Characterization of apamin-sensitive Ca2+-activated potassium channels in human leukaemic T lymphocytes

Christine Hanselmann and Stephan Grissmer*

Department of Applied Physiology, University Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany

1. The whole-cell recording mode of the patch-clamp technique was used to study the effect of extracellularly applied ions, toxins and drugs on voltage-independent, apamin-sensitive Ca2+-activated K+ channels, K(Ca), expressed in the Jurkat human leukaemic T cell line.

2. Extracellular Ba2+ and Sr2+ produced a voltage-dependent block. The equilibrium dissociation constant of the Ba2+/K(Ca) channel complex increased e-fold for a 20 mV change of potential. Ba2+ block of Jurkat K(Ca) channels is therefore as steep as expected from the movement of a single divalent cation about half-way into the electric field of the membrane from the outside.

3. We determined the ion selectivity as well as the conductance of these channels. Calculated permeability ratios, \(P_{X}/P_{K} \), for these K(Ca) channels were 1·0, 0·96, 0·26 and 0·53 for K+, Rb+, Cs+ and NH\textsubscript{4}+, respectively. Conductance ratios, \(g_{X}/g_{K} \), for the same ions were 1·0, 1·0, 0·67 and 0·11, respectively. Most strikingly this channel can also carry significant current with Cs+ as current carrier.

4. Scyllatoxin (ScTX), a thirty-one amino acid peptide toxin, reduced current through these K(Ca) channels with a half-blocking concentration of ~0·3 nm independent of the pH. Other drugs that were able to reduce current through these channels include the classical calcium antagonists diltiazem and verapamil. In contrast, nifedipine, clotrimazole and kaliotoxin (100 nm) were unable to block current through these channels in Jurkat T cells.

The human leukaemic T cell line Jurkat expresses two different types of K+ channels. One type belongs to the classical voltage-dependent K+ channel family, K(V). It opens with depolarization, is blocked by charybotoxin (CTX), noxistoxin (NTX), kaliotoxin (KTX) and margatoxin (MgTX), but not blocked by apamin, shows C-type inactivation and the gene that encodes this ion channel is Kv1.3 (for review see: Chandy, Gutman & Grissmer, 1993; Chandy & Gutman, 1995; Aiyar et al. 1995).

The second type of K+ channel in Jurkat T cells is activated by an increase in the intracellular calcium concentration ([Ca2+]). Hille (1992) described two distinct classes of K(Ca) channels. One class, the BK channel, is activated by membrane depolarizations and by an increase in [Ca2+], with single-channel conductances of more than 100 pS. The second class, the SK channels, are voltage independent and have conductances smaller than 50 pS. The K(Ca) channels described in this paper belong to the second class. Within this second class, however, again two major groups can be distinguished on the basis of their pharmacology. The first is blocked by CTX, the same toxin that will also block BK channels (reviewed by Latorre, Oberhauser, Labarca & Alvarez, 1989) as well as some K(V) channels, for example, the type n channel in human T cells, that is Kv1.3 (Sands, Lewis & Cahalan, 1989; Grissmer et al. 1990). The second group is blocked by apamin and ScTX (Hugues, Schmid, Romey, Duval, Frelin & Lazdunski, 1982; Cognard, Traore, Potreau & Raymond, 1984; Blatz & Magleby, 1986; Romey, Rieger, Renaud, Pincon-Raymond & Lazdunski, 1986). In Jurkat T cells the K(Ca) channels are highly sensitive to block by apamin, a peptide component of bee venom, which blocks half the channels at <1 nm (Grissmer, Lewis & Cahalan, 1992), but are insensitive to block by CTX and NTX. In addition, K(Ca) channel activity in Jurkat T cells depends greatly on [Ca2+], suggesting that multiple Ca2+ ions must bind to the channel or an associated molecule in order to open the pore. The Ca2+ concentration at which half the channels are activated is ~400 nm. Channels do not inactivate during prolonged exposure to high [Ca2+] and are activated independently of the applied membrane potential (Grissmer et al. 1992). Both Kv1.3 and apamin-sensitive SK channels have been implicated in the modulation of the Ca2+ signal of Jurkat T cells after activation by mitogens. The overall goal of this study was to characterize in more detail the properties of small-conductance apamin-sensitive SK

* To whom correspondence should be addressed.
channels. Using Jurkat T cells for this purpose has the advantage that there is little or no contamination by other K(Ca) channels.

In this article, we report biophysical and pharmacological properties of K(Ca) channels in Jurkat T cells. We have used whole-cell recording to determine (a) the sensitivity of K(Ca) channels in Jurkat T cells to a variety of ionic blockers, drugs and peptide toxins, and (b) the ion selectivity of these channels. This characterization should allow a better distinction between different types of K(Ca) channels.

Some of the results have been reported in preliminary communications (Grissmer & Hanselmann, 1996; Hanselmann & Grissmer, 1996).

METHODS

Cells
The experiments were carried out on single cells of a human T-lymphoma cell line, Jurkat E6-1. These cells were obtained from the American Type Culture Collection (Rockville, MD, USA) and maintained continuously in culture medium RPMI 1640 (Gibco) supplemented with 1 mm glutamine and 10% heat-inactivated fetal bovine serum in a humidified, 5% CO2 incubator at 37°C. Since the expression of K(Ca) channels in Jurkat T cells did not seem to depend on the passage number, all experiments were performed on cells derived from a single batch of cells kept in culture.

Solutions
All experiments were done at room temperature (21–25°C). The cells under investigation were normally bathed in K+ solutions containing (mm): 164.5 KCl, 2 CaCl2, 1 MgCl2 and 5 Hepes; adjusted to pH 7.4 with KOH, with an osmolarity of 290–320 mosmol l⁻¹. Rb⁺, Cs⁺, NH₄⁺ and Na⁺ solutions contained 164.5 mm of the major cation, plus normal Cl⁻, divalents, and pH buffering. The pH 6 K⁺ solution was obtained by adjusting the pH to 6.0 with KOH. A simple syringe-driven perfusion system was used to exchange solutions in the recording chamber.

We used two different internal pipette solutions with different Ca²⁺-buffer capacity to either increase [Ca²⁺], by whole-cell dialysis of a highly buffered Ca-EGTA pipette solution or to use a lightly buffered pipette solution that would allow an increase in [Ca²⁺], by application of ionomycin. Both solutions contained (mm): 135 potassium aspartate, 2-0 MgCl2 and 10 Hepes; adjusted to pH 7.2 with KOH, with an osmolarity of 290–320 mosmol l⁻¹. The solution with highly buffered Ca²⁺ contained (mm): 10 EGTA and 8.7 CaCl2 ([Ca²⁺]ₗ₀₀₀ of 10⁻⁵ M). The lightly buffered Ca²⁺ solution contained (mm): 1:1 EGTA and 0:1 CaCl2 ([Ca²⁺]₀₉₀₀₀ of 10⁻⁷ M). [Ca²⁺]₀₉₀₀₀ was calculated assuming a dissociation constant for EGTA and Ca⁺ at pH 7:2 of 2:10⁻⁷ M (Portzehl, Caldwell & Ruegg, 1994).

Ionomycin was purchased from Sigma-Aldrich Chemie (Deisenhofen, Germany). Apamin, ScTX, CTX and KTX were purchased from Latoxan (Rosans, France). NTX was a generous gift from Dr Stephen Brady (Merck, Sharp & Dohme Research Laboratories, Westpoint, PA, USA). Bovine serum albumin (0.1–1 mg ml⁻¹; Fluka Chemie, Neu-Ulm, Germany) was usually added to toxin-containing solutions to prevent binding of the toxins to plastic in the perfusion system and resulted in reproducible dose–response determinations.

Electrophysiology
Experiments were carried out using the whole-cell recording mode of the patch-clamp technique (Hamill, Marty, Neher, Sakmann & Sigworth, 1981). Electrodes were pulled from glass capillaries (Clark Electromedical Instruments, Reading, England) in two stages, coated with Sylgard (Dow Corning, Seneffe, Belgium), and fire polished to resistances measured in the bath of 3–6 MΩ. Membrane currents were recorded with an EPC-9 patch-clamp amplifier (HEKA Elektronik, Lambrecht, Germany) interfaced to a Macintosh computer running acquisition and analysis software (Pulse/Pulsefit; HEKA Elektronik). All potentials were corrected for the liquid junction potential that develops at the tip of the pipette if the pipette solution is different from that of the bath. The liquid junction potential between normal internal (pipette) and external (bath) solution was −8 mV.

All illustrated results were done at least in triplicate except for the dose–response curve for ScTX block (Fig. 6B) where single data points are shown. For the experiments with the toxins as well as the drugs each tested compound was applied for at least 5 min and all illustrated records represent steady-state effects.

All values are means ± S.E.M.

RESULTS

To characterize K(Ca) channels in Jurkat T cells, we elevated [Ca⁴⁺], by bath application of ionomycin and simultaneously measured conductance changes with the whole-cell recording technique. Figure 1A shows ramp currents recorded in response to 400 ms voltage ramps from −160 to 40 mV. Trace 1 was recorded in K⁺ solution before the application of ionomycin to the bath solution. The membrane slope conductance at potentials more negative than −60 mV is small and increases around −40 mV as voltage-gated Kv1.3 channels open and conduct inward current below and outward current above 0 mV. Application of 1 μM ionomycin increased the slope conductance at negative potentials (trace 2–4). The time course of this effect is shown in Fig. 1B. The numbers in the graph correspond to the current traces shown in panel A. Activation of K(Ca) channels in Jurkat T cells can also be achieved by dialysing the cytoplasm during whole-cell recording with pipette solution containing 1 mm free calcium. Using this activation protocol current through K(Ca) channels in Jurkat T cells could be maintained for at least 15 min.

Ionic blockers
Figure 2A shows the effect of different concentrations of external Ba²⁺ on current through K(Ca) channels. Current was elicited with the same voltage ramp protocol as described in Fig. 1, also in K⁺ solution. Extracellular Ba²⁺ reduced current through K(Ca) channels in a dose-dependent manner and also preferentially at hyperpolarized potentials. Only the highest Ba²⁺ concentrations (10 mM) had an effect on current through voltage-gated Kv1.3 channels as can be seen by the shift of ~10 mV towards more depolarized potentials of the activation voltage (Grissmer & Cahalan, 1989; Grissmer, Nguyen & Cahalan,
Figure 1. Ionomycin activates a K⁺ conductance in Jurkat T cells
Whole-cell recording with pipette solution containing a low Ca²⁺ buffer ([Ca²⁺]free = 10⁻⁸ M). A, ramp currents were elicited by 400 ms voltage ramps from -160 to 40 mV every 10 s before and after application of a K⁺ solution containing 1 µM ionomycin. A progressive increase in $I_{K(Ca)}$ induced by ionomycin is manifest as the increase in slope conductance at potentials below -60 mV. B, the slope conductance at potentials below -60 mV, a measure of activation of K(Ca) channels, was plotted as a function of time for the experiment shown in A. The slope conductance was determined by linear fits to the ramp currents between -160 and -60 mV.

The effect of Ba²⁺ on current through K(Ca) channels in Jurkat T cells was immediately reversible upon washout (data not shown). To quantify the voltage-dependent Ba²⁺ block of K(Ca) channels in Jurkat T cells we calculated ratios of the ramp current in the presence and absence of Ba²⁺ as shown in Fig. 2B. Here, the ratios of the ramp currents at the different Ba²⁺ concentrations were plotted against the membrane potential. The smooth curves through the ratio for the different Ba²⁺ concentrations represent fits to Boltzmann equations. The steepness factor of all three equations was 20 mV per e-fold change. Ba²⁺ block of K(Ca) channels in Jurkat T cells is therefore as steep as expected from the movement of a single divalent cation about halfway into the electric field.

Figure 2. External Ba²⁺ block of K(Ca) channels in Jurkat T cells using voltage ramps
A, K(Ca) channels were activated by whole-cell dialysis with a pipette solution containing 1 µM free Ca²⁺. Ramp currents were elicited by 400 ms voltage ramps from -160 to 40 mV every 10 s before and after application of a K⁺ solution containing 0·1, 1 and 10 mM Ba²⁺. B, voltage dependence of the Ba²⁺ block using voltage ramps. Ramp current traces in the presence of external Ba²⁺ were divided by the trace obtained in the absence of Ba²⁺ (from A) and plotted against the membrane potential. The smooth curves represent fits (by eye) to a Boltzmann equation:

$$I_{K(Ca)Ba}/I_{K(Ca)\text{free}} = 1/(1 + \exp((-E - E_b)/k)),$$

where E_b is the voltage at which half the channels are blocked and k is the steepness of block (mV per e-fold change). The parameters for the fits were, for 0·1 mM Ba²⁺: $E_b = -165$ mV and $k = 20$ mV; for 1 mM Ba²⁺: $E_b = -100$ mV and $k = 20$ mV; and for 10 mM Ba²⁺: $E_b = -35$ mV and $k = 20$ mV.
Similar experiments with external Ba^{2+} were performed using voltage steps to assure that Ba^{2+} block is fast compared with the ramp (Fig. 3). Channels were activated by whole-cell dialysis with a pipette solution containing 1 μM free calcium. Membrane currents were recorded in K^+ solution (control) and K^+ solution plus 1 or 10 mM Ba^{2+}. Initial experiments yielded large current traces at all potentials tested that decayed rapidly to a steady-state current (data not shown). This current decay originated from current through Kv1.3 since application of 100 nM NTX or 100 nM KTX eliminated this current. Apparently and surprisingly, even at a holding potential of 0 mV in K^+ solution, not all voltage-gated Kv1.3 channels inactivate, giving rise to large decaying tail currents when the

Table 1. Electrophysiological and pharmacological profile of apamin-sensitive K(Ca) channels in Jurkat T cells (K(Ca)$_{pa}$), and CTX-sensitive K(Ca) channels in human peripheral T lymphocytes (K(Ca)$_{CTX}$)

<table>
<thead>
<tr>
<th>Ionic blockers</th>
<th>Peptide toxinsa</th>
<th>Single channel conductanceb,f</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Voltage dependence</td>
<td>Sensitivityc</td>
</tr>
<tr>
<td>Ba$^{2+}$</td>
<td>(S)</td>
<td>(E_h; mV)</td>
</tr>
<tr>
<td>K(Ca)$_{pa}$</td>
<td>0.62 ± 0.02</td>
<td>-30</td>
</tr>
<tr>
<td>K(Ca)$_{CTX}$</td>
<td>0.74 ± 0.04</td>
<td>-60</td>
</tr>
</tbody>
</table>

a, data from Grissmer et al. 1993; b, δ is the partial electrical distance of the Ba$^{2+}$ binding site across the membrane from the outside. Values are given as means ± s.d.; n = 3 for each channel type. The values are significantly different ($P < 0.05$). c, E_h is the potential where half the channels are blocked in 10 mM Ba$^{2+}$. d, values for the apparent dissociation constant for block. e, n.d., not determined. f, data from Grissmer et al. 1992. g, single channel conductance determined in symmetrical 160 mM K$^+$ solution. h, single channel conductance determined in 4.5 mM [K$^+$]$_i$ and 160 mM [K$^+$]$_o$.

Figure 3. External Ba$^{2+}$ block of K(Ca) channels using voltage steps

K(Ca) channels were activated by whole-cell dialysis with a pipette solution containing 1 μM free Ca$^{2+}$. Membrane currents in K$^+$ solution (Control) and K$^+$ solution plus 1 or 10 mM Ba$^{2+}$ were measured in response to a set of 100 ms voltage steps from a holding potential of 0 mV to different test potentials (from -120 to 0 mV). All solutions contained 100 nM NTX to block current through voltage-gated Kv1.3 channels in these cells.
potential is stepped to more negative potentials. Therefore, to prevent contamination by current through Kv1.3 channels all solutions for this type of experiment contained 100 mM NTX. To compare the voltage dependence of Ba\(^{2+}\) block using this step protocol to the one using voltage ramps we determined the steady-state current in the different solutions and plotted it against the membrane potential during the step (Fig. 4A). The steady-state current (\(I_{\text{K,ss}}\)) obtained in the presence of external Ba\(^{2+}\) was divided by \(I_{\text{K,ss}}\) obtained in the absence of Ba\(^{2+}\) (from A) and plotted against the membrane potential. The smooth curves represent fits (by eye) to a Boltzmann equation as described in the legend to Fig. 3. The parameters for the fit were almost identical to those shown in Fig. 2, i.e. for 1 mM Ba\(^{2+}\): \(E_\text{h} = -95\) mV and \(k = 20\) mV; and for 10 mM Ba\(^{2+}\): \(E_\text{h} = -30\) mV and \(k = 20\) mV.

Figure 4. Voltage dependence of the Ba\(^{2+}\) block using voltage steps

A, the steady-state current (\(I_{\text{K,ss}}\)) in K\(^+\) solution (Control) and K\(^+\) solution with 1 or 10 mM Ba\(^{2+}\) during the 100 ms voltage step shown in Fig. 3 is plotted against the applied membrane potential during the step. B, \(I_{\text{K,ss}}\) obtained in the presence of external Ba\(^{2+}\) was divided by \(I_{\text{K,ss}}\) obtained in the absence of Ba\(^{2+}\) (from A) and plotted against the membrane potential. The smooth curves represent fits to a Boltzmann equation as described in the legend to Fig. 3. The parameters for the fit were almost identical to those shown in Fig. 2, i.e. for 1 mM Ba\(^{2+}\): \(E_\text{h} = -95\) mV and \(k = 20\) mV; and for 10 mM Ba\(^{2+}\): \(E_\text{h} = -30\) mV and \(k = 20\) mV.

Figure 5. Selectivity sequence of monovalent cations in K(Ca) channels in Jurkat T cells

A, K(Ca) channels were activated by whole-cell dialysis with a pipette solution containing 1 \(\mu\)M free Ca\(^{2+}\). Ramp currents were elicited by 400 ms voltage ramps from -120 to 40 mV every 10 s before and during application of a K\(^+\), Rb\(^+\), NH\(_4\)^+ , Cs\(^+\) and Na\(^+\) solution. The Na\(^+\) solution in this experiment contained 4.5 mM K\(^+\) and \(E_\text{rev}\) for this solution was -85 mV. B, same records as in A shown at a larger scale and a smaller membrane potential range to enlarge the ramp currents through K(Ca) in the different solutions. All records shown were obtained from a single cell.
move about half-way into the electric field (the partial electrical distance of the \(\text{Ba}^{2+} \) binding site across the membrane from the outside, \(\delta = 0.62 \)) and that \(\text{Ba}^{2+} \) block is fast compared with the voltage ramp.

The voltage- and concentration-dependent \(\text{Ba}^{2+} \) block of Jurkat T cells is similar but not identical to the \(\text{Ba}^{2+} \) block of K(Ca) channels in human peripheral T lymphocytes (Grissmer et al. 1993). The voltage dependence of \(\text{Ba}^{2+} \) block is less steep in K(Ca) channels in Jurkat cells compared with K(Ca) channels in human peripheral T lymphocytes (20 ± 1 vs. 17 ± 1 mV; mean ± s.d.; \(n = 3 \) for each channel type, see also Table 1) suggesting that for K(Ca) channels in Jurkat T cells \(\text{Ba}^{2+} \) can reach a site almost three quarters into the membrane field (\(\delta = 0.74 ± 0.04; n = 3 \)). In addition, the voltage where half the channels are being blocked for \(\left[\text{Ba}^{2+} \right]_o = 10 \) mm is -30 mV for Jurkat K(Ca) channels compared with -60 mV for K(Ca) channels in human peripheral T lymphocytes (Table 1). It seems that K(Ca) channels in Jurkat T cells are more sensitive to block by external \(\text{Ba}^{2+} \) than K(Ca) channels in human peripheral T lymphocytes.

Ion selectivity

To obtain information about the selectivity as well as the permeability of K(Ca) channels in Jurkat T cells we activated the channels with pipette solutions containing 1 \(\mu \text{M} \) Ca\(^{2+}\), varied the external cation species, and measured at the same time changes in slope conductance as well as reversal potentials \((E_{\text{rev}}) \), during whole-cell recording (Fig. 5). Since the slope conductance of the ramp current in the \(\text{K}^+ \) solutions was linear at potentials more negative than -40 mV, we determined \(E_{\text{rev}} \) for current through K(Ca) channels in the \(\text{K}^+ \) solution by extrapolation of the slope of the ramp current measured below -40 mV. This procedure seems to be justified since the slope of the ramp current in Jurkat T cells was linear for \(\text{K}^+ \) all the way through the zero-current potential when current through Kv1.3 was blocked by either CTX or 4-AP (see Grissmer et al. 1992). In addition, ramp currents through K(Ca) channels in human peripheral T lymphocytes were also linear through the zero-current potential in \(\text{K}^+ \) and \(\text{Rb}^+ \) solutions provided that currents through Kv1.3 channels were selectively blocked with NTX (see Grissmer et al. 1993). Therefore the extrapolation of ramp currents to determine \(E_{\text{rev}} \) in \(\text{K}^+ \) and \(\text{Rb}^+ \) solutions seemed to be appropriate. Reversal potentials in the other solutions were determined as zero-current potentials. As expected, these reversal potentials were also not different from the extrapolated reversal potential due to the linearity of the ramp currents (Fig. 5). From the changes in reversal potential, under the assumptions that there is no significant anion permeability and that the internal concentration of permeant ion remains invariant, one can calculate \(P_x/P_K \) using an expression, based on the Goldman–Hodgkin–Katz equation:

\[
\Delta E_{\text{rev}} = E_{\text{rev},x} - E_{\text{rev},K} = (RT/zF) \ln \left(\frac{[X^+]_o}{[K^+]_o} \right) / (P_x/[K^+]_o).
\]

Figure 6

Effect of scyllatoxin (ScTX) on current through K(Ca) channels in Jurkat T cells

K(Ca) channels were activated by whole-cell dialysis with a pipette solution containing 1 \(\mu \text{M} \) free Ca\(^{2+}\). A, ScTX blocks K(Ca) current without inhibiting current through voltage-gated Kv1.3 channels. After full activation of K(Ca) channels by the pipette solution, ramp currents were elicited by 400 ms voltage ramps from -120 to 40 mV every 10 s in 0.1 mg ml\(^{-1}\) bovine serum albumin containing \(\text{K}^+ \) solution and \(\text{K}^+ \) solution with 1 and 10 \(\mu \text{M} \) ScTX. B, dose–response relationship for the block of K(Ca) channels. The line through the points was fitted to a modified Hill equation of the form:

\[
I_{K(Ca)\text{block}}/I_{K(Ca)\text{unblock}} = 1/[1 + ([\text{ScTX}]/K_d)],
\]

with \(K_d \) for channel block of 0.3 nM. Each cell was tested with at least two concentrations. Results were obtained from five different cells.
Ca2+-activated K+ channels in Jurkat T cells

Table 2. Permeability and conductance ratios of apamin-sensitive K(Ca) channels in Jurkat T cells (K(Ca)\textsubscript{ap}) and CTX-sensitive K(Ca) channels in human peripheral T lymphocytes (K(Ca)\textsubscript{CTX})

<table>
<thead>
<tr>
<th>(P_X/P_K)</th>
<th>(g_X/g_K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K+</td>
<td>Rb+</td>
</tr>
<tr>
<td>K+</td>
<td>1-0</td>
</tr>
<tr>
<td>Rb+</td>
<td>1-0</td>
</tr>
<tr>
<td>NH\textsubscript{4}+</td>
<td>1-0</td>
</tr>
</tbody>
</table>

as described in Hille (1992), where \(R\), \(T\), \(F\) and \(z\) have their usual meaning. Since in our case \([X]^+\)\textsubscript{o}=[K+]\textsubscript{o} and \((RT/zF)\approx 25\text{-}5 \text{mV at } T=23\text{ °C we can simplify the expression for } P_X/P_K\text{ to:}

\[
P_X/P_K = \exp(\Delta E_{\text{rev}}/25\text{-}5 \text{mV}).
\]

\(E_{\text{rev}}\) changed from \(-4 \text{ mV in } K^+\text{ solution to } -5\), \(-20\) and \(-38 \text{ mV in } Rb^+, NH_4^+\text{ and Cs}^+\text{ solution, respectively. From the change in } E_{\text{rev}}\text{ for } Cs^+,\text{ for example, with } \Delta E_{\text{rev}} = E_{\text{rev,cs}} - E_{\text{rev,K}} = -38 \text{ mV} - (-4 \text{ mV}) = -34 \text{ mV, the ratio } P_X/P_K\text{ for } Cs^+\text{ can be calculated as } P_{cs}/P_K = \exp(-34 \text{ mV}/25\text{-}5 \text{mV}) = \exp(-1\text{-}33) = 0\text{-}26. \text{ Similarly, } P_X/P_K\text{ ratios for } Rb^+\text{ and } NH_4^+\text{ can be calculated to be 0\text{-}96 and 0\text{-}53, respectively (Table 2). In addition, we determined } E_{\text{rev}}\text{ in Na}^+\text{ Ringer solution (with 4\text{-}5 mm K}^+)\text{ to be } -85 \text{ mV (Fig. 5B). Conductance ratios, } g_X/g_K, \text{ for these ions were also}

Figure 7. Effect of pH on scyllatoxin (ScTX) block of current through K(Ca) channels in Jurkat T cells

K(Ca) channels were activated by whole-cell dialysis with a pipette solution containing 1 \(\mu\)M free Ca2+. Ramp currents were elicited by 400 ms voltage ramps from -120 to 40 mV every 10 s in the different solutions. Upper row, current before and after addition of 1 nM ScTX to the K+ solution at pH 7\text{-}4. Middle row, current obtained in K+ solution (Control) at pH 7\text{-}4 and pH 6\text{-}0. Bottom row, current before and after addition of 1 nM ScTX to the K+ solution at pH 6\text{-}0.

Data from Grissmer \textit{et al.} 1993
determined using the slope of the ramp current at potentials between -100 and -60 mV to be 1·0, 1·01, 0·67 and 0·11 for K⁺, Rb⁺, Cs⁺ and NH₄⁺, respectively. In comparison to the CTX-sensitive K(Ca) channels in human peripheral T lymphocytes the most striking property of apamin-sensitive K(Ca) channels in Jurkat T cells is that these channels can also carry significant current with Cs⁺ as current carrier (Table 2).

Peptide toxins

Apamin, a component of bee venom, has been shown to irreversibly block current through K(Ca) channels in Jurkat T cells without an effect on current through the voltage-gated K⁺ channel Kv1.3 (Grissmer et al. 1992). Another peptide toxin, namely ScTX, also blocks K(Ca) channels in Jurkat T cells. ScTX is a thirty-one amino acid polypeptide isolated from the scorpion *Leiurus quinquestriatus hebraeus* and has been shown to inhibit apamin binding to rat brain synaptosomes. ScTX also blocks the adrenaline-induced relaxation of guinea-pig taenia coli, an action similar to that of apamin (Chicchi, Gimenez-Gallego, Ber, Garcia, Winquist & Cascieri, 1988; Auguste et al. 1990). Figure 6A shows ramp currents in K⁺ solution in the absence and presence of 1 or 10 nM ScTX. One can see that this toxin has no effect on current through voltage-gated Kv1.3 channels at these concentrations. ScTX (1 nM) is able to reduce current through K(Ca) channels to about a quarter of the control current. Assuming that one scyllatoxin molecule is able to block one channel, one can calculate a dissociation constant for scyllatoxin to block the channels of about 0·3 nM (Fig. 6B). ScTX block was usually reversible upon washout. Other peptide toxins that show homology to ScTX like CTX, KTX and NTX, are unable to block current through K(Ca) channels in Jurkat T cells (data not shown).

Changing the pH of the external K⁺ solution does not change the affinity of ScTX block as can be seen in Fig. 7. Reducing pH from 7·4 to 6·0 (middle row), has hardly any

![Figure 8](image-url) **Figure 8. Effect of drugs on current through K(Ca) channels in Jurkat T cells**

K(Ca) channels were activated by whole-cell dialysis with a pipette solution containing 1 μM free Ca²⁺. Ramp currents were elicited by 400 ms voltage ramps from -120 to 40 mV every 10 s before and after the application of diltiazem (A), nifedipine (B), verapamil (C), and clotrimazole (D).
effect on current through K(Ca) channels, whereas activation of current through voltage-gated Kv1.3 channels is shifted about 20 mV towards more depolarized potentials, an effect usually attributed to neutralization of negative surface charges (Hille, 1992). The ScTX effect at pH 6.0 (bottom row) is nearly identical to the effect at pH 7.4 indicating that the interactive sites on the channel and the toxin do not involve amino acids that can be titrated, that is histidines.

Other drugs
To characterize further the pharmacological profile of K(Ca) channels in Jurkat T cells we tested different drugs for their ability to block current through those channels. Figure 8 shows the results of experiments using the classical calcium channel blockers diltiazem (A), nifedipine (B) and verapamil (C) each tested at 100 𝜇M. Diltiazem and verapamil are both able to reduce current through K(Ca) channels as can be seen by the reduction of slope conductance of the ramp current at negative potentials while having also an effect on current through voltage-gated Kv1.3 channels. The effect of those drugs on both channel types was readily reversible upon washout. In contrast, nifedipine as well as clotrimazole (Fig. 8D), a cytochrome P-450 inhibitor that has been reported to block current through K(Ca) channels in red blood cells (Alvarez, Montero & Garcia-Sancho, 1992), had no effect on current through K(Ca) channels in Jurkat T cells but are able to reduce current through voltage-gated Kv1.3 channels in the same cells.

DISCUSSION
We have characterized current through apamin-sensitive K(Ca) channels in Jurkat T cells. These channels are blocked by Ba2+ in a voltage-dependent manner, blocked by ScTX independent of the pH of the extracellular solution, and blocked by high concentrations of diltiazem and verapamil. Other peptide toxins that show homology to ScTX such as CTX, KTX and NTX are unable to block current through calcium-activated potassium channels in Jurkat T cells. The results presented in this paper confirm and extend earlier characterizations of K(Ca) channels in Jurkat T cells (Grissmer et al. 1992). Taken together these findings should allow a better distinction between different types of K(Ca) channels.

Comparison of apamin-sensitive K(Ca) channels in Jurkat T cells with the CTX-sensitive K(Ca) channels in human peripheral T lymphocytes
Several groups reported the expression of K(Ca) channels in resting and activated T and B lymphocytes from different species (Mahaut-Smith & Schlichter, 1989; Partiseti, Choquet, Diu & Korn, 1992; Leonard, Garcia, Slaughter & Reuben, 1992; Grissmer et al. 1993; Verheugen, van Kleef, Oortgiesen & Vijverberg, 1994; Verheugen, Vijverberg, Oortgiesen & Cahalan, 1995). Activation of human T lymphocytes increases the expression of functional K(Ca) channels by a factor of ~25. Since Jurkat is a human T cell line, we compared the properties of the K(Ca) channels in Jurkat T cells and activated human T lymphocytes in more detail as shown in Table 1. It is obvious that the pharmacological profile is quite different between these two channels, the most striking difference being the CTX and apamin/ScTX block, respectively. From this we conclude that the outer vestibule of both channels might be quite different although differences in toxin binding as shown for a voltage-dependent Shaker potassium channel (Goldstein & Miller, 1992) could be due to a single amino acid change in the outer vestibule. However, not only the outer vestibule of the two channels differ in at least one amino acid but also those structures that determine ion permeation. In this respect, the major difference between the two channels is the Cs+ and NH4+ permeation. Cs+ carries current more efficiently through K(Ca) channels of Jurkat T cells whereas NH4+ carries current more efficiently through K(Ca) channels of human T lymphocytes (Table 2). This conclusion about differences in structures that determine ion permeation is supported further by the differences in the voltage dependence of the external Ba2+ block. The simplest explanation for our results would be to assume that the site that determines ion selectivity that is different in the two channels might also be the reason for the difference in the voltage dependence of Ba2+ block.

Toxins
The structure of scorpion toxins has been successfully determined using nuclear magnetic resonance (NMR) and used to estimate the topology of the outer vestibule of voltage-gated K+ channels (MacKinnon, Heginbotham & Abramson, 1990; Stampe, Kolmakova-Partensky & Miller, 1994; Hidalgo & MacKinnon, 1995; Aiyar et al. 1995). All the toxins used (CTX, NTX, KTX, margatoxin (MgTX), and agiotoxin (AgTX)) share similarities with ScTX in so far as ScTX also has three disulphide bonds as well as the central lysine (K20). We therefore assume that ScTX, like the other toxins on voltage-gated channels, acts similarly to block current through K(Ca) channels of Jurkat T cells. Since the effect of ScTX is independent of the pH of the extracellular solution we conclude that interactive sites between the toxin and the channel do not involve histidines. Those residues, if present, could have electrostatically repelled any positively charged toxin residue in its vicinity (compare Aiyar et al. 1995).

Role of K(Ca) channels
In non-excitable membranes, K(Ca) channels might help to control the membrane potential when [Ca2+]i rises and therefore maintain the driving force to sustain Ca2+ entry through voltage-independent calcium-release activated Ca2+ channels, so-called CRAC channels (Zwiebach & Lewis, 1993). This has been suggested for Jurkat T cells where oscillations in [Ca2+]i, induced by mitogenic stimulation could be stopped by blocking CTX-sensitive Kv1.3 as well as apamin-sensitive K(Ca) channels simultaneously (Grissmer et al. 1992). These oscillations could not be modulated by selectively blocking just one channel type. The situation is more complex for human peripheral T lymphocytes. Resting
T cells express only few K(Ca) channels and most of those channels are CTX sensitive (Leonard et al. 1992; Grissmer et al. 1993). They are, however, not the BK channel type but the CTX-sensitive SK channel. After stimulation with mitogens the expression of CTX-sensitive K(Ca) channels increases ~25-fold (Grissmer et al. 1993). Since Kv1.3-specific toxins, i.e., NTX and MgTX, inhibit the rise in [Ca\(^{2+}\)]i, after stimulation of the T lymphocytes with anti-CD3 (Lin et al. 1993), it seemed that Kv1.3 channels alone were responsible for maintaining the electrical driving force to sustain Ca\(^{2+}\) entry in resting T lymphocytes (Leonard et al. 1992). However, in activated T cells, where an increased number of K(Ca) channels are available, K(Ca) channels may also play a role in regulating [Ca\(^{2+}\)]i after mitogenic stimulation. Recent non-invasive measurements of membrane currents, membrane potential and [Ca\(^{2+}\)]i, in intact human T lymphocytes support this idea (Verheugen et al. 1995).

Ca\(^{2+}\)-activated K\(^{+}\) channels in Jurkat T cells

Acknowledgements

The authors wish to thank Dr Stephen Brady (Merck, Sharp & Dohme Research Laboratories, Westpoint, PA, USA) for his generous gift of NTX. This work was supported by a grant from Pfizer Inc. (US) and from the DFG (Gr848/4-1).

Author's email address

S. Grissmer: stephan.grissmer@medizin.uni-ulm.de

Received 20 March 1996; accepted 23 July 1996.