
- 16. Rauer, H., and Grissmer, S. (1996) Mol. Pharmacol. 50, 1625-1634
- 17. Garcia, M. L., Hanner, M., Knaus, H. G., Slaughter, R., and Kaczorowski, G. J. (1999) Methods Enzymol. 294, 624-39, 624-639
- 18. Chandy, K. G., Williams, C. B., Spencer, R. H., Aguilar, B. A., Ghanshani, S., Tempel, B. L., and Gutman, G. A. (1990) Science 247, 973-975
- 19. Hidalgo, P., and MacKinnon, R. (1995) Science 268, 307-310
- 20. Schreiber, G., and Fersht, A. R. (1995) J. Mol. Biol. 248, 478-486 Kalman, K., Pennington, M. W. Lucigan, M. D., Nguyen, A., Rauer, H., Mahnir, V., Paschetto, K., Kem, W. R., Grissmer, S., Gutman, G. A., Christian, E. P., Cahalan, M. D., Norton, R. S., and Chandy, K. G. (1998)
- J. Biol. Chem. 273, 32697-32707 22. Grissmer, S., Nguyen, A. N., Aiyar, J., Hanson, D. C., Mather, R. J., Gutman,
- G. A., Karmilowicz, M. J., Auperin, D. D., and Chandy, K. G. (1994) Mol. Pharmacol. 45, 1227-1234
- 23. Crest, M., Jacquet, G., Gola, M., Zerrouk, H., Benslimane, A., Rochat, H., Mansuelle, P., and Martin-Eauclaire, M. F. (1992) J. Biol. Chem. 267, 1640 - 1647
- 24. Mourre, C., Chernova, M. N., Martin-Eauclaire, M. F., Bessone, R., Jacquet, G., Gola, M., Alper, S. L., and Crest, M. (1999) J. Pharmacol. Exp. Ther. **291,** 943–952
- 25. MacKinnon, R., and Miller, C. (1988) J. Gen. Physiol. 91, 335-349
- 26. Goldstein, S. A., and Miller, C. (1993) Biophys. J. 65, 1613-1619
- 27. Gairi, M., Romi, R., Fernandez, I., Rochat, H., Martin-Eauclaire, M. F., Van, R. J., Pons, M., and Giralt, E. (1997) J. Pept. Sci. 3, 314-319 28. Shapiro, R., and Vallee, B. L. (1989) Biochemistry 28, 7401-7408
- 29. Rehwald, M., Neuschafer-Rube, F., de Vries, C., and Püschel, G. P. (1999) FEBS Lett. 443, 357-362
- 30. Grissmer, S. (1984) Pflügers Arch. 402, 353-359
- 31. Loewenthal, R., Sancho, J., and Fersht, A. R. (1992) J. Mol. Biol. 224, 759-770
- 32. Rodriguez, R., Chinea, G., Lopez, N., Pons, T., and Vriend, G. (1998) Bioinformatics 14, 523-528
- 33. Garcia, M. L., Garcia-Calvo, M., Hidalgo, P., Lee, A., and MacKinnon, R. (1994) Biochemistry 33, 6834-6839
- 34. MacKinnon, R., Cohen, S. L., Kuo, A., Lee, A., and Chait, B. T. (1998) Science 280, 106-109
- 35. Legros, C., Pollmann, V., Knaus, H. G., Farrell, A. M., Darbon, H., Bougis, P. E., Martin-Eauclaire, M. F., and Pongs, O. (2000) J. Biol. Chem. 275, 16918-16924

Structural Differences of Bacterial and Mammalian K⁺Channels

Anja Wrisch and Stephan Grissmer

J. Biol. Chem. 2000, 275:39345-39353. doi: 10.1074/jbc.M006827200 originally published online August 28, 2000

Access the most updated version of this article at doi: 10.1074/jbc.M006827200

Alerts:

- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 34 references, 16 of which can be accessed free at http://www.jbc.org/content/275/50/39345.full.html#ref-list-1